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tensos y que siempre me apoyó en la “lucha”, incluso en mis incursiones más arriesgadas. Y de mi
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Resumen

Los éxitos de la Cosmoloǵıa Observacional en los últimos años han sido espectaculares: tras déca-

das de esfuerzos infructuosos por fin disponemos de medidas razonablemente precisas y fiables de los

parámetros cosmológicos clásicos, como la constante de Hubble, la densidad total de materia y la

densidad total del Universo. Como es usual en estos casos, estos descubrimientos han conducido a

nuevos enigmas, como la necesidad de incluir los conceptos de materia y enerǵıa oscura para poder

explicar estos nuevos datos.

Son numerosos los nuevos cartografiados que se están planeando para un futuro próximo con el

único propósito de recoger más datos y de mejor calidad. Este es el caso de los surveys propuestos para

los próximos años, como por ejemplo, Pan-STARRS, DES, J-PAS o LSST, entre otros. La cantidad de

datos que estos cartografiados proporcionarán es enorme: millones de imágenes de todo tipo de objetos

astronómicos serán recogidas. Además, la calidad de estos datos se incrementa d́ıa a d́ıa gracias a los

espectaculares avances tecnológicos que se producen actualmente en instrumentación: se construyen

telescopios cada vez más grandes, aśı como cámaras e instrumentos ópticos cada vez más precisos.

Uno de los problemas clásicos es el modelado de la distribución de luz de las galaxias y otros obje-

tos astronómicos. Esto es necesario para poder medir el flujo total, sus parámetros morfológicos y, en

resumen, para poder cuantificar y clasificar la enorme variedad de estas “concentraciones de estrellas”.

Vemos las galaxias con cada vez mayor resolución en las observaciones y cada vez mayores áreas del

cielo son cartografiadas. Este desarrollo debe estar acompañado de una correspondiente mejora en las

técnicas de análisis, que deben ser adaptadas a las nuevas caracteŕısticas de los datos. En este sentido,

los métodos clásicos de modelado de galaxias soĺıan emplear varias componentes formadas por perfiles

anaĺıticos para descomponer las imágenes, mientras que los algoritmos más modernos se han centrado

en el uso de bases ortogonales, capaces de modelar los rasgos irregulares y detalles que las técnicas

clásicas no pod́ıan procesar.

Cuando se inició esta tesis no exist́ıan herramientas anaĺıticas para modelar galaxias suficiente-

mente robustas, precisas y versátiles, y nuestro objetivo principal fue desarrollar una técnica con esas

caracteŕısticas. En este trabajo, un nuevo método ha sido desarrollado, la llamada base polar CHEF

(de Chebyshev y Fourier, como veremos), que pertenece al segundo grupo de técnicas de modelado

de galaxias. Es un método no-paramétrico, es decir, esta basado en funciones ortogonales, que han

sido construidas de forma separable usando funciones racionales de Chebyshev para representar la

coordenada radial y series de Fourier para expandir la componente angular. Las funciones racionales

de Chebyshev se han mostrado altamente eficaces a la hora de procesar perfiles con fuertes pendientes,

y la ortogonalidad de las bases las hace extraordinariamente flexibles, de tal forma que la precisión de

los resultados obtenidos es excelente, como será mostrado. Tanto la base matemática teórica donde se
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apoyan estas bases como la implementación práctica llevada a cabo, incluyendo los obstáculos y las

dificultades que nos hemos encontrado por el camino y hemos tenido que solventar, son descritas de

forma detallada en este trabajo. Además, se han llevado a cabo varios tests para demostrar la supe-

rioridad de las bases CHEF con respecto a otros algoritmos como GALFIT o las shapelets, aśı como

estimaciones cuantitativas de este mejor comportamiento.

Esta herramienta ha demostrado su extraordinaria versatilidad en la práctica. En particular, se ha

implementado la deconvolución de la PSF en el dominio de las CHEFs y se han calculado dos técnicas

totalmente distintas para el cálculo de parámetros morfológicos usando sólo los coeficientes CHEF. Se

ha aplicado de forma práctica toda esta teoŕıa a datos reales del proyecto ALHAMBRA o del UDF,

mostrando la velocidad y capacidad del algoritmo para trabajar de forma automática, y se ha probado

a procesar con éxito cúmulos de galaxias substrayendo los objetos de la zona central para permitir el

análisis y la medición de los arcos de lentes gravitacionales ocultos tras ellos. Finalmente, también se

ha implentado una forma de estimar el shear del efecto lente gravitacional débil simplemente usando

los coeficientes CHEF, aśı como un intento de medir la fotometŕıa de los arcos previamente mencio-

nados.

Aún quedan muchas posibilidades y nuevas aplicaciones de las CHEFs que explorar, tales como

una esquema de caracterización morfológica de las galaxias aplicando un análisis de componentes prin-

cipales a los coeficientes CHEF, la aplicación real de las bases a grandes cartografiados para elaborar

catálogos fotométricos precisos o el desarrollo y mejora del algoritmo introduciendo funciones optimi-

zadas, como precalcular una descomposición en valores singulares de las bases o la búsqueda de una

relación anaĺıtica entre el radio de las galaxias y el parámetro de escala de las CHEFs.
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Summary

Successes in Observational Cosmology during the last years have been spectacular: after decades of

fruitless effort, rather precise and faithful measurements of the classic cosmological parameters are

available, such as the Hubble constant, the total matter density or the Universe total density. As usual

in these cases, these discoveries have led to new interrogations, as the necessity of including both the

dark energy and the matter to explain these data.

Numerous surveys have been planned for the near future with the only purpose of collecting more

data with a higher accuracy. This is the case of large surveys proposed for the next years, like Pan-

STARRS, DES, J-PAS or LSST, among others. The amount of data these surveys will provide is huge:

millions of images of all kind of astronomical objects will be stored. In addition, the quality of these

data is increasing everyday due to the spectacular improvements in advanced instrumentation that we

are currently seeing: larger and larger telescopes are being built, and more and more precise cameras

and optical instruments are being designed.

One of the classical problems in this field is the modeling of the light distribution of galaxies and

other astronomical objects. This is necessary to measure their total flux, their morphological parame-

ters, and to put succinctly, to quantify and sort the enormous variety of these “concentrations of stars”.

Galaxies appear more and more resolved in observations, and larger areas in the sky are mapped. This

development must be accompanied by a similar improvement in theoretical analysis techniques, adap-

ted to the characteristics of new data. In this sense, the classical methods of galaxy modeling used to

employ several components of analytical profiles to decompose data -which ensured the straightforward

physical comprehension of the fitting parameters-, while the most modern ones are based on orthogo-

nal bases, able to model the irregular and fine features which the classical techniques cannot deal with.

When this thesis was started, there were no analytical tools which were robust, accurate and ver-

satile enough, and our main goal was developing one with such characteristics. In this work, a new

method has been developed, the so called CHEF polar bases, which belong to second group of tech-

niques for galaxy modeling. It is a non-parametric method, that is, based on orthogonal functions,

separately built using Chebyshev rational functions to represent the radial coordinate and Fourier

series to expand the angular component. Chebyshev rational functions are proved to be highly effi-

cient in modeling decaying profiles, and the orthogonality of the bases makes them extraordinarily

flexible, so the accuracy of the obtained models is excellent, as it will be shown. Both the theore-

tical mathematical background where these bases rely on and the practical implementation carried

out, including the hurdles we have found in the way, are described in detail in this work. In addition,

several tests have been also performed, in order to check the superiority of these bases against other al-

gorithms as GALFIT or the shapelets, and quantitative estimations of this better behaviour are stated.
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This tool has shown its versatility in practice. In particular, the deconvolution of the PSF in the

images has been performed in the CHEF domain, and the calculation of morphological parameters

just using the CHEF coefficients has been implemented with two radically different approaches. The

application of all this theory on real data coming from large surveys as ALHAMBRA and the UDF

has been also carried out, showing the speed and reliability of the algorithm working automatically,

and the processing of cluster of galaxies subtracting the central objects to allow the analysis and

measurement of strong lensing arcs has been successfully tried too. Finally, the shear estimation for

weak lensing studies was also implemented just using the CHEF coefficients, as well as an attempt to

measure the photometry of the arcs in strong lensing.

There are still plenty of possibilities and new applications of CHEFs to be explored, such as the

morphological characterization of the galaxies by means of a principal component analysis of the

CHEF coefficients, the real application of the bases to large surveys to create accurate photometric

catalogues or the improvement of the pipeline introducing optimized mathematical algorithms, as a

pre-calculated singular value decomposition of the basis functions or the search for an analytical rela-

tion between the half light radius of the galaxies and the scale parameter of the CHEFs.



.



Index

1. Introduction 1

1.1. Large astronomical surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 1

1.2. Overview of existing methods of galaxy modeling . . . . . . . . . . . . . . . . . . . . . 3

1.3. The CHEF basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 8

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 9

2. Mathematical background and results 13

2.1. GALFIT fitting . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 14

2.2. Shapelets . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 17

2.3. CHEF polar bases . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 19

2.3.1. Definition of the basis . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 20

2.3.2. Coefficients decay . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 25

2.3.3. Sturm-Liouville equations . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 31

2.3.4. Morphological parameters determination . . . . . . . . . . . . . . . . . . . . . . 32

2.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 38

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 40

3. Practical implementation 43

3.1. CHEF pipeline . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 43

3.2. From theory to practice . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.1. From the complex to the real world . . . . . . . . . . . . . . . . . . . . . . . . 47

3.2.2. From the continuous to the discrete world . . . . . . . . . . . . . . . . . . . . . 51

3.2.3. Orthonormalization of the discrete functions . . . . . . . . . . . . . . . . . . . 53

3.2.4. Choice of the center . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 55

3.2.5. Choice of the scale size . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 57

3.2.6. Choice of the number of coefficients . . . . . . . . . . . . . . . . . . . . . . . . 57

3.3. Examples . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 59

3.4. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 62

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 65



xix

4. Comparison of different methods 67

4.1. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 72

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 73

5. CHEF applications 75

5.1. PSF deconvolution . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 75

5.2. Gaap aperture fluxes . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 79

5.3. Shear estimation by least square minimization . . . . . . . . . . . . . . . . . . . . . . . 83

5.4. Image simulation . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 84

5.5. Large surveys . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.6. Galaxy cluster modeling . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 86

5.7. Conclusions . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 94

References . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 96

6. Conclusions 99



.



1
Introduction

Major advances in many science fields over the past century have arisen from the spectacular and

dramatic instrumental development reached. This is particularly remarkable in the case of Astronomy,

where more and more accurate and sophisticated telescopes have provided researchers with information

from further objects in the deep sky and data displaying a level of resolution ever imagined. However,

this advanced instrumentation -not only in imaging but also spectroscopic and polarimetric- has invol-

ved a more complexity in the data to analyze, making the usual techniques and algorithms inaccurate

(fine features observed are not properly modeled) or even not practical (they cannot be efficiently

applied to the huge amount of data coming, due to its own non-automated implementation). Because

of that, instrumental development must be accompanied by improvement in algorithms, implemented

in new techniques which are fast, precise and well-adapted to the new generation of datasets arriving.

1.1. Large astronomical surveys

The three-dimensional topology and distribution of the matter is one of the most powerful ways of

testing cosmological theories, since the study of the layout of the galaxies and their clustering in the

sky will report us information about the gravitational forces that led to the formation of these galaxies

in the early Universe. This desire to map the universe in three dimensions has provided the main sti-

mulus for the growth of one of the most successful industries in the history of modern astronomy: the

surveying of galaxies, in particular, the redshift surveys. Aided by the rapid progress in information

technology, current sky surveys are changing the way we view and study the Universe. Specially, large

surveys are playing an increasingly central role.

The Sloan Digital Sky Survey (SDSS) (Margon, 1998) pioneered this trend, consisting on both

a photometric and a spectroscopic survey. It is estimated it will finish obtaining multi-color images

covering more than a quarter of the sky, with a final dataset of 230M celestial objects in an area of

8,400 square degrees, as well as spectra of 930,000 galaxies, 120,000 quasars, and 225,000 stars, over

eight years of operations. Using a 2.5-meter telescope at Apache Point Observatory, New Mexico, a
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new survey phase was released on 2008, and will continue through 2014.

The new generation of surveys is even more ambitious, and will generate astonishing data volumes.

For example, the Panoramic Survey Telescope & Rapid Response System (Pan-STARRS) in Hawaii

(Kaiser et al., 2002), composed by four individual optical systems of 1.8 meter diameter each, will be

able to survey 6,000 deg2 per night with a resolution of 0.3 arcsecond per pixel. Although the main

concern of this survey is the detection of potentially hazardous objects in the solar system and the

search for asteroids and variable objects, its exceptional ability to map large areas of the sky to great

sensitivity makes it highly suitable to perform cosmology studies, such as galaxy clustering, gravi-

tational lensing, formation of elliptical galaxies, studies of dwarf and low-surface-brightness galaxies

and identification of far-infrared sources. With these purposes, it will catalog 99% of the stars in the

northern hemisphere and make an ultradeep survey of 1200 square degrees to g = 27.

The Dark Energy Survey (DES) (Abbott et al., 2005) will study the acceleration of the expanding

universe by analyzing over 2,000 supernovae at redshift 0.3< z <0.8, Baryon Acoustic Oscillations

(BAOs), clusters at 0.1< z <1.3, the shifting if the galaxy spatial angular power spectra with redshift,

and the weak lensing effect to z ∼ 1. The first two targets will provide a purely geometric constrain

of the expansion of the Universe, whereas the latter will help us to measure both the expansion of the

Universe and the growth of large-scale structures. So the final goal is measuring w with and accuracy

of 5%-15% and w′ with a precision of 30%. Observations will be carried out by the Dark Energy Ca-

mera (DECam), which will be installed on the 4-meter telescope at the Cerro Tololo Inter-American

Observatory in Chile by 2011. More than 300 million galaxies are expected to be detected covering an

area of 5,000 deg2 of the southern hemisphere in five bands.

Measuring Baryon Acoustic Oscillations with photometric redshifts is the main goal of Javalambre-

PAU Astrophysical Survey (J-PAS) project (Beńıtez et al., 2009). For that, it is necessary to estimate

the photometric redshifts with a precision of σz ∼ 0,003(1 + z), what it is possible by means of the 40

filters especially design with this aim. Starting in 2013, this survey is expected to map 8,000 deg2 in the

sky, measuring photometric redshifts with dz/(1 + z) ∼ 0,003 and dz/(1 + z) ∼ 0,01 for respectively,

100M and 300M galaxies. With these numbers, it will be possible to determine w in the equation of

state with an accuracy of 5%.

The Large Synoptic Survey Telescope (LSST) (Ivezic et al., 2008) is the most ambitious survey

ever planned in the visible band. Its main concerns can be summarized in four tasks: probing both

the dark energy and matter, taking an inventory of the Solar System, exploring the transient optical

sky, and mapping the Milky Way. Using a 6.5-meter telescope at Cerro Pachón in Chile, this project

will be in charge of mapping 10,000 deg2 in two bands plus 30,000 deg2 more, which will be imaged

multiple times with six optical filters. Being scheduled to start in 2015, the survey is expected to last

10 years, with a final dataset of about 10 billion galaxies, a number of objects which dwarfs all other

projects.
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To analyze and exploit such huge datasets, it is therefore necessary to develop techniques which

are automated, objective and efficient. The techniques developed throughout the years have proved

inadequate, either requiring too much interactivity from the user, what makes them impractical for

large surveys processing, or inaccurate and unstable when working on automated mode. This will be

more detailedly explained in the following section, what will show the necessity of developing a new

method of image analysis.

1.2. Overview of existing methods of galaxy modeling

Many different techniques have been developed for image analysis in a wide variety of science fields,

as Astronomy, Biology, Physics, Medicine, etc. In the particular case of Astrophysics, modeling shapes

of astronomical objects is a task of fundamental importance with a large number of applications, as

denoising, filtering, PSF deconvolution, extraction of significant features, detection of sources, object

shape measurement, gravitational lensing, stellar formation, photometry, morphological classification

or image simulations.

Throughout the history of image analysis in Observational Astronomy, methods to model sources

have been always divided in two groups: techniques using analytical profiles, named parametric fit-

ting, and techniques using orthonormal bases, called non-parametric fitting. Many works claim that

parametric fitting by analytical functions is more suitable and useful since profiles are quite similar

to the shape of the objects being modeled and, therefore, parameters of the decompositions provide a

better insight about their meaning (Peng et al. (2002)) (they are usually the size, the axis ratio, the

position, etc). Due to the search for orthogonality, the functions composing orthonormal bases do not

look like the objects they are modeling, what is supposed to be a disadvantage because the coefficients

interpretation becomes much more difficult. Nevertheless, although they are not so straightforward,

this interpretation is still possible in many cases, as we will see in the case of the CHEF coefficients.

On the other hand, defenders of orthonormal methods state that their flexibility and reliability

is much higher that of parametric fittings. Certainly, in the limit of infinite expansions, orthonormal

bases are capable of fitting any source whereas analytical functions are not, what is interpreted by

proponents of parametric methods as a double-edged sword because everything in an image can be

modeled, down to the noise. But, as it will be seen later, this possibility can be easily avoided with

really simple techniques as the introduction of a chi square test.

Parametric fitting methods are based on well-known analytical profiles with shapes similar to the

standard galaxies, and they can be divided in two groups: 1D and 2D techniques. At first sight, 1D

methods can seem archaic and obsolete compared to 2D ones, but they still have their followers. The

main arguments supporting them are the fact that they are straightforward to implement and that

elliptical models are not suitable to be used for galaxies with irregular features or isophotal twists

(Peng et al. (2010)). However, many other arguments against 1D analysis can be also stated. Ambi-
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guity in the way to extract 1D profiles is the principal one: several choices have been used, as the

major or the minor axis or the profiles along spiral arms or isophotal twists. None of them has been

proved to be optimal, and in extremely complex cases as overlapping sources or galaxies with double

nuclei, it is difficult to even define one of those. Another highly important disadvantage of 1D methods

is that convolution in single dimension is not mathematically equivalent to the bidimensional one, so

the PSF deconvolution of the images is not feasible.

The first parametric fitting work is due to de Vaucouleurs (1948), who discovered that many

galaxies had profiles which could be adjusted by means of an exponential of the form exp(r1/4).

Several years later, Sérsic (1963) generalized this function with the so named Sérsic profile:

f(r) = Σee
−k[(r/re)1/n−1] (1.1)

where re is the effective radius of the galaxy, Σe is the surface brigthness at re, n is the power-law

index, and k is coupled to n such that half of the total flux is always within re. Freeman (1970)

showed that most spirals and S0 galaxies have two main components: an spheroidal bulge with a

de Vaucouleurs profile and an exponential disk component. This work was continued by Kormendy

(1977), who confirmed this result but added that the contribution of the spheroid to the exponential

parameters was large and the transition between the components was so sharp that one of them must

have a cutoff. This disk/bulge decomposition technique developed by Kormendy was later applied by

Burstein (1979) and new estimations of the parameters for S0 galaxies were found, as well as a detailed

comparison with elliptical and spiral ones. But progress on this procedure would not come until 1981,

when Boroson (1981) studied a new sample of spiral galaxies using this disk/bulge technique with a

great improvement in the fitting algorithm which made use of all the large-scale spatial information

on the plates. The innovation consisted on fitting each one of the two components in regions where

their light dominates and subtracting them before the other component is solved for. This process was

iterated until convergence was achieved. The two methods were applied to an exhaustive sample of

105 morphological types in Kent (1985), what allowed to a deep statistical study of the parameters

values and the correlation among them and the Hubble type of the galaxies. PSF convolution is also

introduced in this work by means of the convolution of the theoretical profiles with a Gaussian, avoi-

ding in this way the trick of excluding of the central points of the profile, a usual technique at that time.

A different approach to the 1D analysis would be introduced by Andredakis & Sanders (1994)

who, analyzing a sample of late-type spirals, discovered that these ones were better described using an

exponential disk plus an exponential bulge. A few years later, MacArthur et al. (2003) expanded the

usual approach modeling the bulge as a generalized Sérsic profile and applying 1D and 2D non-linear

minimization routines. The result found that a large multiwavelength data set of Type-I late-type

spiral galaxies had a Sérsic index ranging from 0.1 to 2 on average. An alternative way that was also

considered was the introduction of a thick disk (van der Kruit & Searle (1981)). In the case of Bahcall

& Kylafis (1985), a comparison between a thin disk model and a thin disk plus a thicker one was

performed using a set of Sb and later type galaxies, and concluding that both models described the
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observations properly.

When it comes to 2D parametric fitting, one of the first works we found in the literature was

presented by Shaw & Gilmore (1989), where two edge-on spiral galaxies were analyzed. They found

that one of them was well described using a two component model, whereas the other one needed

a third component. Amazingly the authors discovered that none of the best-fit model combinations

contained the de Vaucouleur profile. Although the analysis of the two-dimensional projection of the

light distribution of the galaxies supposed a great advance, new problems arose, like how the inclina-

tion of the objects could affect the result and, concretely, the estimation of the parameters (Byun &

Freeman (1995)). They finally solved the problem by adjusting two-dimensional projections of both a

de Vaucouleurs bulge component and an exponential disk one.

A new method arose with the works by de Jong (1996) to get a better fit of those deviations of

the usual profiles observed in bulges of edge-on spirals, like bars, arms or dust lanes. Its 2D fitting

technique consisted on a three components model: an spherically symmetrical exponential bulge, an

exponential disk and a Freeman bar, being the first one convolved with a Gaussian to account for the

seeing effects. In addition, a weight exponential function was introduced in the χ2 minimization process

to decrease relative errors in the linear scale. It is also worth mentioning the work by Moriondo et al.

(1998), who analyzed a new sample of early-type spirals by means of a two-dimensional generalized

exponential bulge plus an exponential thin disk, providing the general analytic expressions for both

of them:

Ib(x, y) = Ie exp



−αn



(

1

re

√
x2 +

y2

(1 − ǫb)2

)1/n

− 1







Id(x, y) = Id(0) exp

[
− 1

rd

√
x2 +

y2

cos2 i

]
,

(1.2)

where Ie and re are effective (half-light) values, ǫb is the apparent bulge ellipticity, and αn is a constant

relating the effective brightness and radius to the exponential values.

Due to the arrival of new, more accurate data from HST and WFPC2, some authors like Ratnatun-

ga et al. (1999), stated the necessity of finding the optimal choice of number and kind of parameters to

fit an extended image, decision that had been arbitrarily taken in the previous works. They discovered

that using too few parameters in the decomposition could bias them, whereas fitting too many of

them could cause the algorithm to converge to a false local minimum. To solve it, they developed a

two-dimensional maximum likelihood image analysis software which optimized both the model and

the number of parameters simultaneously, being able to create both disk and bulge decompositions

and circularly symmetric sources. As an extension of Byun & Freeman (1995) works, Wadadekar et

al. (1999) displayed three components fittings but taking into account the effects of the convolution

with the PSF and the photon noise from sky background and the galaxy, as well as trying to quantify

effects of other features like foreground stars on parameter extraction.
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However, the revolution in two-dimensional parametric fitting arrived with GIM2D (Simard (1998)),

an IRAF package which implemented the whole pipeline for a complete and automated morphology

analysis based on the bulge and disk decomposition and the Metropolis Algorithm to find the best

parameter values. The module performed several tasks such as the cosmic ray rejection, the data

quality mask creation, the source detection as well as its deblending and extraction, and, finally, the

bulge+disk surface brightness profile decomposition. This powerful tool was later used to automati-

cally process the largest sample of data for morphological classification at that date (Simard et al.

(2002)): 7450 galaxies in the Groth Strip, observed by HST.

After GIM2D opened the way to automated morphology analysis, the most important software in

the area arrived thanks to Peng et al. (2002). GALFIT, a two dimensional fitting algorithm specialized

on nearby galaxies observed with very high spatial resolution, improved all the previous techniques

by being able to simultaneously fit a galaxy with an arbitrary number of components in a very short

computation time. In addition, they introduced new profiles in the analysis in addition to the well

known Sérsic and exponential functions, as the Nuker law or the Moffat/Lorentzian profile. GALFIT

is widely used, so a deeper description of is carried out in section 2.1. By way of comparison, Häusler

et al. (2007), tested these two automated softwares for fitting single-component Sérsic models to both

simulated and real galaxy data. Conclusions were clear: for medium depth data, GALFIT behaved

much better than GIM2D, not only because results were more reliable on average, but also because

the former had lower scatter and less sensitivity to contamination by neighbours than the latter one.

However, some worried about degeneracies in GALFIT, since in several cases a single component in

a galaxy could be fitted by various different functions. That is the case of de Souza et al. (2004), who

later implemented BUDDA, a bulge/disk decomposition software where no other components were

included apart from a generalized Sérsic profile for the bulge and an exponential for the disk. In the

following years, the code underwent several improvements, including the posibility of also fitting bars

and a central source of light, advantage that was taken by Gadotti (2008) to study the impact of

these components using a sample of 17 nearby galaxies hosting bars and AGNs. A two-dimensional

bar-bulge-disk decomposition was also applied by Laurikainen et al. (2004) to 180 spiral galaxies in

the Ohio State University Bright Galaxy Survey to study the bar-induced perturbation strengths.

In contrast to this traditional analytical profile fitting, the non-parametric approach does not in-

volve deciding a priori which functional form to use or how many components to include, as it is the

case of one of the most popular methods, the decomposition by means of orthonormal bases, which

can be multiscaled or within one single scale. The former have bases built by dilating and contrac-

ting one or two original patterns; therefore, each element of the basis is characterized by a different

scale, what leads to a multiresolution analysis (Starck (2001)). In this way, although coefficients of

this decomposition are meaningless from the physical point of view, they can be interpreted as the

splitting of the original galaxy into smoothed versions of it (large scale basis functions or low frequen-

cies) and its detailed features (small scales or high frequencies). Examples of this kind of orthonormal

bases techniques are the wavelet transforms and their by-products, such as the ridgelet or the curvelet

transforms. On the other hand, in single scale methods a set of basis functions with different shapes
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is developed for a fixed scale. The aim is not to carry out a multiresolution analysis, but a complete

decomposition of the images once a certain scale is chosen, although a complete basis is available for

each value of the scale parameter. Techniques like the shapelets or the CHEFs are included in this

group.

Wavelet methods are based on the existence of two standard functions φ and ψ, named respectively

the scaling and the wavelet functions, and their scaled versions. The first one is related to the low

frequencies present in the objects to analyze in such a way that it represents coarser versions of the

data, while the second one deals with the high frequencies, so it is mainly interested in small featu-

res and details (Mallat (1998); Starck & Murtagh (2002)). The most used wavelet transform is the

decimated bi-orthogonal (OWT) one which decomposes objects in several layers of smoothed images

plus detailed ones, and using dyadic scales. Each level of the decomposition needs half the number

of coefficients than the previous one so, due to its compactness, this representation has been widely

used for image compression tasks. However, the undecimated version of this algorithm (UWT) has

been also extensively considered in spite of being an overfitting technique, since it is highly suitable

for data filtering (Starck (2001)). Another well-known wavelet method is the à trous algorithm, which

decomposes sources into a single coarse version and several layers with the details of each scale size.

This is the most popular wavelet technique in astronomical image processing, since it is extremely well

adapted to the detection of isotropic features (Starck & Murtagh (2002)).

Ridgelet transform arises when applying a one-dimensional wavelet transform to ridge functions

(Candès & Donoho (1999)). In fact, it can be proved that ridgelet transform is exactly the application

of a one-dimensional wavelet to the slices of the Radon transform where the angular variable θ is

constant and t is varying. This makes this decomposition greatly adapted to detect line segments in

images, with a size depending on the chosen partition of the image. If this partition is not homoge-

neously performed, but into dyadic blocks, and the ridgelet transform is applied to each one of them,

the result is the so called curvelet transform (Starck et al (2003)). This kind of multiscale ridgelet

pyramid is therefore optimal to find curved structures in the sources being analyzed.

Once it is understood that every type of transform brings out a different kind of feature, the deci-

sion of which one to apply is not trivial, specially when it comes to astronomical images, where many

complex structures can be found simultaneously. Because of that, Starck (2001) developed a combined

method to mix them and get an optimal representation. It just consisted on composing a new trans-

form from the linear combination of the simple ones and minimizing the norm of the residual between

the original source and the so built combined model, just adding a penalty term. The coefficients of

the optimized linear combination indicated which transforms had to be applied and how much they

had to be weighted.

When it comes to single-scaled algorithms by orthonormal bases, the most popular one in astrono-

mical imaging is, by far, the shapelet transform. In this technique, basis functions are perturbations

around a two-dimensional Gaussian, using Hermite polynomials (Refregier (2003); Massey & Refregier
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(2005)). The crucial point of this ensemble of functions is that they are scaled by a factor β according

to the size of the galaxy which is desired to be analyzed. In these way, a complete and compact ort-

honormal basis is constructed for each value of β. A extensive description of shapelets will be found

in section 2.2.

1.3. The CHEF basis

As it has been mentioned above, several large surveys with greater and more complex ensembles of

data are being developed and the trend for future projects is to have more of this. Dramatic advances

in instrumentation must be accompanied by similar developments in analysis techniques, not only for

computational improvements but also for the implementation of new algorithms and mathematical

tools. In the previous section, parametric fitting techniques have proved to be unable to deal with

the new generation of datasets, while the non-parametric, more recently developed algorithms are not

totally complete, requiring either a high amount of interactivity from the user or displaying different

levels of accuracy depending of the data being analyzed.

For all these reasons, a new non-parametric method, the CHEF orthonormal bases, has been

developed. Based on a polar composition of Chebyshev rational functions and Fourier series, this

combination has been chosen due to the periodicity of Fourier modes and the remarkable properties

of efficiency of Chebyshev polynomials when fitting functions in the [-1,1] interval, as their minimax

property states (Mason & Handscomb (2002)). The result is a complete and orthonormal set of basis

functions very well suited to fit astronomical objects able to fully model the whole flux of a galaxy

to very large radii using a small number of coefficients. In addition, these bases have revealed to

be enormously efficient when implementing many other practical applications apart from the simple

morphological modeling, as for instance, shear estimation, morphological and photometric parameters

calculation, PSF deconvolution or clusters processing.

In chapter 2, we present the mathematical definition of the CHEF basis, demonstrate the fast

decay rate of the coefficients, what ensures the compactness of the basis, and derive the main ga-

laxy parameters from the decomposition coefficients. A description of the two most currently used

techniques in astronomical image processing, GALFIT and the shapelets, is also included. Chapter 3

focuses on the practical implementation of the algorithm, describing how to discretize the basis and

choose the free parameters of the fit, namely the scale size, the center and the decomposition order,

and describes our functioning pipeline, which is being used to process data from different surveys.

Chapter 4 shows the application of the method to different datasets, both real and simulated, and

discusses its performance compared with that of shapelets. In chapter 5 the first applications designed

for Astrophysics are described, as well as the corresponding tests to check their accuracy, whereas

chapter 6 states the main conclusions of the thesis.
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2
Mathematical background and results

Image processing and analysis is a widely used tool which has become essential not only for As-

trophysics but also for many other science fields as, for instance, Medicine, Biology or Chemistry.

The necessity of extracting hidden information, that is, information which is not obvious from the

usual point of view (in mathematical terms, the space-time domain) has made scientists develop new

ways of looking at the data, shifting them to different domains. The better known approach is the

translation of the data to the frequency domain, that is, the Fourier transform, although many other

methods have been developed, as the cosine, the Laplace, the Radon or the wavelet transforms. The

later has encouraged the development of many other wavelet-based techniques, as the ridgelet or the

curvelet transforms. In Astrophysics, specific methods to analyze and decompose galaxy images have

been created, with the GALFIT fitting (Peng et al. (2002)) and the shapelet transform (Refregier

(2003)) being the most widely used ones nowadays.

GALFIT (Peng et al. (2002, 2010)) is a so called parametric fitting algorithm. That means that

models are built as linear combinations of analytical functions, then the optimal values of the pa-

rameters for each component are found. Depending on the kind of the analytical profiles chosen for

the modeling and the way the optimization is performed, different parametric fitting methods are

obtained. On the other hand, shapelets constitute an example of a non-parametric fitting method,

what means that reconstructions are based on a set of orthonormal functions which mathematically

constitutes a basis in the Hilbert space of the smooth enough functions. The parameters to optimize in

this case are usually the size (or scale) of the basis functions and the weights of the linear combination

that composes the model.

Parametric techniques are obviously simpler to implement and the resulting parameters are much

easier to understand and interpret. They are often related to the physical properties of the galaxies,

as the size, the axis ratio or the position angle for example, and this leads to direct comparisons

with other galaxies in a statistical fashion. In addition, the analytical functions are usually selected

to mimic the shape of the galaxies being analyzed, thus provides a straightforward physical inter-
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pretation. However, many of these parameters depend non-lineally on the rest of the variables, what

makes the optimization step much more difficult and, in some cases, reaching the best value for them

is not guaranteed since the possibility of lying on a local minimum is higher than with lineal techniques.

On the other hand, the complexity of non-parametric fitting techniques is a disadvantage; they are

much more difficult to implement, and the shapes of the individual components often bear little re-

semblance to the galaxies being reconstructed, what makes the result harder to interpret. In addition,

the parameters of the reconstruction have no direct link to the physical properties of the images, since

they mathematically express just the contribution of each component to the global model. However,

and despite these technical issues, the reliability and adaptability of non-parametric methods to ef-

ficiently model the vast majority of morphology types is matchless. Analytical techniques are highly

constrained by their own profile shapes, so irregular galaxies or those ones displaying a large amount

of substructure are not properly modeled. Unlike them, orthonormal bases methods are capable of

reconstruct every significative feature present in the image, due to their great flexibility.

In this chapter, after describing the already existing GALFIT and shapelet techniques, we will

introduce the CHEF orthonormal bases, the main subject of this thesis. Built in polar coordinates

using Chebyshev rational functions and Fourier series, CHEFs constitute a non-parametric fitting met-

hod capable of reaching an excellent trade-off between the two aforementioned techniques, solving the

problems and deficiencies these two approaches present. In particular, CHEFs are able to reconstruct

galaxies with morphologies that GALFIT cannot deal with and they get the same accuracy both in

the central bulge and the extended wings of the reconstructed model, problem that shapelets often

manifest.

2.1. GALFIT fitting

GALFIT (Peng et al. (2002, 2010)) is a two-dimensional parametric fitting algorithm based on

some well-known mathematical profiles as, for instance, the Nuker law, the Sérsic, King, and Ferrer

profiles, the exponential disk and Gaussian and Moffat functions. Written in C language, GALFIT

software allows the user to fit the galaxies using an arbitrary number of components with a wide

variety of profile types simultaneously. In the initial version of the software, their shape was always

ellipsoidal, what yielded many advantages, as the simplicity in the interpretation of the parameters

(size, axis ratio or position angle, for instance), and its great capability to perform highly accurate

models to fit simple elliptical or spherical galaxies with a small number of components. However,

for more complex morphologies, these elliptical shapes were not enough, since they were absolutely

incapable of efficiently reproduce detailed features in the galaxies, as spiral arms, axial twists or bars.

Because of that, the last improvement of GALFIT software (Peng et al. (2010)) included the concepts

of Fourier modes and coordinate rotation functions. This version implement azimuthal projections

as a series expansion of Fourier modes, what allows the user to reproduce a wide range of isophotal

shapes, whereas the coordinate rotation method produces the rotation of the isophotes as a function
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of radius, what yields excellent results when dealing with isophotal twists.

Basically, the operation of GALFIT software consists on providing an input file to the program,

where the user must specify the number and type of the components he desires to use for the fitting.

In addition, the approximate values of the parameters for these components must be also introduced,

so the algorithm will apply the Levenberg-Marquardt downhill-gradient method (Press et al. (1992))

until the minimization of the residual between the original data and the resulting multi-component

model is achieved and, therefore, the optimal values of the parameters are found. An example of a

GALFIT input file is shown in figure 2.1, where a two components model is required: a Sérsic profile

plus an exponential disk. Let us detailedly explain the parameters appearing in this file.

Headers in GALFIT files always contain information about the image to be modeled and technical

issues about its observation (“IMAGE and GALFIT CONTROL PARAMETERS”). Basic data as

the name of both the input and the output fits images, the noise map and PSF files or bad pixel

masks and parameters constraints are specified here. The rectangular region to be fitted inside the

input image file and the size of the convolution box must also be determined in this header, as well as

observational parameters as the magnitude of the photometric zeropoint and the pixel scale. All this

information can be easily extracted by the users just by looking at the input image header.

In the “INITIAL FITTING PARAMETERS” section, the analytical components and their starting

parameters are introduced. Analytical models available are:

Sérsic profile:

f(r) = Σe e−κ[(r/re)1/n−1],

where re is the effective radius of the galaxy, Σe the surface brightness at re, n the power law

index, and κ is coupled to n such that half of the total flux is always within re.

Exponential disk profile:

f(r) = Σ0 e−r/rs ,

where Σ0 is the central surface brightness and rs is the disk scale length.

Nuker law:

f(r) = Ib2
(β−γ)/α

(
r

rb

)−γ [
1 +

(
r

rb

)α](γ−β)/α

,

where γ is the slope of the inner power law, β is the slope of the outer one, rb is the location

where the profile changes slope, Ib is the surface brightness at rb, and α describes how sharply

the two power laws connect.

Gaussian profile:

f(r) = Σ0 e−r
2/2σ2

,

where Σ0 is the central surface brightness and σ is related to the full width half maximum

(FWHM) by means of FWHM = 2,355σ.
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Figure 2.1 Example of input file for GALFIT, with a two components model.
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Moffat/Lorentzian profile:

f(r) =
Σ0

[1 + (r/rd)2]n
,

where Σ0 is the central surface brightness,rd is the dispersion radius, and n is the power law

index.

In the particular example shown in figure 2.1, a Sérsic profile and an exponential disk are chosen.

For both of them, the coordinates of the center, the integrated magnitude, the half-light radius, the

axis ratio, and the position angle must be indicated. Initial estimates can be easily obtained by running

SExtractor on the original image and asking for these parameters to the output catalog. In the case

of the Sérsic profile, an additional number is required, the so called Sérsic index, which is related to

the steepness of the source being decomposed, as it was explained previously.

Finally, a third component is taken into account: the background. The most important parameter

for the sky is the level of noise present in the image, what can be easily estimated by running IRAF

tasks or taken the value provided by SExtractor.

It is worth mentioning that even if the complete set of parameters has been accurately estimated,

in many cases the GALFIT minimization algorithm crashes, what makes the user modify slightly the

value of some of the inputs, preferentially, the Sérsic index. However, convergence of the method does

not guarantee an optimal result either, since the technique has been shown to converge often to local

minima depending on the initial parameters.

2.2. Shapelets

Shapelets arose as an alternative to the traditional parametric fitting of galaxies of GALFIT and

the multiresolution image analysis provided by wavelets. Sharing the ideas of orthogonal bases and

single scale methods, shapelets are defined as an infinite set of orthonormal functions which represents

a basis of the space of smooth and integrable functions (Refregier (2003)). These functions are thought

of as shape perturbations around the two-dimensional Gaussian or weighted Hermite polynomials. In

fact, shapelet functions φn,m were first developed in cartesian coordinates:

{Sn,m(x1, x2;β)}n,m =

{
Hn(x1/β)Hm(x2/β) e−

√
x2
1+x

2
2/2β

2

β2n
√
πn!m!

}

n,m

, (2.1)

where Hn(x) is the Hermite polynomial of order n (Abramowitz & Stegun (1970)) and β is the so

called shapelet scale size, which varies the speed of the Hermite polynomials to reach their extrema.

As this set can be proved to form an orthonormal and complete basis of the space of smooth enough

functions, every object f can be expressed as a linear combination of these functions:

f(x1, x2) =
∞∑

n=0

∞∑

m=0

fn,mSn,m(x1, x2;β), (2.2)
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where the fn,m are the so named shapelet coefficients and are uniquely determined by evaluating the

integral:

fn,m =

∫∫

R2

f(x1, x2)Sn,m(x1, x2;β) dx1 dx2. (2.3)

Cartesian shapelets display a wide range of smart mathematical properties (Refregier (2003)), such

as their invariance under Fourier tranforms (up to a rescaling) or the fact that they are the eigenstates

of the two-dimensional Quantum Harmonic Oscillator whose Hamiltonian is

Ĥ =
1

2

[
x̂2

1 + x̂2
2 + p̂2

1 + p̂2
2

]
, (2.4)

where x̂i and p̂i are the position and momentum operators respectively for each dimension.

Although this cartesian approach resulted very useful, polar shapelets (Massey & Refregier (2005))

were soon developed as a more intuitive and convenient expression, since they allowed to separate an

image into components with explicit rotational symmetries. Polar shapelet basis functions χn,m are

separable in the radial and the angular coordinates:

{χn,m(r, θ;β)}n,m =

{
(−1)(n−|m|)/2

β|m|+1

{
[(n− |m|)/2]!
π[(n + |m|)/2]!

}1/2

r|m|L|m|
(n−|m|)/2

(
r2

β2

)
e−r

2/2β2

e−imθ
}

n,m

,

(2.5)

where the Lqp(x) are the Laguerre polynomials (Abramowitz & Stegun (1970)), which are related to

Hermite polynomials used in cartesian shapelets by means of:

Hn,m(x) = (−1)nn! xm−nLm−n
n (x2) (2.6)

being m > n. With these polar shapelets, decomposition of any smooth enough function f(r, θ)

becomes:

f(r, θ) =

∞∑

n=0

n∑

m=−n
fn,mχn,m(r, θ;β), (2.7)

where the polar shapelet coefficients fn,m are calculated just evaluating the following integral:

fn,m =

∫∫

R2

f(r, θ)χn,m(r, θ;β) r dr dθ. (2.8)

Finally, cartesian shapelet coefficients fn,m can be transformed into polar ones fn,m by means of

the relation:

fn,m = 2−n/2im
{

n!m!

[(n+ 2)/2]![(n −m)/2]!

}1/2

δn+m,n

m∑

n′

r=0

n∑

n′

l=0

im

(
n+m

2

n′r

)(
n−m

2

n′l

)
δn′

l+n
′

r,n
fn,m.

(2.9)

The applications of shapelet bases, both in their cartesian and polar forms, have been numerous.

Explicit expressions for photometry and astrometry parameters from the coefficients have been develo-
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ped, as well as a matrix direct process to deconvolve the PSF of galaxies. One of fields where they have

been more often applied to is the study of the weak gravitational lensing (Chang & Refregier (2002);

Refregier & Bacon (2003); Massey et al. (2004, 2007); Goldberg & Bacon (2005); Kuijken (2006); Hey-

mans et al. (2006)) where different approaches to estimate shear from shapelet decompositions have

been developed. The invariant behaviour of shapelets under a Fourier transform made them suitable

to reconstruct images from interferometric observations (Chang & Refregier (2002)). These bases were

also used by Massey et al. (2004) to simulate realistic astronomical images containing galaxies with

complex morphologies and by Kuijken (2008) to carry out photometry measurements. A principal

component analysis has been also performed with the shapelet coefficients of about 3000 galaxies from

SDSS in order to get an automated morphological classification system (Kelly & McKay (2004)).

However, the applicability and reliability of shapelets have been discussed by (Melchior et al.

(2007); Bosch (2010)), since these bases have proved to be suboptimal for galaxy decomposition.

Troubles range from the loss of orthonormality (due to discretization, undersampling and boundary

effects) to the wrong selection of the external parameters (errors in the optimal value of the number of

coefficients to calculate, the scale parameter and the centroid, even although these values match with

the minimum in the χ2). But the most important limitation of shapelets is their own shape. Although

they display oscillating cores that make them perfect to fit bulges of galaxies, shapelets functions

have all wings that tend to vanish due to the Gaussian, what makes that reconstructions are affected

by the intrinsic cut-off of this exponential. The worst consequence is that flux recovered by shapelet

models is bounded by these wings, and this leads to a misestimation of the photometric parameters. It

has been also proved that if the image to analyze displays a high ellipticity or or the intrinsic galaxy

profile becomes steeper, the shapelet decomposition performs more poorly, what leads to a worrying

misestimation of the ellipticity and therefore to a large bias in weak shear measurements (Melchior et

al. (2010); Bosch (2010)). This problem has tried to be solved using elliptical shapelets, but they have

shown to be also useless, since they depend critically in accurate ellipticity priors.

2.3. CHEF polar bases

CHEF polar bases were born with the aim of solving the problems displayed by methods like GAL-

FIT and the shapelets. The fact that makes CHEFs behave better than these others is the combination

of flexibility with the lack of radial slope constrains. The flexibility comes from the orthogonality pro-

perty of the bases, which makes them able to fit any kind of morphology at different scales. The lack

of radial slope constrains is due to the profile of rational Chebyshev functions, which tend to 1 at the

infinity and, therefore, do not limit the modeling of any profile. In addition, as it is shown in figure

2.3.1, these rational Chebyshev functions have proved to be highly efficient in modeling decaying profi-

les, and their superiority against other methods is specially observed in highly steep or compact sources.
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2.3.1. Definition of the basis

The Chebyshev polynomial Tn(x) of first kind is a polynomial in x of degree n, defined by the

relation

Tn(x) = cos(nθ) (2.10)

with x = cos θ (Mason & Handscomb (2003); Boyd (2000)). These polynomials are defined on the

finite interval [−1, 1] and they constitute a basis of the L2-space of squared-integrable, real-valued

functions defined on [−1, 1]:

L2 ([−1, 1]) =



f : [−1, 1] → R

∣∣∣∣∣

1∫

−1

f2(x) dx <∞



 . (2.11)
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Figure 2.2 First five Chebyshev polynomials.

At the extrema of the domain interval, these polynomials do not vanish, but reach the value 1 or

-1 (see figure 2.2). We want to use these Chebyshev polynomials to expand the radial component of

galaxies, represented in polar coordinates, although they are defined on the interval [−1, 1] instead

of the semi-infinite interval [0,+∞) (as the radius is). Because of that, a rational function has been

applied in such a way that the rational Chebyshev functions are defined by:

TL : [0,+∞) −→ R

x 7−→ TLn(x) = Tn

(
x− L

x+ L

)
= cos

(
n arc cos

(
x− L

x+ L

))
(2.12)

where the parameter L will be called the scale parameter from now on and it is considered to be

always strictly positive, thus application in (2.12) is well-defined. This scale parameter L is related to

the “width” of the Chebyshev polynomial which each rational function comes from, that is, L works

as an accordion, contracting and dilating the Chebyshev polynomials. The larger L is, the more slowly

the extrema are reached, as it can be observed in figure 2.3.
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Figure 2.3 Chebyshev rational function of order n = 5 with different scale sizes.

As we can see, these rational Chebyshev functions tend monotously to one after their last mini-

mum, more and more slowly as the order grows. They do not vanish quickly, as the shapelet radial

components, and therefore CHEFs can fit extended galaxy wings of any shape. At small radii, they

quickly oscillate and are thus capable of accurately describing the very fast change of flux with radius

displayed by compact galaxies. The frontier between both regimes is roughly set by the scale parame-

ter L. This very good adaptation to the actual properties of real galaxies is illustrated by figure 2.3.1

which shows the rational Chebyshev approximations to both a de Vaucouleur and a Sersic profile (with

index ns = 0,75), using different Chebyshev rational functions orders. It can be observed how they

match quite tightly both profiles using just a few coefficients. (e.g. compare with fig. 2 from Bosch

(2010)).

On the other hand, since f is a 2π-periodic function, its Fourier series can be defined as:

f ∼
∞∑

n=−∞
f̂(n)eint, where f̂(n) =

1

2π

π∫

−π

f(t)e−int dt, (2.13)

and f̂(n) is called the nth Fourier coefficient. It can be proved (Katnelson (2004)) that if f ∈
C1([−π, π]) =

{
f : [−π, π] → R

∣∣∃f ′,with f and f ′continuous
}
, then its Fourier series uniformly con-

verges to the function f which is representing.

CHEF polar bases are built separably in polar coordinates, expanding the radial component using

the rational Chebyshev functions described before and representing the angular coordinate by means

of Fourier series, due to its 2π-periodicity (see figure 2.3.1). Thus, the following set of functions is

considered:

{φn,m(r, θ;L)}n,m =
{
TLn(r)e

imθ
}
n,m

, n ∈ N, m ∈ Z. (2.14)
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Figure 2.4 Chebyshev approximations to both a de Vaucouleurs and a Sersic profile (with index
ns = 0,75), using Chebyshev rational functions of different order n. Just a few coefficients provide
high accuracy over several orders of magnitude.

Figure 2.5 Construction of CHEF polar bases with (a) Chebyshev rational functions, and (b) Fourier
series.

Let us prove that this set constitutes a basis of a certain space of functions and let us make it be

orthonormal. In order to get these, it is first necessary to introduce some mathematical definitions. Let

L2 ([0,+∞) × [−π, π]) be the space of complex-valued functions f defined on polar coordinates such

that the integral

∞∫

0

π∫

−π

|f(r, θ)|2 dθ dr exists and is finite. Now, an operation in this space of functions

is going to be introduced; given f, g ∈ L2 ([0,+∞) × [−π, π]) we define an operation 〈·, ·〉 by:

〈f, g〉 =

∞∫

0

π∫

−π

f(r, θ) g(r, θ)
1

r + L

√
L

r
dθ dr. (2.15)

Proposition 2.1. The operation defined in (2.15) constitutes an inner product in the

L2 ([0,+∞) × [−π, π]) space.
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Proof: In order to prove that (2.15) defines an inner product, four properties must be demonstrated.

Let f, g and h be three functions in L2 ([0,+∞) × [−π, π]), then:

1. Linearity of the sum:

〈f + g, h〉 =

+∞∫

0

π∫

−π

[f(r, θ) + g(r, θ)] h(r, θ)
1

r + L

√
L

r
dθ dr =

=

+∞∫

0

π∫

−π

f(r, θ)h(r, θ)
1

r + L

√
L

r
dθ dr +

+∞∫

0

π∫

−π

g(r, θ)h(r, θ)
1

r + L

√
L

r
dθ dr =

= 〈f, h〉 + 〈g, h〉.

2. Linearity of the product by a scalar. Let α ∈ R, then

〈αf, g〉 =

+∞∫

0

π∫

−π

αf(r, θ)g(r, θ)
1

r + L

√
L

r
dθ dr = α

+∞∫

0

π∫

−π

f(r, θ)g(r, θ)
1

r + L

√
L

r
dθ dr =

= α〈f, g〉.

3. Symmetry in complex space:

〈f, g〉 =

+∞∫

0

π∫

−π

f(r, θ)g(r, θ)
1

r + L

√
L

r
dθ dr =

+∞∫

0

π∫

−π

g(r, θ)f(r, θ)
1

r + L

√
L

r
dθ dr = 〈g, f〉.

4. It must be proved that 〈f, f〉 ≥ 0 for every function f and that 〈f, f〉 = 0 if and only if f ≡ 0.

Let us start with the first assertion:

〈f, f〉 =

+∞∫

0

π∫

−π

|f(r, θ)|2 1

r + L

√
L

r
dθ dr ≥ 0 automatically because all the factors are posi-

tive or vanish (remember that L ≥ 0).

For the second affirmation, one of the directions is trivial; let us check the opposite one. If

〈f, f〉 = 0, as the integrand is always non-negative, the only option is |f(r, θ)|2 1

r + L

√
L

r
=

0 at almost every point, what implies that f(r, θ) = 0 at almost every point (because L > 0),

and, therefore, f ≡ 0.

�

Corollary 2.1. The set L2 ([0,+∞) × [−π, π], 〈·, ·〉) constitutes a Hilbert space with the inner product

defined in (2.15).

Theorem 2.1. The set of functions {φn,m(r, θ, L)}n,m defined in (2.14) constitutes for every L > 0

an orthogonal basis of the Hilbert space L2 ([0,+∞) × [−π, π], 〈·, ·〉), with the inner product defined in

(2.15).
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Proof: It is enough to prove that 〈f, TLj(r)einθ〉 = 0, ∀ j ∈ N, n ∈ Z implies f ≡ 0, being f ∈
L2 ([0,+∞) × [−π, π]). Let us briefly develop this inner product:

0 = 〈f, TLj(r)einθ〉 =

+∞∫

0

π∫

−π

f(r, θ)TLj(r)e
−inθ 1

r + L

√
L

r
dθ dr. (2.16)

Firstly, the integral in r will be calculated separately. Applying the variables changes y =
r − L

r + L
firstly

and y = cos t secondly, it yields:

I(r) =

+∞∫

0

f(r, θ)TLj(r)
1

r + L

√
L

r
dr =

+∞∫

0

f(r, θ) cos

(
j arc cos

(
r − L

r + L

))
1

r + L

√
L

r
dr =

=

1∫

−1

f

(
L

1 + y

1 − y
, θ

)
cos(j arc cos y)

√
1

1 − y2
dy =

π∫

0

f

(
L

1 + cos t

1 − cos t
, θ

)
cos(jt) dt =

=

π∫

0

f

(
L

1 + cos t

1 − cos t
, θ

)
eijt + e−ijt

2
dt =

=
1

2




π∫

0

f

(
L

1 + cos t

1 − cos t
, θ

)
eijt dt+

π∫

0

f

(
L

1 + cos t

1 − cos t
, θ

)
e−ijt dt


 .

(2.17)

Consider these two integrals separately, although they are conjugates each other since function f is

real-valued, and define a new function F :

F : [−π, π] × [−π, π] −→ R

(t, θ) 7−→ F (t, θ) := f

(
L

1 + cos t

1 − cos t
, θ

)
(2.18)

Note this function F is 2π-periodic and even with respect to the t coordinate, that is, F (−t, θ) =

F (t, θ). Applying the variable change u = −t it is easy to see that

π∫

0

F (t, θ)eijt dt = −
−π∫

0

F (−u, θ)e−iju du =

0∫

−π

F (u, θ)e−iju du. (2.19)

Therefore

I(r) =
1

2




0∫

−π

F (u, θ)e−iju du+

π∫

0

F (t, θ)e−ijt dt


 =

1

2

π∫

−π

F (t, θ)e−ijt dt = πF̂ (j, θ), (2.20)

... considering the Fourier transform in the first coordinate, t. If we define a new function gj

gj : [−π, π] −→ R

θ 7−→ gj(θ) := F̂ (j, θ)
(2.21)
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then, replacing (2.20) and (2.21) into (2.16), it is obtained

0 =

π∫

−π

πF̂ (j, θ)e−inθ dθ = π

π∫

−π

gj(θ)e
−inθ dθ = 2π2ĝj(n), ∀j, n. (2.22)

Given that Fourier trigonometric system constitutes an orthonormal basis of the Hilbert space L2 ([−π, π])

whose gj functions belong to for every j ∈ N, that implies that gj functions are identically zeros, that

is, gj ≡ 0, ∀j. Therefore, F̂ (j, θ) = 0, ∀θ and also, by hypothesis, for all j, so F ≡ 0 and, consequently,

f ≡ 0 too.

�

Corollary 2.2. The set of functions

{
1

Cπ
φn,m(r, θ, L)

}

n,m

, with C =

{ √
2, if n = 0

1, cc
constitutes

for every L > 0 an orthonormal basis of the Hilbert space L2 ([0,+∞) × [−π, π], 〈·, ·〉), with the inner

product defined in (2.15).

Proof: According to the previous theorem, it is enough proving that 〈φn,m, φn,m〉 = (Cπ)2, for every

n ∈ N,m ∈ Z. Applying the variable changes y =
r − L

r + L
firstly and y = cos t lately, as in the theorem

before, it yields:

〈φn,m, φn,m〉 =

+∞∫

0

π∫

−π

TL2
n(r)e

imθe−imθ
1

r + L

√
L

r
dθdr = 2π

1∫

−1

T 2
n(y)

√
1

1 − y2
dy =

= 2π

π∫

0

cos2(nt) dt =

{
2π2, if n = 0

π2, cc.
.

(2.23)

�

With these results, it can be concluded that given any f ∈ L2 ([0,+∞) × [−π, π]), this can be decom-

posed into

f(r, θ) =
1

Cπ

+∞∑

m=−∞

+∞∑

n=0

fn,mTLn(r)e
imθ, (2.24)

where the fn,m will be named the CHEF coefficients and can be calculated by means of

fn,m =
1

Cπ

+∞∫

0

π∫

−π

f(z, ψ)TLn(z)
1

z + L

√
L

z
e−imψ dψdz. (2.25)

An azimuthal view of the first CHEF functions is shown in figure 2.6, where both the real and the

imaginary components of the basis function with 0 ≥ m ≥ 10 and −4 ≥ m ≥ 4 are displayed.

2.3.2. Coefficients decay

A fast decay of the CHEF coefficients is an essential property for practical implementations, since

if they do not decrease quickly enough, it will not be possible to efficiently represent images using just
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Figure 2.6 Azimuthal view of the first CHEFs functions.
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a few coefficients. It is obvious that in a practical implementation infinite sums as (2.24) cannot be

afforded. In this subsection, the decay rate of the CHEF coefficients will be calculated by introducing

the concept of Chebyshev series and its associated properties. Once the relation between Chebyshev

and CHEF series is determined, properties of the former are transferred to the latter, in particular,

the coefficients decay rate.

Let us start defining the Chebyshev series of a function and its associate inner product. Given two

real-valued functions f, g ∈ L2([−1, 1]), we define an operation 〈·, ·〉c by:

〈f, g〉c =

1∫

−1

(1 − x2)−1/2f(x)g(x) dx. (2.26)

Proposition 2.2. The operation defined in (2.26) constitutes an inner product in the L2([−1, 1]) space.

Proof: Result will be proved in the same way that proposition 2.1. Let f, g and h be three real-valued

functions in L2([−1, 1]), then:

1. Linearity of the sum:

〈f + g, h〉c =

1∫

−1

[f(x) + g(x)] h(x)(1 − x2)−1/2 dx =

1∫

−1

f(x)h(x)(1 − x2)−1/2 dx+

+

1∫

−1

g(x)h(x)(1 − x2)−1/2 dx = 〈f, h〉c + 〈g, h〉c.

2. Linearity of the product by a scalar. Let α ∈ R, then

〈αf, g〉c =

1∫

−1

αf(x) g(x)(1 − x2)−1/2 dx = α

1∫

−1

f(x) g(x)(1 − x2)−1/2 dx = α〈f, g〉c.

3. Symmetry in complex space:

〈f, g〉c =

1∫

−1

f(x) g(x)(1 − x2)−1/2 dx =

1∫

−1

g(x) f(x)(1 − x2)−1/2 dx = 〈g, f〉c.

4. It must be proved that 〈f, f〉c ≥ 0 for every function f and 〈f, f〉c = 0 if and only if f ≡ 0. Let

us start with the first assertion:

〈f, f〉c =

1∫

−1

|f(x)|2(1 − x2)−1/2 dx ≥ 0 automatically because all the factors are positive or

vanish.

For the second affirmation, one of the directions is trivial; let us check the opposite one. If

〈f, f〉c = 0, as the integrand is always non-negative, the only option is |f(x)|2(1−x2)−1/2 = 0
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at almost every point, what implies that f(x) = 0 at almost every point and, therefore,

f ≡ 0.

�

Corollary 2.3. The set L2 ([−1, 1], 〈·, ·〉c) constitutes a Hilbert space with the inner product defined in

(2.26).

With this inner product, the Chebyshev series of a function f ∈ L2([−1, 1]) is defined by

f(x) ∼
∞∑

i=0

f ci Ti(x), (2.27)

where the Chebyshev coefficients f ci are obtained by f ci =
〈f, Ti〉c
〈Ti, Ti〉c

. Let us calculate the inner product

of two of these Chebyshev polynomials Ti, Tj , with i, j ∈ N:

〈Ti, Tj〉c =

1∫

−1

Ti(x)Tj(x)(1 − x2)−1/2 dx =

1∫

−1

cos(i · arc cos x) cos(j · arc cos x)(1 − x2)−1/2 dx =

=
1

2




1∫

−1

cos((i + j) · arc cos x)(1 − x2)−1/2 dx+

1∫

−1

cos((i− j) · arc cos x)(1 − x2)−1/2 dx


 =

=
1

2




π∫

0

cos((i + j) t) dt+

π∫

0

cos((i− j) t) dt


 =





π, if i = j = 0

π/2, if i = j 6= 0

0, cc

(2.28)

... this last step being achieved by means of the variables change x = cos t. So finally the Chebyshev

coefficients ci will be given by:

f ci =
〈f, Ti〉c
k

, with k =

{
π, if i = 0

π/2, if i 6= 0
. (2.29)

Let us then calculate the decay rate of the CHEF coefficients using the fact that a Chebyshev series is

a Fourier series with a change of variable, in such a way that the Chebyshev coefficients of a univariate

function g are proportional to the Fourier coefficients of the composition g ◦ cos:

gcn = 2 Ĝ[n], ∀n ∈ N, with G(t) = g(cos(t)). (2.30)

Proposition 2.3. Let f be a function of the space L2([−1, 1]). Let us define the function F in the

following way:

F : [−π, π] → R

t 7→ f(cos t)
(2.31)

Then, the Fourier coefficients of F are proportional to the Chebyshev coefficients of f , that is,

F̂ [n] =
1

k′
f cn, ∀n ∈ N (2.32)
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where f cn is the n-th coefficient in the Chebyshev series of f and k′ =

{
k′ = 1, if n = 0

k′ = 2, if n > 0
.

Proof: The function F is 2π-periodic, so its Fourier series can be calculated. Applying the variables

changes y = −t and x = cos y, and noting that F (t) = F (−t), it yields:

F̂ [n] =
1

2π

π∫

−π

F (t)e−int dt =
1

2π

0∫

−π

F (t)e−int dt+
1

2π

π∫

0

F (t)e−int dt =

=
1

2π

π∫

0

F (y)
[
einy + e−iny

]
dy =

1

π

π∫

0

F (y) cos(ny) dy =

=
1

π

1∫

−1

f(x) cos(n · arc cos x)(1 − x2)−1/2 dx =
1

π

1∫

−1

f(x)Tn(x)(1 − x2)−1/2 dx =
1

k′
f cn

�

This result is extremely useful since it allows us to transfer the Fourier series properties to the CHEF

one. In addition to this, it is well-known that the Fourier coefficients of a smooth enough function f

are bounded, as the following theorem states.

Theorem 2.2. (Čı́̌zek (1986)) Let f be a periodic function with an interval of periodicity [0, P ), con-

tinuous with its derivatives up to order p − 1, p ≥ 1, that is, f ∈ Cp−1. Let its derivative of order

p be piecewise continuous in the interval. Then, there exists a constant A > 0 such that, for Fourier

coefficients of the function f , we have

∣∣f̂ [l]
∣∣ ≤ A

|l|p+1
, ∀ l ∈ N. (2.33)

Therefore, using (2.32) and (2.33) it is easy to reach the decay rate of the CHEF coefficients, as it is

shown in the following proposition.

Proposition 2.4. Let f be a complex-valued function of the space L2([0,+∞]× [−π, π]) defined in polar

coordinates. Let us assume that f is continuous in the angular coordinate with its partial derivatives

up to order p − 2, and its partial derivative of order p − 1 is piecewise continuous in the interval

[−π, π]. Let f be also piecewise continuous in the azimuthal coordinate (the interval [0,+∞)). Then,

there exists a constant K > 0 such that for the CHEF coefficients of f it has the following boundary:

|fnm| ≤
C

|n| |m| p+1

2

, ∀n,m ∈ N. (2.34)
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Proof: Let us define the function g as

g : [−π, π] → R

θ 7→
∞∫

0

f(r, θ)TLn(r)
1

r + L

√
L

r
dr

.

This function can be extended in a periodic way to fulfil the condition that it is continuous with its

derivatives up to order p− 1, as well as the p-th derivative is piecewise continuous in the periodicity

interval [−π, π]. Then, using the theorem 2.2, there exists a non-negative constant N ′
2 such that

|ĝ[l]| ≤ N ′
2

|l|p+1
, ∀ l ∈ N.

Moreover, a relationship between the CHEF coefficients of f and these Fourier coefficients of g can be

established:

fnm =

π∫

−π

∞∫

0

f(r, θ)TLn(r)e
−imθ 1

r + L

√
L

r
dr dθ =

π∫

−π

g(θ)e−imθdθ = 2πĝ[m].

Therefore,

|fnm| ≤
N2

|m|p+1
. (2.35)

On another front, let us define a function h as

h : (−1, 1) → R

t 7→
π∫

−π

f

(
1 + t

1 − t
L, θ

)
e−inθ dθ

.

Let us consider the function H = h ◦ cos. This function can be extended in a periodic way to R and it

is continuous within its interval of periodicity. Its derivative is piecewise continuous in this interval, so

we are under the assumption of theorem 2.2 and it can be stated that there exists a constant N ′
1 > 0

such that

|Ĥ [l]| ≤ N ′
1

l2
, ∀ l ∈ N.

Working in a similar way and applying the variable change r =
1 + z

1 − z
L, we reach the following relation

between the CHEF coefficients of f and the Chebyshev coefficients of h:

fnm =

1∫

−1




π∫

−π

f

(
1 + z

1 − z
L, θ

)
e−imθ dθ


 Tn(z)(1 − z2)−1/2dz = hcn.

Using the proposition 2.3, we have that Ĥ[n] =
1

k
hcn, being hcn the Chebyshev coefficients of the

function h, then

|fnm| ≤
N1

n2
. (2.36)
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Finally, using (2.35) and (2.36), it is obtained

|fnm|2 ≤ N1N2

|m|p+1n2
.

�

2.3.3. Sturm-Liouville equations

The so called Sturm-Liouville differential equations fit the following expression

[
r(x) y′

]′
+ [q(x) + λp(x)] y = 0. (2.37)

The solutions y(x) of this ordinary differential equation are called eigenfunctions while the valid values

λ associated to them receive the name of eigenvalues. It can be proved that if the functions p, q and

r are real and continuous over an interval [a, b] being p(x) > 0 (or p(x) < 0),∀x ∈ [a, b], then all the

eigenvalues lambda are real and the eigenfunctions y are orthogonal in [a, b] with the weight function

p (Courant & Hilbert (1989)).

It is easy to see that the rational Chebyshev functions constitute a family of eigenfunctions of a

Sturm-Liouville equations, displaying, therefore, all the properties of the Sturm-Liouville eigenfun-

ctions. This result is immediate since Chebyshev polynomials are also the eigenfunctions of another

Sturm-Liouville equation, as the following proposition states.

Proposition 2.5. (Courant & Hilbert (1989)) Chebyshev polynomials Tn(x) form the solutions set of

the following Sturm-Liouville equation:

(√
1 − x2 u′

)′
+

λ√
1 − x2

u = 0, (2.38)

with the boundary conditions that the solution be regular at x = ±1. The eigenvalue corresponding

to the Chebyshev polynomial Tn(x) is λ = n2 and these λ and Tn exhaust all the eigenvalues and

eigenfunctions.

Corollary 2.4. Rational Chebyshev functions {TLn(r)}n form the solutions set of the following Sturm-

Liouville equation (
(r + L)

√
r

L
u′
)′

+
λ

r + L

√
L

r
u = 0, (2.39)

with the boundary conditions that the solution be regular at r ∈ {−L, 0}. The eigenvalue corresponding

to the Chebyshev rational function TLn(r) is λ = n2 and these λ and TLn exhaust all the eigenvalues

and eigenfunctions.
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2.3.4. Morphological parameters determination

CHEFs can be used not only for modeling purposes but also to calculate morphological parameters

of the sources as well as to measure physical properties of them. In order to do so, closed expressions

of these parameters (flux, unweighted centroid, quadrupole moments, rms radius and ellipticity) de-

pending on the CHEF coefficients must be found, and the previous evaluation of the generic integral∫ R

0
TLn(r) r

pdr, p ≥ 1 will help us to reach simple formulas.

The generic integral

∫ R

0
TLn(r) r

pdr, p ≥ 1

Let us calculate the generic integral

∫ R

0
TLn(r) r

pdr, with p ≥ 1, which will be extremely useful for the

development of compact analytic expressions of some morphological parameters, as for instance, the

flux, the centroid, the rms radius or the ellipticity. Using the fact that arc cos z =
π

2
+i ln(iz+

√
1 − z2),

it yields

Ipn =

R∫

0

TLn(r) r
pdr =

R∫

0

cos

(
n · arc cos

(
r − L

r + L

))
rp dr =

=
1

2

R∫

0

(
ein arc cos( r−L

r+L) + e−in arc cos( r−L
r+L)

)
rp dr =

=
1

2

R∫

0

(
e
in

„

π
2
+i ln

„

i r−L
r+L

+
q

1−( r−L
r+L)

2
««

+ e
−in

„

π
2
+i ln

„

i r−L
r+L

+
q

1−( r−L
r+L)

2
««)

rp dr =

=
1

2
einπ/2

R∫

0


i r − L

r + L
+

√
1 −

(
r − L

r + L

)2



−n

rp dr +

+
1

2
e−inπ/2

R∫

0


i r − L

r + L
+

√
1 −

(
r − L

r + L

)2


n

rp dr =

=
1

2
einπ/2

R∫

0

(
i
r − L

r + L
+

2
√
rL

r + L

)−n

rp dr

︸ ︷︷ ︸
In,1

+
1

2
e−inπ/2

R∫

0

(
i
r − L

r + L
+

2
√
rL

r + L

)n
rp dr

︸ ︷︷ ︸
In,2

.

(2.40)

So integrals In,1 and In,2 must be calculated. For the first one, we will use the Newton binomial

theorem:
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In,1 =

R∫

0

(
i(r − L) + 2

√
rL

r + L

)−n

rp dr =

R∫

0

(
i

√
r − i

√
L

√
r + i

√
L

)−n

rp dr =

=

R∫

0

i−n
(√

r + i
√
L

√
r − i

√
L

)n
rp dr = i−n

R∫

0

n∑

j=0

(
n

j

)
√
r
j
(
i
√
L
)n−j rp(√

r − i
√
L
)n dr =

=

n∑

j=0

(
n

j

)
i−j

√
L
n−j

R∫

0

rp+j/2(√
r − i

√
L
)n dr =

= 2
n∑

j=0

(
n

j

)
i−j

√
L
n−j

√
R∫

0

z2p+j+1

(
z − i

√
L
)n dz =

= 2

n∑

j=0

(
n

j

)
(−1)j in+jL−j/2 R

p+j/2+1

2p+ j + 2
2F1

(
n, 2p + j + 2, 2p + j + 3;

−i
√
R√
L

)

(2.41)

where 2F1 denotes the Gauss hypergeometric function and the last step has been carried out just by

means of the variable change z =
√
r. This Gauss hypergeometric function 2F1(a, b, c; z) (Abramo-

witz & Stegun (1970)) was the first hypergeometric function to be studied and is derived from the

hypergeometric differential equation

z(1 − z)y′′ + [c− (a+ b+ 1)z]y′ − aby = 0. (2.42)

An explicit expression of it in power series can be defined using the Pochhammer’s symbol (k)n =

k(k + 1)(k + 2) . . . (k + n− 1):

2F1(a, b, c; z) =

+∞∑

n=0

(a)n(b)n
(c)n

zn

n!
, (2.43)

or, equivalently, by means of the gamma function Γ, just taking into account that (k)n =
Γ(k + n)

Γ(k)
:

2F1(a, b, c; z) =
+∞∑

n=0

Γ(a+ n)Γ(b+ n)

Γ(c+ n)

zn

n!
. (2.44)

On the other hand, the calculation of the second integral In,2 is trivial, just noticing the fact that:

In,1 =

R∫

0

e−f(r)rp dr =

R∫

0

ef(r)rp dr = In,2 (2.45)

Finally, replacing expressions (2.41) and (2.45) into equation (2.40), the final development for the

generic integral Ipn can be obtained:
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Ipn =
1

2

[
einπ/2In1 + e−inπ/2In2

]
=

1

2

[
einπ/2In1 + e−inπ/2In1

]
= Re

(
einπ/2In1

)
=

= 2

n∑

j=0

(
n

j

)
(−1)jL−j/2 R

p+j/2+1

2p+ j + 2
Re

(
einπ/2in+j

2F1

(
n, 2p+ j + 2, 2p + j + 3;

−i
√
R√
L

))

(2.46)

Flux

Photometry is in charge of estimating the flux (and, therefore, the magnitude) of the objects in

the sky. These measurements can be combined with the inverse-square law to determine the lumino-

sity of an object whose distance is known and vice versa. other physical properties of the galaxies,

such as the temperature or the chemical composition of the galaxies can be derived from the flux

parameter. But photometry is also extremely useful for many other sources apart from the galaxies,

as the variable objects (stars, AGNs and supernovae) to analyze their fluctuations, the extrasolar pla-

nets, to detect their existence, and the binary systems, to study their orbital properties and behaviour.

The flux F , which is the total amount of light energy coming from the source and received by the

detector, is the simplest parameter that can be calculated using the CHEF coefficients and the generic

integral determined in last section:

F =

∫∫

R2

f(x, y) dx dy =

∞∫

0

π∫

−π

f (r cos θ, r sin θ) r dr dθ ≈

≈
+∞∑

m=−∞

+∞∑

n=0

fn,m




R∫

0

TLn(r)r dr






π∫

−π

eimθ dθ


 = 2π

+∞∑

n=0

fn,0I
1
n =

= 4π
+∞∑

n=0

fn,0

n∑

j=0

(
n

j

)
(−1)jL−j/2R

j/2+2

j + 4
Re

[
einπ/2in+j

2F1

(
n, j + 4, j + 5;

−i
√
R√
L

)]

(2.47)

In this way, flux is obtained in a very simply way, just through the CHEF coefficients with m = 0,

which are real.

Unweighted centroid

The unweighted centroid (xc, yc) can be also obtained from the CHEF coefficients of the object de-

composition:
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xc + iyc =
1

F

∫∫

R2

(x+ iy)f(x, y) dx dy =
1

F

+∞∫

0

π∫

−π

f(r cos θ, r sin θ)r2(cos θ + i sin θ) dθ dr ≈

≈ 1

F

∞∑

m=−∞

+∞∑

n=0

fn,m




π∫

−π

eimθ cos θ dθ






R∫

0

TLn(r)r
2 dr


+

+
i

F

∞∑

m=−∞

+∞∑

n=0

fn,m




π∫

−π

eimθ sin θ dθ






R∫

0

TLn(r)r
2 dr


 =

=
2π

F

+∞∑

n=0

[(fn,−1 + fn,1) + i (fn,1 − fn,−1)] I
2
m =

=

+∞∑
n=0

[(fn,−1 + fn,1) + i (fn,1 − fn,−1)]
n∑
j=0

(
n

j

)
(−1)jL−j/2Rj/2+3

j+6 ·

+∞∑
n=0

fn,0
n∑
j=0

(
n

j

)
(−1)jL−j/2Rj/2+2

j+4 Re
[
einπ/2in+j

2F1

(
n, j + 4, j + 5; −i

√
R√
L

)]

·Re
[
einπ/2in+j

2F1

(
n, j + 6, j + 7, −i

√
R√
L

)]

+∞∑
n=0

fn,0
n∑
j=0

(
n

j

)
(−1)jL−j/2Rj/2+2

j+4 Re
[
einπ/2in+j

2F1

(
n, j + 4, j + 5; −i

√
R√
L

)]

(2.48)

Quadrupole moments

In this subsection, unweighted quadrupole moments of the functions representing the astronomical

sources will be calculated. These expressions will help us obtain some other physical quantities as, for

instance, the ellipticity or the rms radius. Following a similar development than in previous section,

the first quadrupole moment F11 is obtained:

F11 =

∫∫

R2

f(x, y)x2 dx dy =

R∫

0

π∫

−π

f(r cos θ, r sin θ) r3 cos2 θ dr dθ ≈

≈
+∞∑

m=−∞

+∞∑

n=−∞
fn,m




R∫

0

TLn(r) r
3 dr






π∫

−π

cos2 θ eimθ dθ


 =

=

+∞∑

n=0

[
πfn,0 +

π

2
(fn,−2 + fn,2)

]
I3
n =

= 2π
+∞∑

n=0

[
fn,0 +

1

2
(fn,−2 + fn,2)

] n∑

j=0

(
n

j

)
(−1)jL−j/2R

j/2+4

j + 8
·

·Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9;

−i
√
R√
L

)]

(2.49)

and just the m ∈ {−2, 0, 2} coefficients are needed. When it comes to the F22 quadrupole moment,

calculations are quite similar:
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F22 =

∫∫

R2

f(x, y)y2 dx dy =

+∞∫

0

π∫

−π

f(r cos θ, r sin θ)r3 sin2 θ dr dθ ≈

≈
+∞∑

m=−∞

+∞∑

n=0

fn,m




R∫

0

TLn(r)r
3 dr






π∫

−π

sin2 θ eimθ dθ


 =

=
+∞∑

n=0

[
πfn,0 −

π

2
(fn,−2 + fn,2)

]
I3
n =

= 2π

+∞∑

n=0

[
fn,0 −

1

2
(fn,−2 + fn,2)

] n∑

j=0

(
n

j

)
(−1)jL−j/2R

j/2+4

j + 8
·

·Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9;

−i
√
R√
L

)]
.

(2.50)

And, finally, the last quadrupole moment, F12 would be:

F12 =

∫∫

R2

f(x, y)xy dx dy =

+∞∫

0

π∫

−π

f(r cos θ, r sin θ)r3 cos θ sin θ dr dθ ≈

≈
+∞∑

m=−∞

+∞∑

n=0

fn,m




R∫

0

TLn(r)r
3 dr






π∫

−π

cos θ sin θ eimθ dθ


 =

=

+∞∑

n=0

πi

2
(fn,2 − fn,−2)I

3
n = πi

+∞∑

n=0

(fn,2 − fn,−2)

n∑

j=0

(
n

j

)
(−1)jL−j/2R

j/2+4

j + 8
·

·Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9;

−i
√
R√
L

)]
.

(2.51)

Next, we will use these unweighted quadrupole moments to derive the rms radius and the ellipticity

of the sources.

Rms radius

Since galaxies do not have sharp edges, it is usual to characterize their physical size defining some

kind of radius. In particular, the rms radius R is a measure of the size of the object weighted by the

mass distribution about its center of mass. It can be expressed by means of the unweighted quadrupole

moments F11 and F22 in the following way:

R2 =

∫∫
R2(x

2 + y2)f(x, y) dx dy∫∫
R2 f(x, y) dx dy

=
F11 + F22

F
(2.52)

Thus replacing (2.47), (3.9) and (3.10) into (2.52), the rms radius can be expressed in terms of CHEF

coefficients:



2.3 CHEF polar bases 37

Figure 2.7 Scheme of the light bending due to the action of the gravitational force. Light coming from
the source is deviated before arriving to the observer because of the mass of the galaxies encounte-
red through the light path, so objects appear distorted to him. Image from NASA Hubble website,
http://hubblesite.org/newscenter/archive/releases, is used with the author’s consent.

R2 =

2π
∞∑
n=0

fn,0I
3
n

2π
∞∑
n=0

fn,0I1
n

=

=

+∞∑
n=0

fn,0
n∑
j=0

(
n

j

)
(−1)jL−j/2Rj/2+2

j+4 Re
[
einπ/2in+j

2F1

(
n, j + 4, j + 5; −i

√
R√
L

)]

+∞∑
n=0

fn,0
n∑
j=0

(
n

j

)
(−1)jL−j/2Rj/2+4

j+8 Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9; −i

√
R√
L

)] .

(2.53)

Ellipticity

Gravitational lensing is the process in which light from distant galaxies is bent by the gravity

of intervening mass in the Universe as it travels towards us (see figure 2.7) (Bridle et al., 2009).

This bending causes the shapes of the galaxies to appear distorted, being this effect higher as the

more massive the intervening object is. One of the most important observed distortions is shear,

that is, ellipticity of original sources are changed due to the lens effect of the massive source. The

precise measurement of this shear (an accuracy less than 1% is required for cosmic shear) for millions

of galaxies becomes quite important not only to quantify this lensing process, but also to relate it

statistically to the properties of dark matter distribution at different times in the history of the

Universe.
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In the same way as rms radius, the unweighted ellipticity of the galaxies can be obtained from the

its quadrupole moments and, therefore, from its CHEF coefficients:

ε =
F11 − F22 + 2iF12

F11 + F22
=

π
+∞∑
n=0

fn,−2I
3
n

2π
∞∑
n=0

fn,0I3
n

=

=

+∞∑
n=0

fn,−2

n∑
j=0

(
n

j

)
(−1)jL−j/2Rj/2+4

j+8 Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9; −i

√
R√
L

)]

2
+∞∑
n=0

fn,0
n∑
j=0

(
n

j

)
(−1)jL−j/2Rj/2+4

j+8 Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9; −i

√
R√
L

)] .

(2.54)

Another definition of the ellipticity, more useful as a shear estimator can be also obtained from

the CHEF coefficients using the quadrupole moments (Melchior et al. (2007)):

ǫ =
F11 − F22 + 2iF12

F11 + F22 + 2(F11F22 − F 2
12)

1/2
=

=

+∞∑
n=0

fn,−2I
3
n

+∞∑
n=0

fn,0 I
n
3 + 1√

2

[
∑
l1,l2

(−fl1,−2fl1,2 − fl1,2fl2,−2

+(fl1,−2 + fl1,2 + fl1,0)fl2,0 + fl1,0(fl2,−2 + fl2,2 + fl2,0)) I
l1
3 I

l2
3

]1/2 .

(2.55)

2.4. Conclusions

Two methods for galaxy modeling are widely-used nowadays: GALFIT and the shapelets. The for-

mer is a parametric method, that is, objects are decomposed using an arbitrary number of analytical

profiles. With this approach, many morphological types and fine features cannot be fitted, although

the advantage is that, for those objects properly fitted, the parameters are easily interpreted. This

method is also quite straightforward to implement, but requires plenty of interactivity from the user,

what makes it totally inadequate for large surveys processing.

The shapelets belong to the group of non-parametric methods, i.e., they are based on orthogonal

bases theoretically capable of modeling any kind of morphology just using a high enough number of

components. However, they do not behave specially well with steep sources since they have been built

using Gaussians and Hermite polynomials, and those latter not only need a large number of compo-

nents to model simple profiles (as Sérsic) but also tend to produce artifacts (as ringing effects) when

fitting extended sources or highly elliptical ones.

The CHEF bases were developed with the aim of finding and efficient, flexible and automated

way to process the huge amount of data coming from large surveys. Built in polar coordinates using
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Chebyshev rational functions to expand the radial component and Fourier series for the angular

coordinates, this set has been proved to constitute an orthonormal basis of the Hilbert space of finite

energy functions L2 ([0,+∞) × [−π, π]) , 〈·, ·〉, with the inner product defined as:

〈f, g〉 =

+∞∫

0

π∫

−π

f(r, θ)g(r, θ)
1

r + L

√
L

r
dθ dr.

In this way, any function f smooth enough can be decomposed as

f(r, θ) =
1

Cπ

+∞∑

m=−∞

+∞∑

n=0

fn,mTLn(r) eimθ,

where the fn,m are the CHEF coefficients and can be calculated by means of

fn,m =
1

Cπ

+∞∫

0

π∫

−π

f(z, ψ)TLn(z)
1

z + L

√
Lz e−imψ dψdz.

These bases depend on the scalar parameter L, which will be related to the size of the object being

modeled. They have been proved to be compact, due to the CHEF coefficients decay rate:

|fnm| ≥
C

|n| |m| p+1

2

, ∀n,m ∈ N,

for a certain p ∈ N, which is related to the smoothness of the function f .

Some other results have been proved, such as the Chebyshev rational functions form the solution

set of a certain Sturm-Liouville equation. Analytic formulae to compute some morphological an pho-

tometric parameters, like the flux, the centroid, the rms radius, or the ellipticity, just using the CHEF

coefficients.
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3
Practical implementation

All the CHEF mathematical background described in section 2 has been implemented as a Python

pipeline,which is described in detail in this chapter. However, many practical hurdles have had to be

overcome in the way, not only from the computational point of view but also from the conceptual one,

since the theory developed in the last section is based on continuous functions defined on R2, whereas

galaxy objects are discrete matrices. This discretization does away with many of the mathematical

properties described before, in particular, the orthonormality. How to deal with this and many other

obstacles towards practical application will be explained in the following section.

3.1. CHEF pipeline

The full process of decomposing real image data using the CHEF basis involves the use of several

scientific and technical softwares as SExtractor (Bertin & Arnouts (1996)), Python, and IRAF (Doug

(1986)). The final Python software package is being applied to the ALHAMBRA survey data (Moles

et al., 2008; Beńıtez et al., 2009) and the CLASH data (Postman et al, 2011). As it will be seen, the

only inputs for this pipeline are the image to be analyzed and the maximum number of coefficients

allowed for the decomposition. The full pipeline is briefly described below step by step, and the

most problematic issues will be explained in more detail in the following subsections. Note that in

this process outlined below we do not deal yet separately with the PSFs, fitting directly the objects

without attempting any deconvolution.

1. Image analysis with SExtractor and source filtering. The sources present in the image are detected

using SExtractor, and an appropriate input file. Depending on the images to analyze, some

parameters must be appropriately set on this input .sex file, such as the detect threshold, the

deblend nthreshold (which indicates the level of separation between too close sources), or the

background parameters (extremely important to perform an adequate sky estimation). The

output values provided by SExtractor, stored in an ASCII catalog, are the following: centroid,

right ascension and declination, coordinates of the brightest pixel, coordinates of the lower

left and upper right corners of the tightest frame containing the source, minor and major axes,
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position angle, stellarity parameter, full width half maximum assuming a Gaussian core, fraction

of light radii, magnitude, the peak surface brightness above the background, the isophotal area

about the analysis threshold, the flux measured using different apertures as well as their associate

errors, and the running number. These 24 parameters will be used in the following processing.

An example of both a configuration parameters file and an output catalog can be observed in

figures 3.1 and 3.2 respectively, by way of illustration.

In order to eliminate spurious detections, galaxies too near to the edges or too faint in comparison

with the brightest object in the image are masked. Stars are also removed, according to the

SExtractor stellarity parameter previously mentioned (considering that a value greater than

0.85 for a very bright object, i.e., with magnitude less than 0.9, usually identifies the object as

a point source).

2. Extraction of the frame. The frame containing the object to analyze must be large enough

to enclose all the light flux coming from the source, but small enough to avoid many other

galaxies to enter into it and contaminate the resulting model. Therefore, frame must be chosen

proportionally to the size of the source, and it is selected to have a side four times greater than

the half light radius rhl determined by SExtractor:

sizemax = 4 × rhl (3.1)

This parameter has happened to be much more stable than the usual FWHM to estimate the

“extension” of the galaxies. In practically all cases this frame fully includes the galaxy flux.

3. Masking the neighbour objects out. Objects inside the frame apart from the main one which

are detected by SExtractor are masked out using the segmentation map also provided by this

software. In this way, the CHEF basis will only try to fit the principal object and the resulting

model will be less affected by the presence of these fainter objects.

4. Determination of the maximum number of coefficients. The number of coefficients N and M to

calculate, both for the Chebyshev polynomials and the Fourier series, will determine the accuracy

of the result. The maximum order where these parameters are allowed to range to are the only

inputs of the algorithm (apart from the image to analyze, of course), and their optimal values

depend on the morphology and size of the object. However, this optimization will be performed

automatically by the code, as it will be seen later. As a general rule, the larger the number of

pixels in the image to be fit, the larger the required number of coefficients. For instance, for

two images of the same galaxy, the one with a smaller pixel scale will require more coefficients

(assuming of course that the S/N is similar in both cases). We set Nmax,Mmax and choose this

value according to the image size. For instance, for a regular image of 60 × 60 pixels the usual

choice is Nmax = Mmax = 7, whereas for more extended sources of about 120 × 120 pixels we

set Nmax = Mmax = 10.In the case of huge images as clusters of galaxies or sources with a great

amount of subestructure on it, a maximum number of Nmax = Mmax = 15 has been tried, with

very good results although the calculations take long time.
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Figure 3.1 Example of configuration parameters file for SExtractor.
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Figure 3.2 Example of output catalog file from SExtractor.

5. Selection of the center and the scale size L. The determination of these two values is crucial

to establish the origin of the grid where the CHEF functions will be evaluated, as well as the

characteristic scale of the basis, which is obviously related to the size of the object (see sections

3.2.4 and 3.2.5). The centroid provided by SExtractor is the one selected to set the grid, and

the scale is obtained from the half-light radius. However, a version of the code allows the user to

find the optimal scale size, in case more accuracy is required. This is not the option by default,

since the stability of the CHEF bases leads to highly precise results even in the case of using a

suboptimal value, and the computational time decreases. In addition, we obtained an empirical

law relating the FWHM of the sources and the optimal scale values for the galaxies in the UDF.

6. Evaluation of the basis. The CHEF basis corresponding to the maximum Nmax and Mmax

introduced in step 4, and with the origin and scale size determined in step 5, is evaluated. This

discrete version of the CHEF basis is no longer either orthogonal or even a basis (see section

3.2.2), so the Modified Gram-Schmidt algorithm is applied. It is remarkable to say that, thanks

to the exceptional stability and robustness of CHEF bases again, they can be precalculated (for

different values of the scale parameter L), in such a way that the software just looks for the one

with the nearest value of L stored in the database of functions. With this approach, the database

must be loaded just at the beginning of the analysis and the code is much faster. For large data

volumes this results in a speed up of more than a factor of 3.

7. Determination of the optimal number of coefficients N and M . The best values for these para-

meters are calculated iteratively by applying a chi squared test, as it will be explained in section

3.2.6. The basis functions corresponding to these concrete values of N and M are extracted as
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a submatrix from the whole set of functions calculated for the maximum number of coefficients

allowed (see step 6), so a new evaluation is not needed and a great amount of computational

time is saved.

8. Computation of the CHEF coefficients and evaluation of the model. The ncoeffs = (N+1)·(2M+

1) coefficients of the CHEF expansion are computed by means of a discrete and real version of

the inner product 2.15, which coincides with the usual inner product defined in Rp1×p2, where

p1 × p2 is the size in pixels of the frame extracted in step 2. The model of the galaxy is then

computed as a linear combination of the discretized and orthonormalized functions from step 6

(see sections 3.2.2 and 3.2.3), weighted by these CHEF coefficients.

9. Iteration of the algorithm. If necessary, steps from 2 to 8 are repeated for each one of the objects

present in the image and which have been detected by SExtractor in step 1.

3.2. From theory to practice

As it was mentioned previously, the practical implementation of the algorithm had to overcome

some practical hurdles, specially due to the fact that the whole mathematical background where

CHEF bases rely on is constructed from the continuous point of view and for the complex space.

Discretization inevitably entailed some problems and a few adjustments had to be made to deal with

them. In addition to this, finding the best values for some parameters was not a trivial task, and

involved the search for appropriate optimization algorithms. These issues, together with the best way

we have found to solve them, are described in this section.

3.2.1. From the complex to the real world

The exponential in (2.14) makes CHEF bases complex, as well as the derived CHEF coefficients

and the models they produce. From the mathematical point of view, the complex formulation of the

CHEFs is much more compact and elegant. However, although CHEFs constitute bases of the Hilbert

space L2 ([0,+∞) × [−π, π]) of complex-valued functions, galaxy data imaging belongs to real world,

and the imaginary results of the bases become meaningless. Nevertheless, the real components of the

CHEF models are also influenced by the imaginary part of the bases, so removing the latter is not a

solution. A deeper look into the bases reveals that the parts of the components related to the crossed

products are irrelevant, i.e. those involving the real part by the imaginary one and vice versa, since

these ones are the responsible for the imaginary outputs. Therefore, and despite losing some of the

original beauty of the basis, we decided to introduce a “real” version of the basis, which is faster

and involves fewer calculations. Real and imaginary components of the original bases were split into

different element of the new bases. As they all belong to real space, operations between them were

reduced to the usual ones in R2, what meant a decrease of the computational time by half. Therefore,

the new real bases become:

{φn,m(r, θ;L)}n,m =

{
1

Cπ
TLn(r)Wm(θ)

}

n,m

, n,m ∈ N (3.2)
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where C =

{ √
2, if n = 0

1, cc
, TLn is the Chebyshev rational function of order n and Wm(θ) represents

both the trigonometric functions sin(mθ) and cos(mθ). Taking into account the development displayed

in section 2, it can be trivially concluded that this set of functions constitutes an orthonormal basis

of the Hilbert space L2 ([0,+∞) × [−π, π]) of real-valued functions, where the inner product is now

defined as follows:

〈f, g〉 =

∞∫

0

π∫

−π

f(r, θ) g(r, θ)
1

r + L

√
L

r
dθ dr. (3.3)

With this new approach, any smooth enough function can be decomposed into:

f (r, θ) =
1

Cπ

+∞∑

m=0

+∞∑

n=0

fn,m TLn (r)Wm (θ) =

=
1

Cπ

+∞∑

m=0

+∞∑

n=0

[
f cn,m TLn (r) cos (mθ) + f sn,m TLn (r) sin (mθ)

] (3.4)

where the new coefficients f cn,m and f sn,m are calculated in the usual way, with the inner product

defined in 3.3:

f cn,m = 〈f(r, θ), cos(mθ)〉 =
C

2π2

π∫

−π

+∞∫

0

f (z, φ) TLn (z)
1

z + L

√
L

z
cos (mφ) dz dφ

f sn,m = 〈f(r, θ), cos(mθ)〉 =
C

2π2

π∫

−π

+∞∫

0

f (z, φ) TLn (z)
1

z + L

√
L

z
sin (mφ) dz dφ.

(3.5)

Please note that now m-sums in (3.4) do not include negative values of m, since basis functions

with m < 0 coincide with their corresponding positive element in the basis (up to the sign):

φn,m(r, θ;L) =
1

Cπ
TLn(r)Wm(θ) =

k

Cπ
TLn(r)W−m(θ) = k φn,−m(r, θ;L), (3.6)

where k =

{
1, if Wm(θ) = cos(mθ)

−1, if Wm(θ) = sin(mθ)
. So the new basis has half of the elements of the complex

original basis, what obviously contributes to a faster final algorithm.

In addition, all the properties displayed for CHEF complex basis in section 2.3 keep on being

satisfied by the real version of it, as can be trivially proven. Special interest must be devoted to the

translation of expressions for morphological shape measurement into these new bases. As the process

to arrive to them slightly differs from the complex case, the whole process and the formulas is shown:
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Flux:

F =

∫∫

R2

f(x, y) dx dy =

∞∫

0
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−π

f (r cos θ, r sin θ) r dr dθ ≈
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n =

= 4π

+∞∑

n=0
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(
n
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j + 4
Re
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einπ/2in+j

2F1
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−i
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R√
L
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(3.7)

Unweighted centroid:

xc + iyc =
1

F

∫∫

R2

(x+ iy)f(x, y) dx dy =
1

F

+∞∫

0

π∫

−π

f(r cos θ, r sin θ)r2(cos θ + i sin θ) dθ dr ≈

≈ 1

F

∞∑

m=0

+∞∑

n=0


f cn,m

pi∫

−pi

cos(mθ) cos θ dθ + f sn,m
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+ i
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n
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·Re
[
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(
n

j

)
(−1)jL−j/2Rj/2+2

j+4 Re
[
einπ/2in+j

2F1

(
n, j + 4, j + 5; −i

√
R√
L
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(3.8)

Quadrupole moments:
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1.

F11 =

∫∫

R2

f(x, y)x2 dx dy =

R∫

0

π∫

−π

f(r cos θ, r sin θ) r3 cos2 θ dr dθ ≈

≈
+∞∑

m=0

+∞∑

n=0




R∫

0

TLn(r) r
3 dr




f cn,m

π∫

−π

cos2 θ cos(mθ) + f sn,m

π∫

−π

cos2 θ sin(mθ)


 =

=

+∞∑

n=0

(
πf cn,0 +

π

2
f cn,2

)
I3
n =

= 2π

+∞∑

n=0

(
f cn,0 +

1

2
f cn,2

) n∑

j=0

(
n

j

)
(−1)jL−j/2R

j/2+4

j + 8
·

·Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9;

−i
√
R√
L

)]
.

(3.9)

2.

F22 =

∫∫

R2

f(x, y)y2 dx dy =

+∞∫

0

π∫

−π

f(r cos θ, r sin θ)r3 sin2 θ dr dθ ≈

≈
+∞∑

m=0

+∞∑

n=0




R∫

0

TLn(r)r
3 dr




f cn,m

π∫

−π

sin2 θ cos(mθ) dθ + f sn,m

π∫

−π

sin2 θ sin(mθ) dθ


 =

=

+∞∑

n=0

(
πf cn,0 −

π

2
f cn,2

)
I3
n =

= 2π

+∞∑

n=0

(
f cn,0 −

1

2
f cn,2

) n∑

j=0

(
n

j

)
(−1)jL−j/2R

j/2+4

j + 8
·

·Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9;

−i
√
R√
L

)]
.

(3.10)

3.

F12 =

∫∫

R2

f(x, y)xy dx dy =

+∞∫

0

π∫

−π

f(r cos θ, r sin θ)r3 cos θ sin θ dr dθ ≈

≈
+∞∑

m=0

+∞∑

n=0




R∫

0

TLn(r)r
3 dr




f cn,m

π∫

−π

cos θ sin θ cos(mθ) dθ + f sn,m

π∫

−π

cos θ sin θ sin(mθ) dθ


 =

=

+∞∑

n=0

π

2
f sn,2I

3
n = π

+∞∑

n=0

f sn,2

n∑

j=0

(
n

j

)
(−1)jL−j/2R

j/2+4

j + 8
·

·Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9;

−i
√
R√
L

)]
.

(3.11)
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rms radius:

R2 =

2π
∞∑
n=0

f cn,0I
3
n

2π
∞∑
n=0

f cn,0I
1
n

=

=

+∞∑
n=0

f cn,0
n∑
j=0

(
n

j

)
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einπ/2in+j

2F1

(
n, j + 4, j + 5; −i

√
R√
L
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+∞∑
n=0

f cn,0
n∑
j=0

(
n

j

)
(−1)jL−j/2Rj/2+4

j+8 Re
[
einπ/2in+j

2F1

(
n, j + 8, j + 9; −i

√
R√
L

)] .

(3.12)

Ellipticity (first definition):

ε =
F11 − F22 + 2iF12

F11 + F22
=

π
+∞∑
n=0

(
f cn,2 + if sn,2

)
I3
n

2π
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=
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+∞∑
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j=0

(
n

j

)
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n, j + 8, j + 9; −i

√
R√
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2
+∞∑
n=0

f cn,0
n∑
j=0

(
n

j

)
(−1)jL−j/2Rj/2+4

j+8 Re
[
einπ/2in+j

2F1

(
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√
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L
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(3.13)

Ellipticity (second definition):

ǫ =
F11 − F22 + 2iF12

F11 + F22 + 2(F11F22 − F 2
12)

1/2
=

=

+∞∑
n=0

(
f cn,2 + f sn,2

)
In3

2
+∞∑
n=0

f cn,0 I
n
3 +

[
∑
l1,l2

[(
f cl1,0 + 1

2(f cl1,−2 + f cl1,2)
)(

f cl2,0 −
1
2 (f cl2,−2 + f cl2,2)

)
−

1
4(−f sl1,−2 + f sl1,2)(−f

s
l2,−2 + f sl2,2)

]
I l13 I

l2
3

]1/2 .

(3.14)

3.2.2. From the continuous to the discrete world

The whole mathematical theory built both in sections 2.3 and 3.2.1 is based on continuous and

smooth functions (remember f ∈ L2 ([0,+∞) × [−π, π])), but astronomical images are finite matrices

obtained by integrating the flux coming from the sources in the sky. As it was pointed out by Massey

& Refregier (2005), two different solutions to this general problem are proposed: either smoothing the

data or pixelating the basis functions. The former involves the selection of a certain arbitrary interpo-

lation algorithm which maps the matrix space of the real data onto the continuous world of CHEFs.

However, plenty of open issues come up with the former approach: which interpolation scheme to use,

how accurate this interpolation will be, how long the algorithm will take to interpolate the hundreds
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of pixels in an image... In addition to this, if the original image has steep or irregular areas or it is

simply too grainy, interpolation is not a trivial issue. Therefore, from experience with other methods,

smoothing the data is not a good solution and it was not explored in detail.

On the other hand, discretizing the smooth CHEF functions is a much practical idea, not only

because of its own simplicity but also because integrals in (3.5) become sums and computations can

be coded. However, this apparently easy implementation can become a double-edged sword due to the

so called aliasing. Aliasing refers to the distortion or artifact which results when the sampled signal

is different from original continuous function. Let us show the origin of this aliasing from an incorrect

sampling. Let f be any continuous function and fdig its discrete or digitized version. This fdig can be

obtained by multiplying the original f by several Dirac delta functions:

fdig(x, y) = f(x, y) · S(x, y) = f(x, y) ·
(

+∞∑
j1=−∞

+∞∑
j2=−∞

δ(x− j1∆x, y − j2∆y

)
=

=
+∞∑

j1=−∞

+∞∑
j2=−∞

f(j1∆x, j2∆y) · δ(x − j1∆x, y − j2∆y).

(3.15)

In this way, the function f is being sampled on a grid of (∆x,∆y) cells size. If we calculate the

two-dimensional Fourier transform of the sampled image:

f̂dig(ωx, ωy) = (f̂ · S(ωx, ωy) =
1

4π
f̂(ωx, ωy) ∗ Ŝ(ωx, ωy) =

=
1

∆x∆y
f̂(ωx, ωy) ∗




+∞∑

j1=−∞

+∞∑

j2=−∞
δ(ωx − j1ωxs, ω − j2ωys)




(3.16)

where ∗ is the convolution operator and ωxs =
2π

∆x
and ωys =

2π

∆y
the frequency rate in Fourier

domain (we have adopted the assumption that f is bandlimited in frequency space, so f̂(ωx, ωy) = 0

for |ωx| > ωxc and |ωy| > ωyc, for certain ωxc and ωyc). Then:

f̂dig(ωx, ωy) =
1

∆x,∆y

+∞∫∫

−∞

f̂(ωx − α,ωy − β) ·




+∞∑

j1=−∞

+∞∑

j2=−∞
δ(α − j1ωxs, β − j2ωys)


 dα dβ =

=
1

∆x,∆y

+∞∑

j1=−∞

+∞∑

j2=−∞
f(ωx − j1ωxs, ωy − j2ωys).

(3.17)

That is, the spectra of the sampled image coincides with that of the continuous function, infinitely

repeated on the frequency plane, on a grid with resolution

(
2π

∆x
,

2π

∆y

)
. So, if (∆x,∆y) are chosen to

be too large in comparison with the limits of f̂ in Fourier domain, its individual spectra could overlap,

producing the aforementioned aliasing (Pratt (2007)).

Many different ways are proposed to carry out this discretization, such as sampling the CHEFs on

a pre-established grid, integrating analytically the basis functions within rectangular pixels or applying

a Monte-Carlo method. As it was pointed out by Berry et al. (2004), discretization by just evaluating
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the basis functions on a grid is highly inaccurate, since if the object has features smaller than a pixel

size, these cannot be modeled. When it comes to integration by pixels, this is much slower than the

other methods, but it is also the most precise one. So, we reached an acceptable trade-off adopting two

different strategies according to the size of the images and the scale of the features present in them:

If the object to analyze is smaller than 100 by 100 pixels or has features within a scale smaller

than the pixel size, the integration by pixels method is applied to get the CHEF bases:

{φnm(rj , θk, L)}nm =





∫∫

(rj ,θk) pixel

C

π
TLn(rj)Wm(θk)




nm

, (3.18)

where (rj , θk) are the coordinates of the nodes of a polar grid of size p1 × p2. As this process is

quite slow a whole “dictionary” of basis functions with different scale values has been previously

computed on a grid of 100 by 100 pixels, with Nmax = Mmax = 10. In this way, to decompose

an object it is just necessary to pick the basis functions corresponding to the nearest scale to

the galaxy half-light radius and selecting the desired number of coefficients.

If the object to analyze is greater than 100 by 100 pixels, features are highly unlikely to be

smaller than the pixel size, since they will be spread out all over the image. In these cases it is

enough to sample the basis functions at the center of each pixels, just taking into account that

the resolution of the grid cannot be smaller than the scale of the basis functions (in order to

avoid lying two peaks on the same pixel):

{φnm(rj , θk, L)}nm =

{
C

π
TLn(rj)Wm(θk)

}

nm

. (3.19)

Thanks to the high stability of CHEF bases, approximating the scale parameter for small images

does not represent a great loss of accuracy, and the improvement on the computational time is very

significant.

3.2.3. Orthonormalization of the discrete functions

Once we got the matrix forms of the analytical CHEF functions by any of the two method described

in the previous section, we have to make them orthogonal, since the previous discretization step does

not produce a complete, let alone orthonormal, basis on the pixel space. In principle, one could

sample the basis at the pixel centers and fit the galaxies using an optimization scheme. The basis

is so well suited to fit galaxy profiles that it can be used in this way with reasonably good results.

However, completeness and orthonormality are essential for a robust and automated approach. The

first property ensures the flexibility of the basis, the capability of fitting all possible galaxy profiles,

including irregulars. The second is crucial for a fast implementation, since the coefficients of the

decomposition can be calculated in a straightforward way, using the inner product defined in the

space of real vectors. Because of the importance of this problem, two radically different approaches

have been tried:
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SVD approach. It can be shown that in the case that the matrices are linearly independent, there

exists a unique vector of coefficients a that minimizes the residual between the model and the

original galaxy image f (Berry et al. (2004)):

ǫ = |Φa− f |, (3.20)

where Φ is a matrix composed by the CHEF matrices (reshaped as vector columns). It can be

proved that if

Φ = UΣV ∗ (3.21)

is the Singular Value Decomposition (SVD) of the CHEF matrix Φ (where U and V are uni-

tary matrices, Σ is a diagonal one and ∗ denotes the transpose conjugate), then the vector of

coefficients a minimizing (3.20) is:

a = V Σ
∗
U∗f (3.22)

where Σ
∗

is constructed by taking the transpose of Σ and replacing each non-zero singular value

in the diagonal by its inverse.

Using this result, it is possible to find the best fit to the original image with the discrete CHEF

matrices directly, without making any modification on them. This solution is smart and fast,

due to the matrix implementation of the whole process, where the slowest step is performing the

SVD, although there exist several optimized routines to carry out this task.

CGS approach. The whole set of CHEF matrices Φ can be orthogonalized using an orthonor-

malization method and, in this way, coefficients may be calculated by means of the usual inner

product. Firstly, the Classical Gram-Schmidt (CGS) orthonormalization process was chosen, by

its simplicity and the possibility of being implemented in a matrix form. However, CGS final

vectors are usually not orthonormal, due to rounding errors and the algorithm’s very poor nu-

merical properties (Golub & Van Loan (1996)). Because of that, we decided to use the Modified

Gram-Schmidt algorithm (MGS), which yields the same results as CGS in exact arithmetic but

displays a much better behaviour in finite-precision arithmetic (Giraud & Langou (2001)). The

purpose of the MGS algorithm is decomposing a matrix A ∈ Rm×n into the product of two

matrices Q ∈ Rm×n and R ∈ Rn×n, so that A = QR. The matrix Q must have orthonormal

columns and R must be upper triangular. This initial part of the method is also common to

the CGS algorithm, but the difference between the two methods is that in the MGS the norm

‖I − QQT ‖ can be predicted by an upper bound, whereas there exists no such bound for the

CGS (Björck (1994)). In this work, we have implemented the MGS according to the algorithm

described in Golub & Van Loan (1996), but there are numerous the efforts to parallelize the

process (Rünger & Schwind (2005)). Concretely, the implemented algorithm consists on:

for k = 1:n

R(k,k) = ||A(1:m,k)||2

Q(1:m,k) = A(1:m,k)/R(k,k)
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for j = k+1:n

R(k,j) = Q(1:m,k)T A(1:m,j)

A(1:m,j) = A(1:m,j)-Q(1:m,k)R(k,j)

end
end

The use of orthonormalized CHEF matrices allow us to compute CHEF coefficients in a simpler

way than using SVD, since the integral (3.3) becomes the usual inner product in the Rp1×p2

space (being p1 × p2 the size of the image):

〈f,Wm〉 =

m1∑

i=0

m2∑

j=0

f(ri, θj)Wm(θj). (3.23)

and, in this way, using the new basis φnm we have that the image light distribution f can be

decomposed as

f(rj, θk) =

NM∑

nm

fnmφnm(rj , θk), (3.24)

where the values of the decomposition coefficients are fast and accurately calculated by means

of the usual inner product in the matrix space, that is:

fnm =
∑

j,k

f(rj, θk)φnm(rj , θk), (3.25)

where the sum
∑

j,k goes over all the pixels in the image.

Although the SVD method is easier to implement and faster to execute, it presents two obsta-

cles. The first is that the coefficients obtained by this method have no way of being used for the

determination of morphological parameters (see section 2.3.4), since the expressions developed in that

section rely on the orthonormality of the basis functions and they have no equivalence in the discrete

world without this condition. So, just in the case that a morphological model is required (for image

denoising, for instance) and the coefficients of the decomposition are no longer used for anything, SVD

method is not really suitable. In addition, the optimized routines for SVD involve the inversion of such

large matrices that memory usually runs out, when the size of the image being analyzed is too big.

Therefore, we have opted to orthonormalize the CHEF matrices, although the computational effort

required is higher (in the case of the MGS method, not the classical one).

3.2.4. Choice of the center

The radial symmetry of the CHEF basis functions makes them highly suitable to model astrono-

mical images, since they are designed to efficiently represent objects that are well described in polar

coordinates. The origin of this polar grid where CHEF functions will be evaluated on is extremely

important, specially because the basis functions have a extreme at it, and it is important that this

one matches the center of the astronomical object, where the light flux intensity is higher. If they
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Figure 3.3 Real galaxy from UDF decomposed using: a) a correct estimated center and b) a center
moved 20 pixels both in the x and y coordinates to the upper left corner. Both the resulting models
and the residuals are displayed.

are not properly centered on the object, the results may not be the desired ones. For instance, if the

origin of the grid does not match the center of the galaxy, this could always be modeled away (because

CHEFs constitute a basis, so every image can be decomposed), but the number of coefficients that

would be needed would become clearly higher. So, for fixed values of Nmax and Mmax, the resulting

reconstruction could be poorer if the center is wrongly determined. By way of illustration, a real galaxy

from UDF has been decomposed using both a correct estimation of the center and a shifted center

by a distance of approximately
√

202 + 202 ≈ 28,28 pixels to the northwest (see figure 3.3). The same

number of coefficients, N = M = 10, has been used in both cases, but results are obviously more

accurate in the first one.

After testing several possibilities, such as the centroid provided by SExtractor, the center of mass

of the frame containing the galaxy or the center of mass of the object, calculated using Sextractor

segmentation map, we determined that the best estimator was the first one, the SExtractor centroid.
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3.2.5. Choice of the scale size

The scale parameter L is not related to the shape of the CHEF basis functions, but to their width

(the scale has an “accordion” effect over the basis functions). The larger the scale is, the more slowly

the basis functions reach their last extreme, as can be seen in figure 2.3. Therefore, the steepness of the

peaks in central area of CHEFs is closely related to this scale parameter, and thus also their capability

to represent features of a certain size. A too small scale value would make all the high frequencies in

the image be represented accurately, that is, we would overfit the noise in the central part of the fit.

On the contrary, a too large scale size would make the basis functions lose the high frequencies of the

image, and we would model a smooth version of the objects, that is, the decomposition would work

with poor resolution incapable of fitting the central peak and the tiny features. Two different options

are available to solve this issue:

Optimization of the scale parameter. In case that a great accuracy is required to model an object,

the Levenberg-Marquardt algorithm (Levenberg (1944)) is applied until the optimal value of L

is found, that is, the one which minimizes the residual between the original profile of the source

and the model profile (these profiles are both determined by IRAF task ELLIPSE).

Approximation of the scale parameter. As CHEF bases have been proved to be very stable and

robust under relatively small changes in the scale parameter, in most of the cases is not necessary

to find the exact best value for L, but to take the half-light radius of the galaxy as a proxy,

provided by SExtractor (remember that this parameter has happened to be much more reliable

to measure galaxies size than the classical FWHM). This option yields very accurate results in

spite of not being the optimal one and it is the approach used by default in the code.

By way of example, the same galaxy from the UDF used in the previous section has been de-

composed using the same number of coefficients (N = M = 10) three different values for the scale

parameter L: the fraction of light radii provided by SExtractor (figure 3.4(b)), ten times its value

(figure 3.4(c)), and 1/10 of its value (figure 3.4(a)). As it can be observed, the residual maximal va-

lues do not differ too much, but this subtle difference is enough to introduce high differences in the

morphological shape measurement formulas in section 3.2.1. The noticeable difference is due to the

way in which central bulge is modeled: in figure 3.4(a), it appears overfitted, since the bulge is rich in

high frequencies, so a so small scale generates a detailed modeling, even down to the noise; however,

in figure 3.4(c) the central area in underfitted, because the scale is too high to contain its small features.

3.2.6. Choice of the number of coefficients

Theoretically, if the whole infinite set of CHEF coefficients could be calculated, the image would be

perfectly represented. In practise, we must choose a number of coefficients high enough to model the

objects accurately, but optimizing the computation time. In addition to this, if too many coefficients

are used in the decomposition, the noise present in the image would be modeled as well. Because

of that we have decided to apply a chi square criterium to automatically estimate the number of

coefficients needed for the decomposition. The chosen chi square is obtained so that it yields a value
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Figure 3.4 Real galaxy from UDF decomposed using: b) a correct estimated scale parameter Lopt, a) a
too small scale Lopt/10, and c) a too large scale Lopt ∗ 10. Both the resulting models and the residuals
are displayed.
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close to one for the reconstruction residual between the model and the original image, weighted by

the pixel error and the number of coefficients:

χ2 =
1

npixel − ncoeff

∑

j,k

(
f(rj , θk) −

∑
n,m

fn,mφ(rj , θk, L)

)2

δ2(rj , θk)
(3.26)

where f is the observed image, fnm are its CHEF coefficients, δ2 is referred to the pixel noise map,

npixel is the number of pixels in f (that is, npixel = p1 ·p2), and ncoeff represents the number of CHEF

coefficients used to decompose f (i.e., ncoeff = (N + 1)(2M + 1)). At the point where χ2 = 1, the

residual between the observed data and the model is consistent with the noise level.

As in the previous sections, figure 3.5 displays the difference in the results after choosing the num-

ber of coefficients (N = M = 10) which yields χ2 = 1, a smaller one (M = M = 3) and a too large

value (N = 15,M = 20). In the case of a poor combination of coefficients (figure 3.5(a)), the resulting

model is very rough, hardly a smooth version of the original data. When using too many coefficients,

we can observe that a large fraction of the noise is also modeled, and some other artifacts appear in

the image (figure 3.5(c)).

It is interesting to visualize which features in a galaxy correspond to which coefficients. Figure 3.6

shows the decomposition of an spiral galaxy using just some subsets of coefficients: the central bulge

is captured by the |m| < 2 coefficients while the spiral arms are described by the |m| ≥ 2 components.

Based on results of our fits, we see that the optimal combination of N and M for objects displaying

radial symmetry and low eccentricity requires a higher number of Chebyshev than Fourier components

(that is, N > M). That is the case of the spiral galaxy shown in figure 3.6. On the contrary, if the

source to decompose has an elliptical shape with great eccentricity or it is irregular, the best option

is, on average, computing a higher number of Fourier than Chebyshev components (i.e., M > N).

3.3. Examples

By way of illustration, three representative real galaxies from UDF (Beckwith et al., 2004; Coe et

al., 2006) have been extracted and processed using CHEF algorithm, to show the performance of the

method when dealing with different types of morphologies and complexity levels.

Figures 3.7,3.8, and 3.9 show some examples of Hubble Ultra Deep Field galaxies. The large amount

of detail revealed in those images makes them a useful testbed for galaxy decomposition methods. The-

se objects, while typical, are not trivial to fit due to their complicated structure. The first is a spiral

galaxy, displayed in figure 3.7. The image frame has 121 × 121 pixels, and the algorithm establishes

that the best fit is obtained with N = 15 and M = 14, i.e., using ncoeff = (15 + 1)(14 × 2 + 1) = 464
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Figure 3.5 Real galaxy from UDF decomposed using: b) a number of coefficients N = M = 10 which
yields χ2 = 1, a) too few coefficients N = M = 4, and c) too many coefficients N = 15,M = 20. Both
the resulting models and the residuals are displayed.
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(a) (b) (c)

Figure 3.6 Reconstruction of a spiral galaxy from the HDF. The original image and the final Chebyshev-
Fourier reconstruction are shown in the top panels (a) and (b), whereas (c) shows the obtained residuals
in linear scale. The bottom panel displays the partial reconstruction of the image, using just a few
coefficients: the central bulge is captured by the |m| < 2 coefficients while the spiral arms are defined
by the |m| ≥ 2 components.
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Figure 3.7 CHEF decomposition of a spiral galaxy from the UDF: a) original image, b) CHEF recons-
truction using N = 15 radial and M = 14 angular coefficients, (c) residuals

Figure 3.8 CHEF decomposition of an edge-on galaxy from the UDF: a) original image b) CHEF
reconstruction with N = 5 and M = 7, and c) residuals (note that the small object below the main
galaxy is also fit separately)

coefficients. The very low level of the residuals shows that the CHEF basis can easily fit both the cen-

tral bulge and large structures like spiral arms. We apply the same procedure to other two galaxies,

an edge on galaxy with very high observed ellipticity (figure 3.8) and a highly irregular galaxy (figure

3.9). The fits are also excellent, what illustrates the flexibility of the CHEF basis, able to handle most

galaxy morphologies.

3.4. Conclusions

Throughout this chapter, all the hurdles we found in the process to implement the CHEF algorithm

have been described. The CHEF pipeline, written in a Python package, can be summarized in nine

steps, and we must remark that the only inputs for the code are the image to be processed and the

maximum number allowed of coefficients, Nmax and Mmax. The whole pipeline has shown to be fast

and precise, and every step has been conveniently automated to require a low level of interactivity

from the user, so the method can be easily applied to large surveys data.
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Figure 3.9 CHEF decomposition of an irregular galaxy from the UDF: a) original image b) CHEF
reconstruction with N = 5 and M = 7, and c) residuals

Although the mathematical background of CHEFs has been developed in the complex world, its

practical implementation has been performed in real world, since galaxy images are real and cros-

sed, imaginary products of the basis functions are useless. In this way, computational speed has been

increased, and the number of coefficients needed to represent an image is reduced by half. All the

formulae inferred in chapter 2 has been translated into this real world, even those to calculate the

morphological and photometric parameters.

Discretization of the basis has been performed using the integration by pixels, although a great set

of basis functions with different values of the scale parameter L has been pre-calculated and stored

to make the computations faster. The loss of orthogonality due to this pixellation has been solved

by means of the Modified Gram-Schmidt orthonormalization method, which has been proved to be

more stable and accurate than the classical one. Another approach, avoiding the orthonormalization

of the bases, has also been tried, just calculating the coefficients of the decompositions by using a

Singular Value Decomposition of the discretized basis functions. However, due to the computational

requirements, the former option is the one mainly used in the CHEF pipeline.

The choice of several parameters as the center, the scale size, or the optimal number of coeffi-

cients is made automatically by the algorithm, according to several criteria. The centroid provided

by SExtractor has been proved to be a good option for the center, while the half-light radius has

resulted to be a proper candidate for the scale parameter. However, a version of the pipeline allow

the user to find the exact and optimal value for L is available, in case that an extreme accuracy

is required. When it comes the optimal number of coefficients N and M , a chi square test has been

implemented to calculate them, avoiding in this way the overfitting or the poor modeling of the sources.

Some examples of real galaxies from UDF have been displayed, in order to show the reliability of

the method when dealing with different types of morphologies and complexity levels.
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4
Comparison of different methods

We compare the CHEF decomposition with two of the most widely available techniques for galaxy

modeling, GALFIT (Peng et al., 2002, 2010) and the IDL Shapelets software. GALFIT (Peng et al.,

2002, 2010) uses several two-dimensional analytic models to fit the galaxy images, as the Sérsic profile,

the exponential disk, the Nuker law or the Gaussian and Moffat/Lorentzian functions. It is possible to

use an arbitrary number of components. The shapelets software (Massey & Refregier, 2005) is based

on an orthonormal basis built from Hermite polynomials and Gaussians. Figures 4.1 and 4.2 shows

the results of fitting 12 randomly chosen galaxies from UDF with GALFIT, IDL Shapelets and our

CHEF pipeline.

The GALFIT results show that radially symmetrical multicomponent models fail to adequately

represent the wide variety of shapes displayed by galaxies observed at high S/N, and that it is essen-

tial to include angular components, as indeed the new version of GALFIT does. However, the main

drawback of GALFIT is the requirement that fits must be performed interactively, in order to provide

the right initial parameters, the number and type of the components, etc. This precludes its use to

obtain highly accurate fits of large numbers of galaxies.

We have run the IDL shapelets software allowing nmax = 20 as the maximum order, equivalent to

ncoeff = 400 coefficients. For comparison, we use Nmax = Mmax = 10 , equivalent to ncoeff = 231

coefficients, for the CHEF decomposition, which also runs faster, even taking into account the ortho-

normalization process. Despite using more coefficients, we see that the shapelet reconstruction often

fails to adequately fit all galaxy shapes and tends to produce ring-like artifacts, probably as a conse-

quence of the inestability of the radial profile fits (Bosch, 2010).

The CHEF decomposition manages to keep the residuals to a very low level, fitting very compli-

cated galaxy shapes, producing very few artifacts. In addition, as we will see below, it obtains highly

accurate estimates of galaxy total fluxes and shapes.
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Figure 4.1 Reconstructions and obtained residuals, after applying the three methods to an ensemble of
galaxies randomly extracted from UDF: images on the top correspond to the original galaxies, first row
below it represents the reconstructions obtained by shapelets, GALFIT and CHEF softwares (from
left to right), and second row shows the resulting residuals, in linear scale.
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A comparison more objective and quantitative than the visual one between shapelets and CHEFs,

has been performed by creating a realistic sample of more than 350 mock galaxy profiles with different

morphological characteristics. Each simulated image consists on a matrix of 100×100 pixels, displaying

a Sérsic profile whose index ranges from 0.5 to 4 (i.e., from a Gaussian to a de Vaucouleurs profile),

which has been sheared with different levels of ellipticity. The ellipticity parameter ranges from 0

to 0.5, and shear operation just consisted on applying to the cartesian coordinates the following

transformation: (
xs

ys

)
=

(
1 − γ1 −γ2

−γ2 1 + γ1

)(
x

y

)

where γ1 and γ2 are the ellipticity parameters, (x, y) the original cartesian grid, and (xs, ys) the shea-

red grid where the different Sérsic profiles will be evaluated.

We then fit the galaxy shapes using the IDL shapelet software and our CHEF pipeline (see section

3.1). We can see in figure 4.3 that, as expected (Melchior et al. (2010)), shapelets fail to adequately

represent objects with high ellipticities, specially for Sérsic indexes n ≈ 1,2, where the relative error

in the measurement of the ellipticity reaches 10%. Although we are using circular shapelets here,

elliptical shapelets are also affected by this problem (Bosch, 2010).

Using the formula (2.55), we estimate the ellipticities of our CHEF fits. Our error is . 0,5% for

all the explored combinations of profiles and shears. In addition, error in the estimation is much more

homogeneous than the one obtained from shapelets code, what proves our pipeline does not seem to

introduce any bias. This shows that CHEFs are a very promising tool for weak lensing measurements,

an issue which will be explored elsewhere.

On the other hand, to verify the performance of the CHEFs for photometric purposes, we added

very low Gaussian noise to the aforementioned galaxies, and applied both the shapelets and CHEF

algorithms to the data. In the case of CHEFs, the flux is estimated by means of the formula (3.7). The

results are presented in figure 4.4. Again we see that CHEFs provide highly accurate measurements

of the total flux for almost all combinations of profile steepness and ellipticity, with a typical error of

only ≈ 0,4%. Shapelets, on the other hand, introduce up to 4% errors in this very high S/N simulated

images. Moreover, error by shapelets software is greater for objects with higher Sérsic index, that is,

the most extended ones. That is easily understandable, as it was previously pointed out that shapelets

fail to properly model both central bulge and extended wings of the objects, so the less compact the

source is, the higher the error becomes. On the other hand, CHEFs again display an homogeneous

behavior, since they do not impose any constrain on the object extension.

In order to state the good behaviour of CHEFs under the presence of noise, a new whole set of

mock galaxies was prepared, this time adding high level Gaussian noise, and the process described in

the paragraph before was fully repeated. Results can be observed in figure 4.5.
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Figure 4.2 Reconstructions and obtained residuals, after applying the three methods to an ensemble of
galaxies randomly extracted from UDF: images on the top correspond to the original galaxies, first row
below it represents the reconstructions obtained by shapelets, GALFIT and CHEF softwares (from
left to right), and second row shows the resulting residuals, in linear scale.
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Figure 4.3 Ellipticity absolute error obtained by applying shapelet and CHEF algorithms to a sample
of simulated galaxies with different Sérsic profiles and ellipticity parameters.

Figure 4.4 Magnitude relative error obtained by applying shapelet and CHEF algorithms to a sample
of simulated galaxies with different Sérsic profiles and ellipticity parameters, and contaminated with
low level Gaussian noise.
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Figure 4.5 Magnitude relative error obtained by applying shapelet and CHEF algorithms to a sample
of simulated galaxies with different Sérsic profiles and ellipticity parameters, and contaminated with
high level Gaussian noise.

4.1. Conclusions

The CHEF analysis is compared with two of the most widely used techniques in galaxy fitting:

GALFIT and the IDL shapelets software, and some visual and representative examples are displayed.

It is concluded that GALFIT fails to properly represent certain types of morphologies, specially those

ones observed at high S/N with plenty of substructure on them. On the contrary, shapelets behave

much better with these complex shapes, but in some cases so many coefficients are needed that the

reconstruction suffers from some artifacts like the ringing effect. In addition, they are not able of

reaching the same accuracy in both the central bulge and the extended wings of the galaxies. Howe-

ver, the CHEFs have shown to be able to model al kind of shape and using a much fewer number of

coefficients than shapelets. In addition, no kind of artifacts are observed in CHEF models.

A more objective and quantitative test has been carried out, creating a mock sample of more

than 350 realistic galaxies and applying both the shapelet and CHEF softwares on it. Then, both the

magnitude and the ellipticity of the models have been estimated and compared to the original ones,

concluding that CHEFs provide much more accurate results in both cases.
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5
CHEF Applications

The role of CHEF bases is not just limited to create morphological models or denoise the images.

They have direct applications such as the deconvolution of the PSF, the calculation of morphological

parameters using the coefficients or the morphological classification of galaxies, plus a few of more

indirect applications as the estimation of the shear for weak lensing, the subtraction of central galaxies

in clusters for strong gravitational lensing or the simulation of models.

5.1. PSF deconvolution

The effect of the atmospheric turbulence and the imperfections in the optical system of the teles-

cope makes the observed images be convolved with the so called point spread function (PSF). Many

efforts and resources, both technical (better telescopes and cameras) and observational (choice of good

seeing astronomical sites, space observations), are spent trying to minimize this effect. However, none

of them totally remove the presence of the PSF, so the deconvolution of the original data is needed

to recover the real image of the objects. We will show the way this deconvolution can be performed

in CHEF domain.

Unlike most operations, the deconvolution operation has no direct mathematical definition, but it

is just defined as the inverse of the convolution operator ∗, described by:

(f ∗ g)(t) =

∞∫

−∞

f(τ) · g(t− τ) dτ =

∞∫

−∞

f(t− τ) · g(τ) dτ (5.1)

where f and g are integrable functions. In astronomical images, f represents the object in the sky and

g is the PSF, which is defined as the total instrumental profile, that is, the image of a point source

obtained with the instrument considered, including the atmospheric perturbation (seeing) if relevant

(Magain et al, 1998). In this way, the observed image f obs can be expressed as:

f obs = f ∗ PSF + n (5.2)



76 CHEF applications 5.1

where n is the noise map function. The linearity of both the CHEF bases and the convolution operator

makes the PSF deconvolution a very simple task formally speaking, involving the reconstruction of

the image with the basis without convolving:

f obs + n = f ∗ PSF + n =

(
+∞∑

m=0

+∞∑

n=0

fnmφnm

)
∗ PSF + n =

+∞∑

m=0

+∞∑

n=0

fnm (φnm ∗ PSF) + n. (5.3)

That is, the CHEF coefficients of the image convolved with the PSF coincide with the coefficients

of the data without convolving, so it is enough to construct the model using these coefficients and the

original basis (without convolution) to recover the deconvolved original data.

The process followed to test this method has consisted on convolving a simulated source with a

PSF generated by TinyTim (see figures 5.1(b) and (a), respectively). Then, the convolved image (figu-

re 5.1(c)) is modelled using the CHEF basis (figure 5.1(d)), which has also been previously convolved

with the psf. The deconvolved image is recovered with these coefficients and the original CHEF basis.

The obtained result and the residuals with regard to the original data (figure 5.1(a)) are displayed in

figures 5.1(e) and (f), respectively.

However, this naive solution does not work well in practice because of several issues. Let us des-

cribed them.

Mathematically, deconvolution is an ill-posed problem due where many solutions satisfy the equa-

tions, specially in the presence of noise (Bennia & Riad, 1990) and solutions are not stable at all since

they depend strongly on the precision of the input data. Let us support this assertion mathematically

to explain it. In the numerical sense, deconvolution in the time-domain can be seen as a differentiation

operator (remember definition (5.1)), since it implies subtractions, specially in the case of discrete

vectors instead of functions. Any tiny imprecision in the input data, that is, f ∗ g and g leads to

great inaccuracies in the final estimation of f , due not only to the intrinsic instability of the raising

of the problem but also to the rounding errors. Translating these operations into Fourier-domain does

not happen to be a smart solution either, since convolution is transformed to a product in frequency

domain:

f̂ ∗ g = f̂ · ĝ (5.4)

which involves a division to recover f and, therefore, the fast spreading of the initial errors. Finally,

we cannot forget that due to bandwidth limitation of the waveform detector and the sampling, the

acquired waveform is different to a certain extent from the true time signal, so the presence of this

problem is unavoidable.

Another important problem in deconvolution is the appearance of some artifacts like ringing effects

os spikes. Explanation of these latter is quite simple just having a look at the Fourier definition of

convolution (5.4). The fact that signals or images are band-limited in the frequency domain introduces

a great level of uncertainty when it comes to evaluate the deconvolution, since the small values in the

data spectra are translated into sharp spikes in the deconvolved signal (Riad, 1986). Suppose f̂ ∗ g
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Figure 5.1 Outline of the process for the PSF deconvolution of real data: (a) PSF generated by
TinyTim, (b) original source, (c) image convolved with the PSF, (d) CHEF model of the convolved
image, (e) deconvolved image using CHEF original basis, and (f) obtained residual after subtracting
the deconvolved model to the real image, in linear scale.
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and ĝ are realistically detected and sampled, using a bandlimited detector. From some point ν0 on,

registered frequencies will have amplitudes down to the noise level or even with a really low value

(remember that Fourier coefficients decay due to the compactness of the basis), what means that the

inversion required by deconvolution becomes extremely high:

f̂(ν) =
f̂ ∗ g(ν)
ĝ(ν)

>> 0, ∀ν > ν0 (5.5)

That indicates that f is significantly composed by high frequencies with great amplitude, what it

is translated into those spikes previously mentioned. This effect is usually reduced by filtering the final

and spiky form of f , mostly based on Wiener theory (Nahman & Guillaume, 1981; Riad & Stafford,

1980), to reduce the noise that contaminates the transfer function.

To explain the other kind of artifacts, we will have to use the concepts developed in section

3.2.2 to prove the aliasing effect, but let us consider the one-dimensional case for simplicity. We can

remember that expression (3.17) described how the spectra of a sampled signal coincided with the

spectra of the continuous function where it came from, repeated periodically on the Fourier plane and

summed at each frequency. Then, one period must be isolated and sampled, resulting in the Fourier

transform of the digitized signal. This isolation is translated into a multiplication by a box function

B(η) =

{
1 if − η0 ≥ η ≥ η0

0 cc
in Fourier space, that is, a convolution in time domain by the inverse

of this box function, which is:

B̌(x) =

∞∫

−∞

B(ξ) eiξx dξ =

η0∫

−η0

B(ξ) eiξx dξ =
1

ix
eiξ x

]η0
ξ=−η0

=
1

ix

[
eiηx− e−iηx

]
=

2 sin(ηx)

x
. (5.6)

If the original image has point sources (what is usual in astronomical data), which can be mat-

hematical expressed as delta functions, after convolution they will be replaced by oscillatory function

sinx/x, and this is the origin of that ringing effect so commonly observed.

However, the lack of information in Fourier domain is not an absolute disadvantage. The sampling

theorem points out the necessity of a band-limited input signal in order to properly reconstruct it

from sampled data:

Theorem 5.1. (Shannon, 1949) If a continuous function f contains no frequencies higher than a cutoff

frequency ν, it is completely determined by giving its ordinates at a series of points spaced ν/2 units.

In real data is not really possible to determine clearly this cutoff frequency, since functions are

seldom focused on a finite number of Fourier coefficients but they are spread all over the spectra.

Because of that, in practice, ν is taken as the highest frequency at which the Fourier transform

emerges from the noise (Magain et al, 1998). Moreover, data must be sampled in such a way that both

the observed image and the deconvolved one obey the sampling theorem. Observing instruments are

usually built obeying this sampling theorem, under average observing conditions. A typical rate of ∼
two sampling intervals per FWHM of the PSF is encountered, what often works for low S/N images.
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In order to make the deconvolved signal obey the Shannon theorem too, we have chosen the solution

proposed by Magain et al (1998); according to this, the sampled signal will not be deconvolved by

the total PSF (PSF orig) but by a narrower function h specially selected so that the resolution of the

deconvolved image is compatible with the adopted sampling rate, since it will be convolved with its

own PSF (PSF final). So, these three functions will be related by:

PSF orig = PSF final ∗ h, (5.7)

and the purpose is recovering f ∗ PSF final, which will not be exactly the original image f (what is

impossible, according to the sampling theorem) but a similar version of it, avoiding in this way spikes

and ringing effects common to the traditional deconvolution methods. The way to choose PSF final

is arbitrary, just taking into account that equation (5.7) must admit a solution. In our case, we have

designed it to be equals to the original PSF orig but much narrower, with a width of two pixels.

Finally, it is also observed that the size of the frame surrounding the convolved source must be

inversely proportional to the source radius, if this latter is much smaller than the PSF radius. This is

quite reasonable, since the discrete convolution introduces some artifacts in the convolved image, due

to the “fake”values added in the surroundings of the original image by different techniques (periodi-

cally, specularly or by zero-padding).

5.2. Gaap aperture fluxes

The estimation of the estructural parameters is a crucial task in galaxy evolution. It is necessary

to classify galaxies into different types, which has strong implications on their origin and evolution.

The shear estimation is also basic for gravitational weak lensing and, therefore, the discovery of the

composition of the Universe and the identification of the dark matter.

As stated above, one of the main motivations to develop the CHEF basis is having a tool to

automatically measure accurate fluxes and shapes in the context of large galaxy surveys. Analytical

formulae to calculate different morphological parameters were showed in section 3.2.1 , particularly,

for flux and ellipticity. However, it must be noticed that they have been developed both in complex

and real approaches of the CHEF bases, but not for the discrete case. It is trivial translating integrals

and infinite intervals in expressions (2.47), (3.8), (3.12) and (3.13) into sums and bounded image fra-

mes, but, how longer are these approximations accurate in practical implementation? To answer this

question, an exhaustive test was performed, by applying CHEFs on a sample of more than 350 mock

galaxy profiles displaying different morphologies and characteristics. Both the flux and the ellipticity

of the models created by CHEFs and measured by the formulae displayed in (3.7) and (3.14) were

calculated and compared to the original ones. Results and a deeper explanation of the test can be

found in chapter 4, where the test is also applied to shapelets algorithm, to compare the reliability of

both methods (see figures 4.3 and 4.4).
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Despite the good performance of this “direct”method, it is instructive to explore other approaches,

as the one described by Kuijken (2008), who does not compute the usual flux parameter, but the so

named GaaP much more consistent and adapted to the shape of the functions used in the galaxy

analysis, in this particular case, shapelets. This approach is specially well adapted to astronomical

surveys with varying PSF, since it estimates the fluxes of an homogeneous PSF for all filters.

The Gaussian-aperture-and-PSF (GaaP), Fq of aperture q is defined as the Gaussian-weighted

flux of the source, if this was observed with a Gaussian PSF of the same width as the weight function

(Kuijken (2008)):

Fq ≡
∫∫

f(r′)
e−(r−r′)2 /2q2

2πq2
e−r

2/2q2 dr dr′ =
1

2

∫
f(r) e−r

2

4q2 dr. (5.8)

where f represents the light distribution of the galaxy. The last step shows how this way of measuring

the flux is equivalent to calculating the weighted flux of f with a Gaussian weight function of disper-

sion
√

2q.

The selection of this formula for flux is not arbitrary; in fact, the author in Kuijken (2008) decides

to weight the parameter using a Gaussian because the intention is to later represent the source by

means of shapelet functions, which are composed by Hermite polynomials and Gaussians (see section

2.2). In fact, using expressions (2.1) and (2.2) to represent the f function in (5.8) and changing

coordinates from polar to cartesian, the integral can be separated in x and y:

Fq =
∑

m,n

fm,nF
m
q F

n
q (5.9)

with

F aq =
1

2

∫
e−x

2/4q2 H
a(x/β) e−x

′2/2β2

√√
π2aa!β

=
π1/4β1/2

√
1 + β2/2q2

√
(a− 1)!!

a!!

(
2q2 − β2

2q2 + β2

)a/2
, (5.10)

where Ha represents the Hermite polynomial of order a, β is the shapelet scale, and the operator !! is

recursively defined by 0!! = 1!! = 1 and n!! = n(n− 2)!!.

In our case, we have developed an analogous procedure firstly resolving the indefinite integral

(5.8) and later applying the integration limits, but decomposing the function f using CHEF basis; so,
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replacing (2.24) into (5.8) it yields:

Fq =
1

2

+∞∫

0

π∫

−π

e−r
2/4q2

+∞∑

m=−∞

+∞∑

n=0

(
fn,mTLn(r) eimθ

)
dr dθ ≈ π

+∞∑

n=0

fn,0

R∫

0

e−r
2/4q2 TLn(r) dr =

=
π

2

+∞∑

n=0

fn,0




R∫

0

e−r
2/4q2 ein arc cos( r−L

r+L) dr

︸ ︷︷ ︸
Ia

+

R∫

0

e−r
2/4q2 e−in arc cos( r−L

r+L) dr

︸ ︷︷ ︸
Ib




(5.11)

Let us calculate these two last integrals separately. We will solve the first one by parts:

Ia = q
√
π erf

(
r

2q

)
ein arc cos( r−L

r+L) +q
√
πin

∫
erf

(
r

2q

)
ein arc cos( r−L

r+L)
√
L

r

1

r + L
dr (5.12)

where erf is the error function (Abramowitz & Stegun (1970)), whose McLaurin series expansion is:

erf z =
2

π

∞∑

i=0

(−1)iz2i+1

i!(2i + 1)
, (5.13)

which can be replaced into integral I1 to apply the method of integration by parts:

Ia =
2

π
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i=0

(−1)i

(2q)2i+1i!(2i + 1)

∫
r2i+1 ein arc cos( r−L
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r
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=
2

π
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[−1

in
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in
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r+L) dr

]
.

(5.14)

Integral Ib is evaluated analogously, so it yields:

Ib =
2

π

∞∑

i=0

(−1)i

(2q)2i+1i!(2i + 1)

[
1

in
r2i+1 e−in arc cos( r−L

r+L)−2i+ 1

in

∫
r2i e−in arc cos( r−L

r+L) dr

]
. (5.15)

And finally, replacing (5.14) and (5.15) into (5.11), it is obtained

Fq = π

+∞∑

n=0

fn,0

[
q
√
π erf

(
r

2q

)
TLn(r)+

+2
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(−1)i

(2q)2i+1i!(2i + 1)

(
−r2i+1TLn(r) + (2i + 1)

∫
TLn(r)r

2i dr

)]
.

(5.16)

Note once the integration limits are applied to this result, the last integral becomes the generic one

calculated in section 2.3.4, by means of the hypergeometric function, according to expression (2.46).
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Figure 5.2 Relative error obtained for GaaP flux using method described in Kuijken (2008).

Then, for R > 0,

Fq ≡ 1

2
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f(r) e−r
2

4q2 dr = π
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n

)
] (5.17)

Results after applying this last formula to a sample of simulated galaxies with different Sérsic

indices and ellipticity parameters, can be observed in figure 5.2. This figure can be compared with

figure 2 in Kuijken (2008): the observed error is much lower in CHEFs for steep objects, that is, those

ones with a small Sérsic index, whereas for more extended sources the error decreases and seems to

converge to one, just the opposite of what happens with shapelets. That is perfectly reasonable, since

as it was stated previously, shapelets are not able to describe with the same precision both bulge

and disk of the galaxies, so for not very compact sources wings are not properly modeled and flux

estimation becomes poorer.

In relation to the flux estimation technique presented in chapter 4 by means of the analytical

formula (3.7), this GaaP method has proved to obtain less accurate results, although it is easier to

implement. For these reasons, we highly recommend the use of the former to obtain accurate photo-

metric results.
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5.3. Shear estimation by least square minimization

The one described in previous section is not the only method we have implemented to measure

flux and shear using the CHEF decompositions. Another approach, proposed in Kuijken (2006) for

shapelets bases was adapted to CHEFs. In this paper, observed image is decomposed using three dif-

ferent operators: the one in charge of convolving with the PSF, the shear operators responsible of the

ellipticity of the object and the one which yields the shapelet model of the real galaxy. This decom-

position can be then expressed as a composition of these three operators, the last two being a linear

combination of others. The method prposed by Kuijken consists on estimating the optimal coefficients

of these linear combinations using a least square minimization and, therefore, the ellipticity parame-

ters are obtained (they match the coefficients of the linear combination in the shear operator). We

will devote the following paragraphs to develop a similar method for CHEFs, but without attempting

any deconvolution, to test the actual reliability of the technique.

Let us note the first order shear operators in the x axis and the y = x line as S1 and S2 respectively,

that is:

S1 =

(
1 0

0 −1

)
S2 =

(
0 1

1 0

)
. (5.18)

being S1 in charge of the ellipticity along the x-axis and S2 the one which produces the ellipticity in

the y = x line.

Then, using expression (2.24) again, any sheared source f shear can be represented in the following

way:

f shear = (1 + e1S1 + e2S2)f = (1 + e1S1 + e2S2)

(
1

Cπ

+∞∑

m=−∞

+∞∑

n=0

fn,mTLn(r)e
imθ

)
. (5.19)

Fitting this model to the observed source yields the best-fit ellipticity parameters (e1, e2) as well as

the coefficients for the decomposition of the same source with spherical shape, that is, the original one

before being sheared. This minimization has been performed using the Levenberg-Marquardt algorithm

(Levenberg (1944)), and the obtained results can be observed in figure 5.3, where the relative errors

for both ellipticity parameters in the y = 0 and y = x directions are displayed.

As it can be observed, with this method the shear parameter along the first bisector is not well

estimated, while the one along the x axis yields better results. However, CHEF basis are totally isotro-

pic, so it can be concluded that they are not responsible of this bias, but the minimization algorithm

which first optimize the e1 parameter and later the e2 (see equation (5.19)). For this reason, as well

as the better results it yielded, the method based on analytical formulae described in the previous

section is obviously a better option than this one.
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Figure 5.3 Relative errors obtained for both ellipticity parameters e1 and e2 using least square mini-
mization method.

5.4. Image simulation

Galaxy simulation is an extremely powerful and useful tool to test and calibrate the effectiveness

of many image analysis and detection methods. For example, it has been used to test weak shear es-

timation techniques (Heymans et al., 2006; Bridle et al., 2009; Schrabback et al., 2009), to determine

the accuracy and loss of precision in compression-decompression (codec) algorithms (Bernstein et al.,

2009) or in specific mission development, to optimize the optical design and observation strategies,

for instance, for ESA’s cosmic visions candidate Euclid (Refregier et al., 2010) or NASA/DOE Joint

Dark Energy Mission concepts (Jelinsky et al., 2006; High et al., 2007).

For this reason, several packages have been developed to create large catalogues of mock galaxies.

Some of the most remarkable ones are Skymaker (Erben et al., 2001; Bertin, 2009), which uses a de

Vaucouleurs profile to simulate elliptical sources plus an exponential disk in the case of spirals, Art-

data from IRAF, the method by Bouwens et al. (1998a,b) to reuse well-resolved galaxies from HDF,

or Skylens (Meneghetti et al., 2008) based on shapelets decompositions as well as the works described

by Massey et al. (2004), Ferry et al. (2008), and Dobke et al. (2010). Many of these works could just

faithfully reproduce deep ground-based data, whereas current and future surveys require the imitation

of deep space-based galaxies too, with more complex resolved features.

A complete and detailed catalogue of mock data requires a wide set of galaxies displaying every

type of morphologies, ranging from the simple ellipticals to those ones with more complex features

(spiral arms, bars, mergers, dust lanes, knots). In addition, to make the simulations more realistic,

every instrumental effect must be convenient and carefully modeled, adequating the pixel scale size

to the model, convolving it with the proper PSF, or adding noise with the type and the level adapted

to the final sample. Our method consist basically on elaborating models of real images from the UDF



5.4 Image simulation 85

(Beckwith et al., 2004) and storing the coefficients in a catalogue of artificial data. These models are

then provided with all the physical characteristics desired for the output image. Let us outline an

scheme of the followed process:

1. Elaboration of the catalogue. The whole UDF field is processed using CHEFs, according to the

algorithm described in section 3.1.

2. Storing of the models. The number of coefficients Nmax and Mmax needed for each one of the

detected sources, the estimated morphological characteristics of the objects (flux and ellipticity

parameters), the scale size values L, and the centroid (xc, yc) are stored in a simple ASCII

catalogue. Another file is created to save the coefficients of each one of these models, easily

accessible by the running number associated to them. Note that these models are noise-free as

well as they faithfully reproduce the fine features in the galaxies, thanks to CHEF functions high

reliability.

3. Selection of the models. A certain number of CHEF models are randomly selected from the mock

catalogue, according to the galaxy density of the output field where these galaxies are desired

to be inserted.

4. Evaluation of the models. A grid with pixel size equals to the one displayed in the output field is

built, and the chosen models are evaluated on it (by means of the CHEF coefficients previously

stored, as it was aforementioned). In this way, resulting models are pixellated to the correct

resolution.

5. Zero-point correction. Zero-point correction is applied to the CHEF models, in order to make

magnitudes be coherent with the ones of the real sources of the output field:

f zp = f orig · (10(zpout−zpUDF )/2,5)) (5.20)

6. PSF convolution. The pixellated, corrected model is convolved with the PSF of the output image,

to make it be blurred in same level that the other sources present in the field. This discrete

convolution is performed in the frequency space by means of the Fast Fourier Transform, which

is much more reliable and fast than the usual in the time domain:

f zp ∗ PSF = IFFT (FFT (f zp) · FFT (PSF )) (5.21)

where FFT and IFFT denotes the direct and inverse Fast Fourier transforms, respectively.

7. Selection of the location. Centers of the models in the output image are randomly selected all

over the field, just avoiding location too near the edges to completely set the models inside the

frame (otherwise, morphological parameters as flux or ellipticity would have no sense and these

mock objects would be useless to calibrate any method).

8. Noise adding. Pixellated, corrected and convolved models are inserted into their chosen locations

in the image. This guarantees the resulting sources will display the same type and level than the
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output field, without having to simulate artificial noise for them.

This method was applied to ALHAMBRA (Beńıtez et al., 2009) observations as a way of calibra-

ting the effects of the ground-based observation effects into the estimation of the morphological and

photometric parameters of the galaxies. By way of illustration, some artificial galaxies has been added

to an ALHAMBRA field and are shown in figure 5.4, totally adapted to the physical e instrumental

characteristics of this survey.

5.5. Large surveys

One of the major advantages of CHEFs is the implementation of the whole pipeline and their

ability to work with a minimum of interactivity from the user. As it was explained in detail in section

3.1, the only inputs for the code are the image to be processed and the maximum number of Chebyshev

and Fourier coefficients allowed to compute, that is, Nmax and Mmax. Taking into account that these

two parameters can be easily determined in an automatic way using a criterium related to the size (the

bigger the image is, the larger Nmax and Mmax must be chosen, under the same level of noise), the

whole process can be automatized, so it is ideal for large survey processing. In fact, the full pipeline

has already been applied to some fields from ALHAMBRA survey. ALHAMBRA is characterized by

the use of 23 different filters, in such a way that CHEFs can find the best combination of the number

of coefficients N and M just for the first filter and then apply this choice to the other 22, without

having to optimize these parameters again. That results in an even faster velocity and efficiency of the

computations, which can be reduced by a factor of 4. This was the strategy followed to process the

object displayed in figure 5.5, which is repeated in the 20 optical filters available for ALHAMBRA.

The one in the upper left corner was the one fully analyzed, and the optimal combination of N and

M resulting for it was later applied to the other 19. Results can be observed in figures 5.6 as well

as the obtained residuals in figure 5.7. We determine this method is accurate enough and there is no

difference between the fully processed object and the others. A comparison between the radial flux

profiles of both the original sources and the CHEF models is displayed in figure 5.8, in order to show

the accuracy of the method fitting the wings of the galaxy and, therefore, measuring the photometry

of the objects in the survey.

5.6. Galaxy cluster modeling

The study of dark energy and dark matter distribution in the Universe and their nature is one of

the main goals of Astrophysics and, particularly, Cosmology, in the last years. Several indirect methods

have been developed to study them, with gravitational lensing as one of the most successful ones. The

distortion and bending of the light produced by huge concentrations of mass allows the researchers

to invert the mass distribution models and determining the topology of dark matter in those areas.

In particular, the analysis and measurement of lensing arcs appearing in clusters is a great source of

information for this models. For this purpose, is absolutely necessary to subtract the main galaxies in

the clusters, not only to uncover the arcs behind them, but also to properly estimate the photometry

of them, eliminating the influence of these huge sources. However, the fact that galaxies in a cluster are
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Figure 5.4 Frame extracted from a field observed by ALHAMBRA, where 15 different sources, ran-
domly selected from UDF and artificially modeled to display the ALHAMBRA observational charac-
teristics, have been inserted.
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Figure 5.5 Galaxy extracted from ALHAMBRA survey in the 20 optical bands.



5.6 Galaxy cluster modeling 89

Figure 5.6 Results of the CHEF processing of the objects in figure 5.5. The object in the upper
left corner is the one which the fully CHEF pipeline was applied to, whereas the other 19 used the
optimizations found for the former.
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Figure 5.7 Obtained residuals for CHEF processing of galaxy in figure 5.5.
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Figure 5.8 Radial flux profiles of both the original object in figure 5.5, and the corresponding CHEF
models in figure 5.6.
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Figure 5.9 Different CHEF processing approaches: a) for single and far enough sources that can be
isolated, and b) for cluster galaxies with overlapping wings. In the second case, two different sets of
CHEF bases are evaluated with origin at different points of the grid, and the resulting CHEF basis is
the composition if these two.

overlapping makes this task really hard, since it is not able to isolate them within individual frames

and, in addition, the must be processed simultaneously, since light from the extended wings of each

one of them is affecting to the neighbours.

Because of that, a totally different strategy has been developed for cluster processing. Instead of

creating a simple grid with origin on the center of each galaxy and the later simple evaluation of

the CHEF basis on it, we have proposed to create a composed large grid containing all the objects

to be analyzed simultaneously, and matching each one of the centers with some node on the grid. A

composed CHEF basis, joining the different simple CHEF basis centered on each galaxy, is built, and

the orthonormalization process described in section 3.2.3 is applied to the whole set. We thus obtain

a “multi-objectÇHEF basis (see figure 5.9 to observe a visual explanation of the process).

This method has been successfully applied to different real clusters. That is the case of Abell 1703,

(see figure 5.10), where several galaxies from the central area of the cluster were subtracted to later

analyze the lensing arcs surrounding them (Zitrin et al., 2010).

In addition, this subtraction technique has been also applied to both simulated to real data from

Cluster Lensing and Supernova Survey with Hubble (CLASH) (Postman et al, 2011). The main goal
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Figure 5.10 Abell 1703 cluster frame (top panel) and residuals after extracting the main galaxies of the
cluster (bottom panel). Please note that the lensing arcs can be easily measured after the subtraction
of these overlapping sources.
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Figure 5.11 CHEF processing of two real lensing arcs from Abell 1703: a) original arcs, b) CHEF
model of the arcs, c) obtained residuals in linear scale.

of this project is unveiling the dark matter mass distribution in the Universe by observing 25 massive

intermediate redshift galaxy clusters. A total number of 524 orbits from Hubble Space Telescope will

be devoted to this purpose, which will also be used to detect type-Ia supernovae (SNe Ia) in the

redshift range 1 < z < 2. The first images were available on November, 2010 and CHEF subtraction

algorithm has begun to be applied to them.

Finally, it must be remarked that CHEF bases are so flexible due to their orthogonality and the

efficiency of Chebyshev rational functions in modeling profiles, that they have been tried not only on

galaxies but also on lensing arcs. The aim would be measuring the photometry of the arcs using just

CHEF coefficients, by means of the expression (3.7), what would yields a much accurate estimation of

flux in this arc objects. A quick test was performed using the uncovered central arcs in cluster Abell

1703, and the obtained results, which can be observed in figure 5.11 although not definitive, look really

promising.

5.7. Conclusions

In this chapter, we have shown the reliability of CHEF bases for many other applications apart

from the creation of morphological models or the image denoising. The PSF deconvolution is the first

one we have dealt with, proving that it can be easily performed in theory due to the linearity of

both the convolution operation and the CHEF bases. However, all the hurdles the deconvolution task

present are taken into account and the final solution we have found to overtake them is to deconvolve

not the original PSF but another intermediate one which makes the final result to fulfill the sampling

theorem, Thus it is not possible to recover the original image but one convolved with a narrow PSF of

2 pixel width. In this way spikes and ringing effects so common to traditional deconvolution methods

are also avoided.
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Although the measurement of morphological and photometric parameters as the flux and the ellip-

ticity was previously undertook in other chapters by means of analytical formulae, a new approach

has also been tried to estimate them. In the case of flux, a new expression for it, the so called GaaP

aperture flux, is developed in CHEF coefficients. The results show that CHEF functions behave better

than the shapelets in measuring this quantity. As for shear, an estimation by least square minimization

is implemented, calculating both the ellipticity parameters and the CHEF coefficients applying the

Levenberg-Marquardt minimization algorithm. Results are also much more accurate than the ones

provided by shapelets with the same method. However, it can be concluded that analytical formu-

lae are more precise than these two approaches, so they are the ones finally used by the CHEF pipeline.

Image simulation has also been tried using CHEF bases. The method, consisting in modeling real

sources (from UDF, for instance) and later adjusting them to the special physical characteristics of

the observations we want to reproduce (pixel size, PSF convolution, or noise level), has shown to be

highly useful to calibrate the observational effects of the instrumentation and test the reliability of

some photometric methods.

The fully automated CHEF pipeline is being applied to huge datasets coming from large surveys.

By way of illustration, the real application of the algorithm on observations from ALHAMBRA survey

is displayed, where data from 20 different optical filters must be processed.

Finally, the CHEFs are also efficient to subtract main objects from galaxy clusters, letting the

information under these sources to remain if desired. As galaxies are overlapping in these cases, a

new strategy has been implemented, creating a complex large CHEF basis composed by simple ones

evaluated on a big grid covering the whole cluster and with different origins, matching each galaxy

center. This application has revealed to be crucial for strong lensing studies, since it allows the proper

measurement of the lensing arcs under the cD galaxies, avoiding the contamination by the flux from

the extended wings of these huge sources. A final example to prove that the CHEFs are not only able

of modeling standard galaxies but also lensing arcs has been displayed, in order to show that they can

be a very promising tool for measuring the photometry of these objects more accurately.
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6
Conclusions

Motivated by the need to perform accurate galaxy photometry and shape measurements in large

surveys like ALHAMBRA or the upcoming JPAS, we have developed a new orthonormal basis in

polar coordinates formed by a combination of rational Chebyshev and trigonometric functions for,

respectively, the radial and angular components, and that we called CHEF functions, or CHEFs.

The new basis displays remarkable flexibility, being able to accurately fit all kinds of galaxy shapes,

including irregulars, spirals, ellipticals, highly compact and highly sheared galaxies. This flexibility is

due to its orthogonal character, which makes them able to model any kind of feature, its scale para-

meter L, which is easily adapted to the resolution of the images, and the wings of CHEFs, which tend

to 1 and do not constrain the flux coming from the sources. In this way, the same level of precision

is reach for both the central bulge of the galaxies and the extended wings, which is not the case of

methods as shapelets, for instance.

In addition, this accurate modeling is performed while using fewer components that similar met-

hods, as shapelets, due to the compactness of the CHEF basis and the great efficiency of Chebyshev

rational functions in modeling decaying profiles, specailly those ones displaying a high steepness. Mo-

reover, this efficiency is also responsible for the smoothness of the obtained models, not producing any

kind of artifacts, while other standard approaches as shapelets are affected by ringing effects when

decomposing too steep or highly elliptical sources.

The method is also lineal, what makes some operations easier in CHEF domain, such as the PSF

deconvolution or the calculation of both morphological and photometric parameters just using the

CHEF coefficients (for example, the flux, the centroid, the rms radius, and the ellipticity). In the case

of the flux and the shear, two different approaches were developed to try to reach the maximum level of

accuracy, one of them by means of analytical formulae and another one by least square minimization.

Due to the high quality of the fits in the central parts of the galaxies, and the ability of the CHEF

basis to compactly model galaxy profiles up to very large distances, the method based on analytical
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formulae provides highly accurate estimates of total galaxy fluxes and ellipticities.

CHEF functions have been revealed to be very stable and robust, and, therefore, able to work very

fast and to automatically process large numbers of galaxies. For this reason, they have been successfu-

lly applied on large datasets from surveys such as ALHAMBRA or the UDF, reaching excellent results

without requiring interactivity from the user. In addition, some tasks of the CHEF pipeline have been

improved to get an even faster computation time, without decreasing the precision of the final products.

Finally, CHEFs have been shown to be highly useful for gravitational lensing purposes too, and

not only for estimating the shear. They have been applied to both simulated to real clusters, such as

Abell 1703 or the data provided by CLASH project, to subtract the main galaxies in clusters, then

allowing to measuring and analyzing the lensing arcs covered by them or affected by the flux of the

extended wings. The CHEF pipeline was slightly modified to adapt it to the overlapping sources in

clusters, permitting the modeling of several sources simultaneously by means of a complex CHEF basis

composed by simple CHEF functions centered on each one of the overlapping galaxies. Further work

will explore the use of CHEF bases to model the projected dark matter distribution.

In addition, arcs from lensing images can be also processed using CHEFs, although they do not

display the preferred morphology for this technique, and results look very promising. So applying this

method the photometry of lensing arcs will be further developed in a near future.

Future work will explore in more detail many other applications of the method to problems such

as the development of a parallel pipeline substituting the orthonormalization method (the slowest step

in the algorithm) by the SVD decomposition smartly implemented to be optimal, the search for an

analytical and general relation between the optimal scale parameter L and the half light radius rh

to get even better results, or performing a principal component analysis to create a morphological

classification scheme for galaxies, just based on the CHEF coefficients.

To finish, we would like to include a list of the papers that have already been or are about to be

published, as well as a brief summary of each one:

Jiménez-Teja, Y., and Beńıtez, N. CHEF bases: mathematical background, in press. The aim of

this paper is exposing the whole mathematical theory where CHEFs rely on, to be published in

an applied mathematics journal.

Jiménez-Teja, Y., and Beńıtez, N. The CHEF basis: a new tool for image analysis, in press.

This paper is focused on describing the practical implementation of CHEFs and the applications

developed for Astrophysics.

Zitrin, A; Broadhurst, Tom; Umetsu, K; Medezinski, E; Rephaeli, Y; Jiménez-Teja, Y; Beńıtez,

N; Ford, H; Liesenborgs, J; De Rijcke, S; Dejonghe, H; Beckaert, P. (2010). Full Lensing Analysis

of Abell 1703: Comparison of Independent Lens-Modelling Techniques. MNRAS, 408, 1916-1927.
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In this work, CHEFs were applied to real images of Abell 1703 cluster, subtracting the main

galaxies to determine the mass distribution in the cluster.

Coe et al., in press. A new paper applying CHEFs subtraction algorithm on cluster Abell 2744

is currently being prepared.

CLASH Team, in press. First results from CLASH project will be soon released with the results

of the lensing processing of the cluster Abell 383.
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