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Abstract

Lightning is one of the most spectacular phenomena on Earth. Despite its

prevalence in our lives, it still holds many unknowns. In this thesis, we will be

dealing with a fundamental problem in Lightning Physics, the stepped propa-

gation of lightning channels as they head to the ground. The stepping mecha-

nism is crucial to understand other processes such as the emission of X-rays or

gamma radiation reported by numerous observations of lightning discharges

in the last decades.

The stepping mechanism involves widely separated space and time scales:

from nanoseconds to tens of microseconds and from a few micrometers up to

tens of meters. Currently, observations are not able to resolve the tiniest scales

associated with lightning. However, numerical models settle a framework to

simulate basic phenomena in Lightning Physics and study its most elusive

scales.

This thesis aims to study the stepped propagation of lightning channels with

a prominently numerical approach. We have built a self-consistent state-of-

the-art 2D cylindrically symmetric model that accounts for charge transport,

electrostatic interactions, gas heating, and expansion. In our efforts for im-

proving our model, we have implemented a numerical method to solve the

Poisson equation that allows us to reduce the size of the computational do-

main, speeding up our simulations. This method is also valid to optimize the

calculation of the photoionization term in streamer discharge codes.

We have used our model to investigate the emergence of space stems. These

are luminous spots that appear ahead of an advancing leader mediating the

leader’s stepped propagation. We show that space stems start as regions of
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locally depleted conductivity that form in the streamers of the corona around

the leader. An attachment instability enhances the electric field leading to

strongly inhomogeneous, bright, and locally warmer regions ahead of the

leader that explain the existing observations.

Space stems are known to readily launch counter-propagating streamers. These

are believed to heat the space stem close to leader temperatures. Similarly,

high-altitude electric discharges such as sprites develop a non-thermal version

of a space stem known as glow. As space stems, glows also shoot counter-

propagating streamers. We have studied the mechanism underlying the onset

of these counter-propagating streamers with the AFIVO 3D streamer model.

Our results show that an attachment instability leads to a charge accumula-

tion at the boundaries of the glow, which enables it to shoot these counter-

propagating streamers. This explains the characteristic shape of carrot sprites.

Finally, we have studied the effect of a forced electric current through a space-

stem-like structure. The source of this electric current could be the counter-

propagating streamers mentioned above. In the same way, we have studied

the influence of water in the development of a space stem under such con-

ditions. Our results show that water enhances the initially small plasma in-

homogeneities. This explains some of the features observed in the leader

stepping and highlights the relevance of water chemistry models to address

leader propagation.



Resumen

Los rayos son uno de los fenómenos más espectaculares en la Tierra. A pe-

sar de su prevalencia en nuestra vida, todavı́a guardan muchos secretos. En

esta tesis, vamos a tratar un problema fundamental en Fı́sica de Rayos, la

propagación a saltos del canal de un rayo a medida que se propaga hacia el

suelo. El ”mecanismo a saltos” es crucial para entender otros procesos como

las emisiones de rayos X y radiación gamma observadas por numerosos ex-

perimentos en las últimas décadas.

El ”mecanismo a saltos” involucra escalas espacio-temporales muy diversas:

desde los nanosegundos hasta las decenas de microsegundos y desde los pocos

micrómetros hasta las decenas de metros. Actualmente, las observaciones no

son capaces de desentrañar las escalas más pequeñas asociadas a los rayos.

Sin embargo, los modelos numéricos proporcionan un entorno para simular

fenómenos básicos en la Fı́sica de Rayos y ası́ estudiar las escalas de tiempo

más elusivas.

Esta tesis tiene por objeto estudiar la propagación a saltos del canal de un

rayo con un enfoque eminentemente numérico. Hemos desarrollado nuevo

modelo numérico 2D con simetrı́a cilı́ndrica capaz de describir el transporte

de carga, las interacciones electrostáticas, el calentamiento y la expansión del

gas que se dan en una descarga eléctrica. Al desarrollar un modelo numérico,

es siempre importante su optimización para ası́ agilizar las simulaciones. Para

ello hemos implementado un método numérico que nos permite resolver la

ecuación de Poisson en un dominio computacional ajustado a las dimensiones

fı́sicas de la descarga que simulamos. Este método también se puede utilizar

para optimizar el cálculo del término de fotoionización que aparece en los

códigos numéricos de descargas tipo dardo.



Hemos usado nuestro modelo para investigar el origen de los tallos espaciales.

Estos son manchas luminosas que aparecen delante de un lı́der a medida que

se propaga. Nuestros resultados muestran que los tallos espaciales se originan

en zonas de conductividad reducida en los dardos que forman las coronas en

torno al lı́der. Una inestabilidad de adhesión incrementa el campo eléctrico en

estas zonas de conductividad reducida. Esto conduce a zonas inhomogéneas,

brillantes y más calientes delante del lı́der que explican las observaciones ex-

istentes.

Los tallos espaciales son capaces de lanzar descargas tipo dardo. Estas descar-

gas podrı́an ser responsables de calentar el tallo espacial hasta temperaturas

cercanas a las del lı́der. De igual manera, descargas eléctricas a gran altitud

como los ”sprites” desarrollan una versión a temperatura ambiente del tallo

espacial que se conoce como ”brillo”. Como los tallos espaciales, los brillos

son capaces de lanzar dardos. Hemos estudiado el mecanismo que subyace

al lanzamiento de estos dardos con AFIVO 3D, un modelo para descargas

eléctricas de tipo dardo. Nuestros resultados apuntan a que, de nuevo, una in-

estabilidad de adhesión produce una acumulación de carga en los bordes del

”brillo”, lo que lleva al lanzamiento de descargas tipo dardo. Esto explica la

caracterı́stica forma de los ”sprites” de tipo zanahoria.

Finalmente, hemos estudiado el efecto que tiene una corriente fluyendo a

través de un plasma similar al tallo espacial. El origen de esta corriente podrı́a

ser las descargas tipo dardo que emanan del mismo. También hemos estudi-

ado la influencia del agua en el desarrollo del tallo espacial bajo una corriente

eléctrica forzada. Nuestros resultados muestran que el agua favorece el desar-

rollo de inhomogeneidades en el plasma que inicialmente eran pequeñas. Esto

explica algunas de las caracterı́sticas observadas en los saltos de los lı́deres y

subraya la importancia de que los modelos quı́micos incluyan agua para abor-

dar la propagación del lı́der.
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Chapter 1

Introduction

1.1 Motivation: Lightning and long spark discharges

Lightning is one of the most spectacular phenomena on earth. Every second, around ten

lightning flashes strike some point on Earth (Christian et al., 2003), initiating wildfires,

causing injuries (Rakov and Uman, 2003a) or damaging structures such as wind turbines

(Montanyà et al., 2016) causing millions of dollar losses every year. Nevertheless, we

also benefit from smaller-scale discharges to treat surfaces (Bárdos and Baránková, 2010),

clean the air (Veldhuizen, van, 2000) or treat wounds (Nasir et al., 2016).

Despite its prevalence in our daily life, lightning still holds many unknowns: as they

head towards the ground, most lightning channels propagate in a discontinuous manner or

a series of ”steps” (Biagi et al., 2010). We do not know why. Related to this, during this

stepped-wise propagation, the lightning channel emits X-ray bursts (Moore et al., 2001;

Dwyer, 2004). The precise mechanism whereby this happens is just partially understood.

Satellites also report the emission of upward-directed gamma-ray radiation from thunder-

storms, known as Terrestrial Gamma Flashes (TGFs)(Fishman et al., 1994). There are two

main mechanisms (Dwyer et al., 2009; Celestin et al., 2012) trying to address this problem,

currently, we do not know which one is the right one.

It is well known that lightning is a very long spark discharge, similar to those long

spark discharges in the laboratory with electrode gaps longer than around 2 m. Same

physics at different space and time scales (Aleksandrov and Bazelyan, 1999). Therefore,

1



1. INTRODUCTION

significant knowledge of lightning discharges comes from the study of long spark dis-

charges in the laboratory and vice versa. We will interchangeably speak about them to

describe their features.

Depending on the starting and final point, lightning flashes are generally classified as

cloud-to-cloud (CC) or cloud-to-ground (CG). CC lightning flashes constitute 75% of the

total, including intracloud, intercloud, and cloud-to-air flashes. Only 25% of the lightning

flashes hit the ground and out of that number, 90% are negative lightning flashes. A neg-

ative CG lightning flash (CG-) ”effectively” transports negative charge from the cloud to

the ground while a positive CG lightning flash (CG+) does the same for positive charge

(Rakov and Uman, 2003b).

A CG- flash is composed of a luminous downward-traveling discharge, the leader, fol-

lowed by a brighter upward-traveling discharge, the return stroke (Schonland and Collens,

1934). Figure 1.1 shows the leader (1) surrounded by a streamer corona (2) (Raizer, 1991;

Cooray, 2003), a fan of faint, cold, and filamentary discharge channels that propagate due

to a high electric field at their tips and pave the path for the advance of the leader. The

leader advances as a section of the streamer corona heats and joins the leader.

Figure 1.1: Frame of a high-speed recording of a negative leader propagating towards the
ground. The main leader (1) advances as sections of the streamer corona (2) heat. Negative
leaders advance in a series of steps punctuated by the so called space stem (3) that later becomes
the new leader tip after a step is completed. (Biagi et al., 2010).

2



1.2 Fundamental processes in electric discharges

While positive leaders advance in a continuous manner (Les Renardières group, 1978b),

negative leaders advance in a stepped fashion with step lengths ranging from a few meters

to tens meters and with waiting times in the microsecond scale (Schonland et al., 1935;

Gorin et al., 1976; Les Renardières group, 1978a). Experiments in laboratories (Schonland

et al., 1935; Gorin et al., 1976; Les Renardières group, 1978a), as well as observations of

artificial and natural lightning (Biagi et al., 2014; Hill et al., 2011; Gamerota et al., 2014),

show that the streamer-to-leader transition is mediated by the so-called space stem (3) (fig-

ure 1.1), a bright region that emerges in the streamer corona, separated from the leader tip

a length comparable to the length of the leader steps. Then, the space stem evolves into a

hot plasma, named space leader, that becomes the new leader tip once a step is completed.

The mechanism that leads to the formation of the space stems is so far unknown.

However, its understanding is fundamental to fully address the polarity asymmetry as well

as the leader propagation. This is the problem that we address in this thesis.

Next, we will shortly introduce some concepts and processes in electric discharges that

are fundamental to understand leader discharge propagation.

1.2 Fundamental processes in electric discharges

1.2.1 Transport processes

An electric discharge occurs whenever a sufficiently high electric field is applied to an

insulating medium such as air. Under that electric field E, electrons will accelerate and

gain energy that will be partly lost in collisions with neutrals. This gain-loss energy process

gives rise to an average electron velocity, the drift velocity

ue = −µeE, (1.1)

where µe is the electron mobility. The electron mobility is inversely proportional to the

electron mass and the collision frequency, which in general depends on the electric field.

Ions also drift under the electric field but, being heavier, its response is slower, and hence

the associated mobility smaller.
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The transport of charges in the drift motion leads to an electric current j that to a good

approximation follows Ohm’s law,

j = σE. (1.2)

Here, σ is the electric conductivity,

σ =
∑

s

nsqsµs, (1.3)

where the sum extends over the species s, and ns and qs are the number density and electric

charge of the species s respectively. It usually happens that the electron density, as well

as the electron mobility, are several orders of magnitude larger than those of the ions, and

thus, it is common to neglect the ionic current.

Although a minor process in streamer discharges, diffusion is often considered in nu-

merical models: whenever there are density gradients, electron and ions diffuse towards

lower density regions. The diffusion flux is defined as

Γs = Ds∇ns, (1.4)

where s labels the species and Ds is the diffusion coefficient. As for mobility, diffusion

coefficients for ions are usually orders of magnitude smaller than the electron diffusion

coefficient. In many applications, it is common to neglect the diffusion of ions.

Electrons and ions collide with neutrals of the background gas, losing a fraction of the

energy gained from the electric field. The energy density loss per unit time is the Joule

heating:

Q = j · E = σE2. (1.5)

1.2.2 Kinetic processes

Next, we will describe the relevant processes that electrons immersed in an electronegative

gas such as air undergo in the drift motion.
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1.2 Fundamental processes in electric discharges

1.2.2.1 Ionization

Ionization is a mechanism of electron-ion pair production. In particular, ionization by

electron impact is one of the main mechanisms of charge production in electric discharges

at room temperature such as streamers. As one electron accelerates in an electric field,

it gains energy. In a collision with an/a atom/molecule, the electron can release a further

electron. For discharges in air at room temperature, the main species to ionize are N2 and

O2 molecules with ionization potentials of 15.6 eV and 12.2 eV, respectively (Bazelyan

and Raizer, 1997). The ionization rate is given by

dne

dt
= (nO2 ki,O2 + nN2 ki,N2 )ne = νine, (1.6)

where ne, nO2 and nN2 are the electron, oxygen and nitrogen densities, ki,O2 and ki,N2 are the

electron impact rate coefficient for O2 and N2 and νi is the ”effective” ionization frequency.

For a constant ionization frequency, the electron density experiences an avalanche growth

from its initial value ne0

ne = ne0eνit. (1.7)

In the range of energies of this thesis, the higher the electron energy, the higher the

probability to ionize further atoms and molecules. In a collision, an electron can excite

electronically an atom so that the electrons in the outer layer are not so tightly coupled to

the nuclei. Then, a subsequent electron-impact collision can release one of these electrons.

This process requires less energy, in fact below the ionization potential. As we will see,

electronic excitation has a lower potential threshold and therefore there are more excitation

than ionization events. This is fundamental for the production of ionizing photons.

Photoionization is another relevant charge production mechanism (Zhelezniak et al.,

1982). In this process, an excited nitrogen molecule releases a photon with enough energy

to ionize an oxygen molecule. As we will see in the next sections, photoionization is

fundamental for the growth of positive streamers (Nijdam et al., 2010; Pancheshnyi, 2005).

As neutrals and excited states populate the background gas and the temperature in-

creases (roughly above 1000 K) new ionization processes such as associative ionization
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become relevant to sustain the charge production. Two of the most important reactions of

this kind involve excited or neutral:

N + O −→ NO+ + e, (1.8)

N2(a′) + N2(a′) −→ N+
4 + e. (1.9)

Both reactions require relatively high abundance of neutrals and excited molecules to

be relevant.

1.2.2.2 Attachment

Some neutrals have affinity to form a negative ion. The energy associated with the ground

state of these ions is slightly lower than the energy of the ground state of the corresponding

neutral. Thus, there is a tendency of these neutrals to ”capture” free electrons. As we

mentioned, the final ion state has a lower energy. Depending on the way this extra energy

is released, we have 3-body attachment or dissociative attachment. Examples of these two

in air (M) are

e + O2 + M → O−2 + M, (1.10)

e + O2 → O− + O. (1.11)

Reaction 1.10, called three-body attachment, is the most relevant attachment reaction

for low electric fields in air at room temperature. On the other hand, reaction 1.11, called

dissociative attachment, is prominent for moderate electric fields. This agrees with intu-

ition since breaking an O2 molecule requires more energy than simply attaching to the

molecule. The electron loss by attachment is given by

dne

dt
= − (k3B + kDA) nO2 ne = −νane, (1.12)

where k3B and kAD are the three-body and dissociative attachment rate coefficients respec-

tively and νa is the attachment frequency.
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1.2 Fundamental processes in electric discharges

1.2.2.3 Excitations

In air, electrons can readily excite a neutral electronically, vibrationally, or rotationally

(Capitelli et al., 2000). That is, part of the kinetic energy of the electron is transferred

to one of these internal degrees of freedom. The energy threshold for N2 electronically

excited states varies from 6 eV to 11 eV (Bazelyan and Raizer, 1997). For N2 vibra-

tionally excited states, threshold energies ranges from 1.8 eV to 3.3 eV (Bazelyan and

Raizer, 1997). With lower energy thresholds, excited states are more abundant than ion-

ized states. This is fundamental since excited states are prone to populate the gas with

ionizing photons able to trigger electron avalanches.

1.2.2.4 Detachment

Negative ions can also experience collisions with neutrals that lead to the release of an

electron. In air at room temperature these are the main mechanisms of electron detach-

ment:

O−2 + M → O2 + e + M, (1.13)

O−2 + N2 → O + N2O + e. (1.14)

As it can be inferred, the second detachment reaction requires more energy since it

breaks the O2 molecule. Under moderated electric fields (60 Td to 90 Td), air is efficiently

populated with O and O− through reactions 1.14 and 1.11. When O− and O are sufficiently

abundant,

O− + O→ O2 + e (1.15)

becomes the dominant detachment reaction (da Silva and Pasko, 2013).
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1.2.2.5 Recombination

Electron-ion recombination processes are usually slower than other electron-loss pro-

cesses. Even for a neutral plasma where n+ ≈ ne, the recombination rate

βrecombinationn2
e � kanairne. (1.16)

Electrons are quickly transformed into negative ions through attachment. Therefore,

ion-ion recombination can be another possible sink of charge carriers. However, this is

usually a minor process since a significant abundance of ions requires long time scales

(Bazelyan and Raizer, 1997).

1.2.3 Maxwell relaxation time and electric field enhancement

When an electric field is applied to a neutral plasma seed, charges of opposite sign drift in

opposite directions. In the interior of the seed, this charge separation leads to an electric

field that screens the background field. The evolution of the charge density is given by the

equation for the conservation of charge

∂ρc

∂t
+ ∇ · j = 0. (1.17)

The charge separation sources the resulting electric field in the plasma seed. This is

reflected in Poisson equation

∇ · E =
ρc

ε0
, (1.18)

where ε0 is the vacuum permittivity. From Ohm’s Law equation 1.2, charge conservation

equation 1.17 and Poisson equation 1.18 we can get the local rate of change for the electric

field

∂t |E|
|E|

=
−σ

ε0
, (1.19)

where ∂t ≡
∂
∂t . Equation 1.19 suggests a physical time scale, usually named as Maxwell

(or dielectric) relaxation time

τMaxwell =
ε0

σ
. (1.20)
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1.2 Fundamental processes in electric discharges

This physical time scale is a constraint on the time step length in numerical simulations.

It gives an idea of how often we should solve Poisson equation to update the value of the

electric field.

The conservation of charge signified in equation 1.17 has an important consequence

for the growth of spatial electric charges. The charge separation will lead to an electric

field enhancement at the boundaries of the neutral plasma seed in time scales on the order

of the Maxwell relaxation time, reaching electric field values capable of ionizing the back-

ground gas. This is a fundamental process for the building block of electric discharges, the

streamer discharge.

1.2.4 Avalanche to streamer transition

The development of an electric discharge is a competition between gain-loss electron pro-

cesses. We have already seen that when there is exclusively ionization, the electron density

experiences an avalanche-like growth in time. This also happens in space under the same

assumptions

dne

dx
= neα, (1.21)

where α is the ionization coefficient that represents the number of ionization events per unit

length. Taking into account the attachment processes, we can also define an attachment

coefficient β in pretty much the same way so the avalanche growth in one dimension is

given by

dne

dx
= α̃ne, (1.22)

where α̃ =
(
α − β

)
is the effective ionization coefficient. The avalanche will grow as long

as α̃ > 0 and the value of the electric field for which α̃ = 0 is the breakdown electric field

whose value in air is approximately 30 kV/cm.

As the avalanche-growth continues, there is a moment when the space charge effects

become important and the electric field generated by the avalanche is comparable to the

background electric field. That is the avalanche-to-streamer transition. The Raether-Meek
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1. INTRODUCTION

criterion suggests that the space charge effects become important when α̃L ≈ 20, where L

is the distance traveled by the avalanche (Bazelyan and Raizer, 1997).

1.3 Streamer discharges

A streamer is a cold and filamentary electric discharge that propagates due to a high electric

field at its tip (Cooray, 2003; Nijdam et al., 2020). This enhanced field is caused by a

surplus of charge concentrated in a thin layer of a few micrometers in thickness. As the

streamer tip propagates, it leaves behind a quasi-neutral plasma, known as streamer body

or streamer channel (fig. 1.2). Note that the reduced electric field Ered (Fig. 1.2) is defined

as the ratio E/nair, where E is the electric field and nair is the air number density. Ered is

measured in Townsend, which is defined by the relation 1 Td = 1021 Vm2.

The application of a background electric field in air, sets a privileged direction for

the propagation of a streamer discharge. Streamers that propagate in the direction of the

electric field are called positive streamers while those that propagate in the opposite direc-

tion are called negative streamers. This asymmetry leads to substantial differences among

positive and negative streamers that we detail below.

The growth of a streamer channel depends on the effective ionization of air. Since

positive streamers propagate against the electron drift motion, the ionization in front of it

mainly depends on electron avalanches that move towards the streamer head. Hence, for

its propagation in virgin air, a positive streamer requires an upstream electron source such

as photoionization (Nijdam et al., 2010; Pancheshnyi, 2005). On the other hand, a negative

streamer propagates in the direction of the electron drift motion. Close to the streamer tip,

electrons move outwards, ionizing the air in front of them. Consequently, photoionization

is not such a relevant process for negative streamers.

In negative streamers, the charge layer at the tip contains an excess of negative charge.

Around this region, electrons drift outwards, broadening the volume of the charge layer,

decreasing the focus and enhancement of the electric field. On the contrary, in a positive

streamer, the charge layer is characterized by a positive charge surplus. Ions are slower

than electrons and although they drift outwards following the electric field lines, the broad-

ening of the charge layer is negligible.
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1.3 Streamer discharges

Figure 1.2: Snapshot of the evolution of the reduced electric field (upper panel), electron
density (middle panel) and charge density of a positive streamer at 13 km. The enhanced
electric field at the tip (upper plot) is caused by a surplus of positive charge in a thin layer
(lower pannel). As it propagates, the streamer tip leaves behind an ionized (middle panel)
quasi-neutral wake.

Experiments (Briels et al., 2008) and simulations (see fig. 1.3) show that positive

streamers are better at focusing and enhancing the electric field at their tip, hence, the volt-

age required to initiate them is lower than for negative streamers (Briels et al., 2008). Al-

though positive streamers are more readily produced in a laboratory than negative stream-

ers, from a computational point of view, positive streamers usually require a higher spatial

resolution to properly resolve the space charge layer at the tip.

In general, due to a higher electric field at the tip, positive streamers propagate faster

than negative streamers (see fig. 1.3). As we argued before, the electron drift motion

broadens the head in negative streamers, decreasing the enhanced electric field. A lower

electric field in the streamer head results in lower ionization rates and therefore a slower-
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growing discharge. (Luque et al., 2008).

For the same reason, the electron density in a positive streamer wake is (fig. 1.4). As

a consequence, the electric field is better screened along the channel, favoring a greater

enhancement of the field at the tip. This is a consequence of the strong coupling streamer

channel-head.

Figure 1.3: Comparative plots of the electric field at the tip and the streamer velocity for
different polarities. Positive streamers carry a higher electric field at the tip (left panel) and
propagate faster than negative streamers (right panel).
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1.4 Leader discharges

Figure 1.4: Snapshot of the evolution of the electron density for a positive streamer (upper
panel) and a negative streamer (lower panel). A positive streamer carries a higher electric field
at its tip. Therefore, the ionization in a positive streamer wake is higher than in a negative
streamer

1.4 Leader discharges

A leader discharge is a fundamental process in the development of long spark discharges

(> 1 m) (Gallimberti et al., 2002). Figure 1.5 shows four major regions that characterize

the complex structure of a leader (Bazelyan and Raizer, 1997): The leader channel (1), the

leader tip (2), the streamer corona (3) and the leader sheath (4).

The leader channel is the long-lived region. It is a bright, highly conductive and hot

core characterized by temperatures of around 5000 K and even 30 000 K in laboratory

leader discharges and around 30 000 K in lightning (Cooray, 2003; Orville, 1968; Kieu

et al., 2020). The leader tip is colder, about 1000 K (Aleksandrov and Bazelyan, 1999). At

the leader channel, the field is highly screened and so the conductivity is maintained by

thermal processes such as associative ionization (reaction 1.8). This effective screening,

transfers a significant portion of the electrode (cloud) potential to the leader tip that enables

the onset of streamer discharges that form the corona.

The growth of a leader is accompanied by a succession of streamer corona bursts that
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1

3 4

2

Figure 1.5: Sketch of the structure of a leader discharge: The long-lived region or leader
channel (1), the leader tip (2), the streamer corona (3) and the leader sheath (4).

ionize sections of the air in front. As the leader advances, the leader channel sees itself

surrounded by an ionized ”envelope” ((4) in figure 1.5) that reduces its lateral expansion

and stabilizes its propagation (Raizer, 1991).

Observations report a polarity asymmetry in the leader propagation: while positive

leaders propagate in a continuous manner, negative leaders propagate in a series of steps

or jumps and therefore, they are usually called stepped leaders.

In positive leaders, the streamer-to-leader conversion zone is adjacent to the leader tip,

where all streamers emerge. This zone is heated by the current that the streamer corona

carries. On the other hand, in negative leaders the conversion zone is optically separated

from the leader tip (Biagi et al., 2014). Observations (see fig. 1.6) show that the streamer-

to-leader transition is mediated by the so-called space stem, a bright and isolated region

in the streamer corona. The leader completes a step when the space stem joins the main

leader, becoming the new leader tip.
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1.5 Space stem onset: The attachment instability

Figure 1.6: Frames of a high-speed recording of negative stepped leader adapted from ((Biagi
et al., 2010)). The sequence shows the stepped propagation of a descending negative lightning
leader and the formation of spaces stems (arrows) ahead. A faint streamer corona is also visible
in some frames.

1.5 Space stem onset: The attachment instability

One of the most pressing questions in the propagation of a negative leader is the onset of

the space stem and the mechanism that heats it to become a space leader. In this thesis, we

propose that the formation of the space stem is mediated by the action of an attachment

instability (Douglas-Hamilton and Mani, 1974; Sigmond, 1984) in a streamer channel.

The key is the non-monotonic dependence of the net attachment rate on the electric

field. The dissociative attachment reaction 1.11 has an energy threshold corresponding to

the dissociation energy of the intermediate unstable negative ion O−∗2 . Hence, the disso-

ciative attachment rate increases with increasing electric field.

The net ionization rate is depicted in the left panel of figure 1.7. For this calculation

we have considered 3-body attachment, dissociative attachment and electron impact ion-

ization. Above the breakdown electric field Ek, the electron production dominates over

electron loss. Nevertheless, below Es, a higher electric field implies faster electron deple-

tion.
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In the streamer channel, the evolution of the electric field is driven by the balance

between chemical and transport processes. We can derive a toy model (Luque et al., 2016a)

to study the effect of the attachment instability by considering these two contributions.

Following Luque et al. (2016a), we assume that the homogenization of the electric

current in the channel occurs in short time scales and so for our analysis we can consider

that ∇ · je = 0. Then, if we take an infinitesimally thin slice in a streamer channel, the

electron density evolves according to the equation:

dne

dt
= ke f f nairne, (1.23)

with ke f f being the effective ionization rate.

If we assume that variations in the radial direction are negligible, the current through

that streamer channel slice can be written as

I = ηE, (1.24)

where η = 2πeµ
∫ R

0 drrne is the conductance. Combining equations 1.23 and 1.24 we can

derive an equation for the evolution of the electric field:

dE
dt

= E
(

1
I

dI
dt
−

1
η

dη
dt

)
, (1.25)

or in terms of the net ionization rate (Luque et al., 2016a),

dE
dt

= E
(

1
I

dI
dt
− ke f f nair

)
. (1.26)

Now, we assume a decaying current 1
I

dI
dt = −τ, with decay constant τ determined by

the global dynamics of the streamer. The green point in fig. 1.7 is unstable. Thus, the

system will move away from that point, either climbing or descending the curve of the net

ionization rate. This will result in regions with significantly different conductivities.

In a streamer channel, the electron density left behind by the streamer head is not

necessarily homogeneous, therefore creating regions with different conductivity. Consider

three distinct regions A,B characterized by an electric field E and S with associated electric

field Es, as depicted in fig. 1.7. Assume that S is a region with lower conductivity. The

charge separation leads to both, an enhanced electric field Es > E and a greater dissociative
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1.5 Space stem onset: The attachment instability

attachment rate in S. As a result, electrons are depleted faster, decreasing the conductivity,

increasing the charge separation and subsequently the electric field. This feedback process

will continue until the electric field saturates in S (Es).

𝐸𝐵𝐸𝑠

𝐸 < 𝐸𝑠

𝐸 < 𝐸𝑠

1

𝐼

𝑑𝐼

𝑑𝑡

A,B

A

B
S

S

𝐸𝑠 𝐸𝑘

Figure 1.7: The attachment instability in region S, leads to a sharply defined region with lower
conductivity and an enhanced electric field Es.

Presumably, region S is the space stem. The action of the attachment instability leads

to inhomogeneities inside the streamer channel and an accumulation of charges at the

boundaries of the space stem. This accumulation of charges is prone to launch counter-

propagating streamers that heat the space stem. These streamers are actually observed

in experiments by (Kochkin et al., 2012) and probably force a strong current through the

space stem that heats it to a few thousand degrees. We will revisit and dig into all these

topics in chapters 4, 5 and 6.

As the space stem reaches temperatures of around 1000 K, the electron loss due to

attachment processes (mainly dissociative attachment) is balanced by the detachment from

O− ions (reaction 1.15). Once that thermal ionization processes becomes the main source

of electrons, the conductivity at the space stem (S) surpasses that of the outer regions

(A and B). Consequently, the inner electric field is expelled i.e. E > Es and the charge

distribution at the space stem boundaries is inverted. The higher electric field in A heats
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the segment connecting the leader and the spaces stem, completing a leader step.

1.6 Thesis Goals and contributions

As we have discussed throughout this chapter, the precise mechanism whereby lightning

and long spark discharges propagate is only partially understood. The formation of space

stems is enigmatic and the mechanisms that promote it to a space leader are not yet well

established. Undoubtedly, experiments provide valuable information about the physics

involved, however current technology is not able to resolve the smallest scales involved

in the stepping mechanism. On the other hand, numerical simulations can provide insight

about these scales. In this thesis we aim to test the hypothesis that the space stem arises

due to an attachment instability. We will also investigate the mechanism that enables

space stems to shoot counter-propagating streamers. These counter-propagating streamers

are believed to sustain the current through the space stem, heating it up to become a space

leader that finally joins the leader. We will address these problems using a numerical

approach. For that, as a first step, we need to build an electro-hydrodynamic model that

couples charge transport, electrostatic interactions, gas heating and expansion together

with a suite of the appropriate chemical reactions for the time-scales under consideration.

1.7 Content

We have divided the content of this thesis in the following way: In chapter 2 we present

an electro-hydrodynamic model for the streamer-to-leader transition and the numerical

methods employed to solve it. Chapter 3 is devoted to a numerical method to optimize

the resolution of Poisson’s equation in unbounded domains, work published in Malagón-

Romero and Luque (2018). In chapter 4 we use our electro-hydrodynamical code to study

the emergence of space stem precursors. The results are published in Malagón-Romero

and Luque (2019). In chapter 5 we study the evolution space-stem-like structures at high

altitude and how the charge distribution enables them to shoot counter-propagating stream-

ers (Malagón-Romero et al., 2020). In chapter 6 we study the heating effects of a sustained

electric current flowing through the space stem in dry and humid air conditions. Finally,
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1.7 Content

chapters 7 and 8 are devoted to the summary, conclusions and future work plans respec-

tively.

It is worth mentioning the work done with streamer simulations to study the contri-

bution of sprite streamers to the chemical composition of the mesosphere-lower thermo-

sphere and improve spectroscopic diagnostic methods of atmospheric electricity phenom-

ena. These works were published in Malagón-Romero et al. (2019) and Pérez-Invernón

et al. (2020) respectively. We have not included them in this thesis for the sake of consis-

tency with the main topic.
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Chapter 2

Electro-hydrodynamic model

2.1 Introduction

A sufficiently long electric discharge propagates in essentially two phases before it bridges

the electrode gap: the streamer phase consists of thin filaments of ionized air that propagate

due to a high electric field at their tip. The dominant process here is impact ionization. In

the leader phase, the electric current in the streamers has increased the air temperature to

a few thousand K and the thermal energy of the molecules is comparable to the ionization

potential of N2 and O2.

The study of the streamer-to-leader transition calls for a model of electric discharges

that includes heating and gas expansion fully self-consistently. In our approach, we will

not study temperatures higher than 2000 K and so we will not consider thermal conduc-

tion or viscous dissipation processes since the time scales associated with the streamer-

to-leader transition are too short for them to be relevant. In chapter 4, we will study the

evolution of a streamer emerging from the leader tip up to 100 ns. In this case, we model

the dynamics of air with the compressible Euler equations, by considering the vibrational

energy evolution decoupled from the translational energy evolution since the vibrational-

translational relaxation is way beyond the time-scale we pursue. In chapter 6, we will face

longer time-scales, and so we will extend our set of equations to include the evolution of

vibrational energy and vibrational-translational relaxation.

In order to study the influence of the electric current flowing in the electric discharge,
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we have to couple the gas dynamics equations with the transport equations for the charged

species as well as the equation describing the electrostatic interactions among them, that

is, Poisson’s equation.

Euler equations and charge transport equations fit into the so-called hyperbolic equa-

tions while the Poisson equation is an elliptic equation. In general, we cannot solve these

equations analytically and so we need to use numerical methods. This chapter is orga-

nized as follows: In section 2.2 we describe the electro-hydrodynamic model to study

the streamer-to-leader transition. Section 2.3 is an introduction to the mathematical back-

ground of hyperbolic equations and section 2.4 is devoted to finite volume methods, a set

of numerical techniques to solve this kind of equations. Then, we describe the procedure

followed to solve the Poisson equation in section 2.5 and finally, in section 2.6 we give a

short description of our numerical code.

2.2 Electro-hydrodynamic model

As we have seen in chapter 1, the environment around a leader channel is quite complex,

with the sheath and the streamer corona populated by hundreds of interacting stream-

ers. Despite recent progress in three-dimensional streamer simulations (Luque and Ebert,

2014; Teunissen and Ebert, 2017; Shi et al., 2017), a full corona around a leader is presently

out of reach for numerical models.

In this thesis we opt for simulating discharge channels where there exist, in good ap-

proximation, a cylindrical symmetry. Therefore, we build a 2D cylindrically symmetric

model (z, r) for electric discharges that includes heating and expansion of the background

gas fully self-consistently. The background gas, that is, the air where the discharge will

develop, follows the equation of state for an ideal gas and its dynamics is described by

the compressible Euler equations (Popov, 2003; da Silva and Pasko, 2013; and Lifshitz,

1987). These are conservation equations for mass, momentum and energy:
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∂ρ

∂t
+ u · ∇ρ + ρ∇ · u = 0, (2.1a)

∂u
∂t

+
(
u · ∇

)
u +
∇p
ρ

= 0, (2.1b)

∂ε

∂t
+ u · ∇ε +

p
ρ
∇ · u =

Qe f f
T

ρ
. (2.1c)

Here ρ is the mass density of air, u is the local velocity at a given point and time, p

is the pressure and ε is the specific energy associated with the rotational and translational

degrees of freedom, which we assume in thermal equilibrium. Qe f f
T is the local power

density dissipated by the electric discharge that goes into gas heating. By using equations

2.1 and the equation of state for an ideal gas, we neglect thermal conduction and viscous

dissipation. We will use this approach in chapter 4, to study time scales not longer than

100 ns. In chapter 6, we will consider longer time scales where vibrational-translational

non-equilibrium starts to become relevant. To do that we will extend the system of equa-

tions 2.1 to account for the evolution of the vibrational energy density.

All species are advected along with the fluid with a velocity u. Furthermore, charged

species drift on top of the background gas motion according to the local value of the

electric field E, so the resulting velocity is vs = u + µsE, where s labels the species and

µs is the corresponding mobility. In our model, the dynamics of all charged species is

described by diffusion-drift-reaction equations for electrons and ions,

∂ns

∂t
+ ∇ · (nsvs) = Cs + ∇ ·

(
Ds∇ns

)
+ S phδO+

2 ,i + S phδe,i, (2.2)

where ns is the number density, Ds is the diffusion coefficient ,Cs is the net production of

species s and S ph is the photoionization term. The Kronecker deltas δe,i and δO+
2 ,i express

the fact that the photoionization term only applies to the equations for electrons and O+
2 .

The kinetic scheme employed in our simulations depends on the time scales that we

plan to study. In chapter 4, the chemical scheme includes impact ionization, attach-

ment/detachment, and water cluster formation/breaking (Luque et al., 2017). In chapter

6, we will extend the chemical model mentioned above with a set of chemical reactions

accounting for processes relevant at temperatures of several thousand degrees (da Silva

and Pasko, 2013; Liu and Becerra, 2017).
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2. ELECTRO-HYDRODYNAMIC MODEL

Moving to the electrostatic part of our model, the electric field E = −∇φ is determined

by the balance of charged species and satisfies the Poisson equation

∇2φ = −
∑

s

qsns

ε0
, (2.3)

where qs is the charge of species s and ε0 is the vacuum permittivity, which we assume is

also valid for air.

2.3 Hyperbolic equations

2.3.1 Conservation laws

Consider a spatial domain Ω ⊆ Rn. Euler equations 2.1 and transport equations for elec-

trons and ions 2.2 can be written in a general form as:

∂q (x, t)
∂t

+

n∑
j=1

∂ f j
(
q (x, t)

)
∂x j

= Ψ
(
q (x, t)

)
, x ∈ Rn (2.4)

where q ∈ Rm is the vector of conserved quantities, f j ∈ R
m is the j-component of the

vector of fluxes through the boundary ∂Ω and Ψ ∈ Rm is the vector of source terms.

Equation 2.4 is known as balance equation law and it states that the rate of change in q is a

balance between flux and source terms. In many cases, the rate of change in q is only due

to the flux, that is Ψ ≡ 0, and then each equation in 2.4 is termed as conservation equation

law. The partial differential equations 2.4 are derived from a more fundamental integral

form

d
dt

∫
Ω

q (x, t) dV +

n∑
j=1

∫
Ω

f jn j dS =

∫
Ω

Ψ
(
q (x, t)

)
dV. (2.5)

The differential form is not valid at discontinuities such as shocks or contact surfaces

that turn out to be physical solutions. We will often write the differential form for con-

venience, to build a matrix representation of the partial differential equation (PDE), but

always bearing in mind the most fundamental integral form. In most of the derivations

throughout this chapter, we will only consider conservation laws. Later on, we will dis-

cuss how to handle source terms in balanced equation laws.
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2.3 Hyperbolic equations

2.3.2 Weak solutions

The integral form 2.5 is valid anywhere. There are no requirements on the smoothness

of q. Equations 2.4 and 2.5 are equivalent provided that the solution is continuously dif-

ferentiable. The integral form admits discontinuous solutions for which the PDE is not

even defined in a classical sense. The differential form is valid where q is smooth but it is

not valid at the discontinuities. We wish to extend the space of solutions of 2.4 to include

discontinuous solutions. We are going to work out this for a 1-dimensional space but this

is easily extended to an n-dimensional space. Let φ (x, t) be a test function, continuously

differentiable with compact support, i.e. φ ∈ C1
0 (R×R). If we multiply equation 2.4 by the

test function and integrate over space and time, we have

∫ ∞

0

∫
Ω

(
φqt + φ f

(
q
)

x

)
dVdt = 0. (2.6)

Since our flux may diverge, we should exchange derivatives as follows:

∫ ∞

0

∫ ∞

−∞

(
φq

)
t +

(
φ f

(
q
))

x
dxdt −

∫ ∞

0

∫ ∞

−∞

φtq + φx f
(
q
)

dxdt = 0. (2.7)

Then, we obtain

∫ ∞

0

∫ ∞

−∞

φtq + φx f
(
q
)

dxdt = −

∫ ∞

−∞

φ (x, 0) q (x, 0) dx. (2.8)

All the boundary terms that usually appear after integration vanish at infinity due to

the compact support test function φ. Note that the right-hand term brings in the initial

conditions. We say that q is a weak solution of the PDE 2.4 if it satisfies 2.8 for every

φ ∈ C1
0 (R×R).

2.3.3 The Rankine-Hugoniot Jump Conditions

We can characterize weak solutions by regions of smooth behavior separated by dis-

continuities. Therefore, these weak solutions satisfy the differential form where they

are smooth and an additional condition at the discontinuities named Rankine-Hugoniot

condition. Next, we are going to derive this condition from the integral form in one di-

mension but this is extensible to higher dimensions. Consider a region in the plane x-t
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2. ELECTRO-HYDRODYNAMIC MODEL

[
x1, x1 + ∆x

]
×

[
t1, t1 + ∆t

]
, where ∆x and ∆t are small enough to consider that the shock

wave speed s is constant and that ql and qr are constant in the wedges defined by x = st

(figure 2.1). If we apply 2.5 to our region of interest we get

d
dt

∫ x1+∆x

x1

q (x, t) dx = f
(
q (x1, t)

)
− f

(
q
(
x1 + ∆x, t

))
. (2.9)

If we integrate in time we obtain

∫ x1+∆x

x1

q
(
x, t1 + ∆t

)
dx −

∫ x1+∆x

x1

q (x, t1) dx

=

∫ t1+∆t

t1
f
(
q (x1, t)

)
dt −

∫ t1+∆t

t1
f
(
q
(
x1 + ∆x, t

))
dt.

(2.10)

The first and second terms on the left side are just the constant states ql and qr respec-

tively. Hence, we can write the previous equation as

(
qr − ql

)
s = f

(
ql
)
− f

(
qr

)
, (2.11)

where s = ∆x
∆t is the propagation speed of the discontinuity. Equation 2.11 is the Rankine-

Hugoniot condition and restricts the jump in q to be a linear combination of the jump in

the fluxes. This derivation is fundamental and any discontinuous solution of the equation

2.5 must verify it.
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𝑡1

𝑞𝑙

𝑞𝑟

𝑥1 𝑥1+∆𝑥

𝑡1+ ∆𝑡1

Propagating discontinuity with speed s

Figure 2.1: Discontinuity propagating with speed s, separating the pair of constant states(
ql, qr

)
.

2.3.4 Linear hyperbolic systems

Gas dynamics and charge transport equations constitute a non-linear hyperbolic system.

We will start with the mathematical framework for linear hyperbolic systems, fundamental

to understand the non-linear hyperbolic systems theory. For simplicity, we will adopt

again a one-dimensional approach. Consider a system of equations together with initial

conditions

qt + Aqx = 0, (2.12)

q (x, t = 0) = q0 (x) , (2.13)

where q ∈ Rm and A ∈ Rm×m. Here, f
(
q
)

= Aq. The linear system is said to be hyperbolic

if A is diagonalizable with real eigenvalues. Let λp and rp denote the eigenvalues and

eigenvectors respectively. Since A is diagonalizable, the set
{
rp, p = 1, ...,m

}
is linearly

independent and then, it is a basis of Rm. Any solution of the system of equations 2.12 can
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2. ELECTRO-HYDRODYNAMIC MODEL

be written as a linear superposition of m waves

q (x, t) =

m∑
p=1

ωp (x, t) rp, (2.14)

where the ωp (x, t) are known as characteristic variables. We can write previous equation

in matrix form as

q (x, t) = Rw (x, t) , (2.15)

where R is the matrix of the right eigenvectors in columns and w is the vector q in the basis

{rp}. Under these conditions the inverse matrix R−1 exists (LeVeque, 2002) and we can

express the system of equations 2.12 in terms of the characteristic variables as

ωt + Λωx = 0. (2.16)

Here, Λ = R−1AR is a diagonal matrix obtained by writing A in the basis of eigenvec-

tors. What we have now is a set of m decoupled scalar equations

ω
p
t + λpω

p
x = 0. (2.17)

Any of these equations is a simple advection equation with a solution of the form

ωp (x, t) = ωp (
x − λpt, t = 0

)
= ω

p
0
(
x − λpt

)
. (2.18)

This implies that the solution at (x, t) depends on the initial data at the set of points

{x − λpt}. Then, we can define a domain of influence of the point
(
x̄, t̄

)
as

D
(
x̄, t̄

)
=

{
x = x̄ + λp t̄, p = 1, ...,m

}
. (2.19)

We can associate to the pair {λp, rp} and ωp a one-parameter family of curves called

characteristics that satisfy the following initial value problem (IVP)

dx (t)
dt

= λp, (2.20)

x (0) = x0. (2.21)
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2.3 Hyperbolic equations

The solution to the IVP is

x (t) = x0 + λpt. (2.22)

Along the characteristics, ωp fulfills:

dωp (
x (t) , t

)
dt

=
∂ωp (

x (t) , t
)

∂x
λp +

∂ωp (
x (t) , t

)
∂x

= 0. (2.23)

That is, the quantity ωp remains constant and so the initial profile ωp
0 (x) propagates

without distortion with characteristic speed λp.

2.3.5 Riemann problem

A Riemann problem consists of a hyperbolic system of equations (2.12) together with

piecewise constant initial conditions of the form (figure 2.2)

q (x, t = 0) =


ql x < 0

qr x > 0
. (2.24)

In general, to find a numerical solution to the problem at hand, we require space and

time discretization. In particular, when applying finite volume methods, we are introducing

small discontinuities. In fact, we need to solve a Riemann problem repeatedly at every cell

edge to advance the solution to the next time step.

As we saw in the previous section, the solution q is a superposition of m-waves ωp

(2.14) propagating at constant speed λp. Therefore, we can expand the initial data (2.24)

in terms of the eigenvector basis:

ql =

m∑
p

ω
p
l rp, (2.25)

qr =

m∑
p

ω
p
r rp. (2.26)
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𝑞𝑟

𝑞𝑙

𝑥

𝑞

𝑡 = 0 𝑡 = 𝑇

𝑥

𝑡

Characteristic curve

Figure 2.2: The Riemann problem is characterized by piecewise constant data ql and qr, jump
discontinuities that propagate along characteristic curves. The characteristic curve tracks the
position of the discontinuity along the x-axis.

In term of the characteristic variables, the initial conditions write as

ωp(x, t = 0) =


ω

p
l x < 0

ω
p
r x > 0

, (2.27)

and the solution is

ωp (x, t) =


ω

p
l x − λpt < 0

ω
p
r x − λpt > 0

. (2.28)

Note that q can be written as

q (x, t) =

P(x,t)∑
p=1

ω
p
l rp +

m∑
p=P(x,t)+1

ω
p
r rp, (2.29)

where

P (x, t) = sup
{
p/x − λpt < 0

}
. (2.30)
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If we consider the Riemann problem 2.24 with the characteristic curves sketched in

figure 2.3, we can see that the states are constant in the wedges defined by them. Following

the example depicted in fig. 2.3 we can write

ql = ω1
l r1 + ω2

l r2 + ω3
l r3, (2.31)

and

q∗l = ω1
r r1 + ω2

l r2 + ω3
l r3. (2.32)

Hence, when we cross a p-characteristic (horizontal dashed line in figure 2.3), in this

case, that associated with λ1, there is a jump in q:

ql − q∗l =
(
ω1

l − ω
1
r

)
r1. (2.33)

Generally, the solution can be written in term of these jump discontinuities as follows:

q (x, t) = ql +
∑
λp< x

t

αprp = qr +
∑
x
t <λ

p

αprp, (2.34)

αp ≡ ω
p
r − ω

p
l . (2.35)

We will denote the discontinuity through the p-characteristic as W p ≡ αprp that we

will call it the p-wave. Note that these waves (or jumps) are eigenvectors of the matrix A

and verify the Rankine-Hugoniot condition:

f
(
ω

p
r

)
− f

(
ω

p
l

)
= A

(
ω

p
r − ω

p
l

)
rp = λp

(
ω

p
r − ω

p
l

)
rp. (2.36)
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𝑥 = 𝜆1𝑡 𝑥 = 𝜆2𝑡

𝑥 = 𝜆3𝑡(𝑋, 𝑇)

X-𝜆3𝑇 X-𝜆2𝑇 X-𝜆1𝑇

𝑞𝑙

𝑞𝑙
∗

𝑞𝑟
∗

𝑞𝑟

x

t

Figure 2.3: The initial discontinuity that separates the pair of constant states
(
ql, qr

)
splits into

three jump discontinuities that propagate with characteristic speeds
{
λ1, λ2, λ3

}
. As a result, two

new intermediate states q∗l and q∗r are defined between the wedges limited by the characteristic
curves.

2.3.6 Non-linear hyperbolic system

Many of the features that we have described for linear hyperbolic systems are valid for

non-linear hyperbolic systems. Consider the one-dimensional system of equations

qt (x, t) + fx
(
q (x, t)

)
= 0, (2.37)

with initial conditions

q (x, t = 0) = q0 (x) , (2.38)

where q ∈ Rm and f ∈ Rm. In quasi-linear form

qt (x, t) + A
(
q
)

qx = 0, (2.39)

being

A
(
q
)

= f ′
(
q
)
. (2.40)
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2.3 Hyperbolic equations

The system is said to be hyperbolic if the Jacobian A
(
q
)

has real eigenvalues λp and

linearly independent eigenvectors rp for any q ∈ Rm.

As we already did in the linear case, we could try to build a solution by following

the characteristic curves. Locally, we can extend the definition of the characteristic in the

following way:

dx
dt

= λp (
q
)

(2.41)

x (0) = x0. (2.42)

As for the linear case,

x = x0 + λp (
q (x0, 0)

)
t. (2.43)

Figure 2.4: Example of colliding and diverging characteristic lines obtained from the inviscid
Burgers equation qt + qqx = 0. The orange line on the left graph shows the shock wave front.
On right graph, characteristics diverge and do not cover the entire x-t plane.

In the linear case we had that λ
(
q
)

= const. and therefore the characteristic curves were

parallel to each other. However, in the non-linear case, the characteristic speed depends

on the solution itself, thus, in general, the characteristics are not parallel lines anymore
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and could cross at some point. This is a key feature of non-linear problems. The time at

which the characteristics cross is known as the breaking time and from there, we cannot

follow the evolution of the system with the characteristics approach. A classic example of

a non-linear hyperbolic equation is Burgers equation (LeVeque, 2002):

qt + qqx = 0. (2.44)

This apparently simple equation shows many of the features associated with non-linearity.

Take a look at the left graph in figure 2.4. If we wanted to evolve the system up to a point

(x∗, t∗) that belongs to the orange line, we could have come from two different initial states.

Therefore, the solution is double-valued. However, this is not physically acceptable as we

could not have two different density values at a point, for example. For the solution beyond

the breaking time we need to allow for discontinuous solutions, that is, weak solutions, as

we explained before.

Notice that, even though we had smooth initial data, the non-linearity may induce

discontinuous solutions (figure 2.5) as the crossing of characteristics reveals. From the

discussion above, the main consequences are (figure 2.4):

• Characteristics are straight lines.

• They may intersect with each other.

• They do not necessarily cover the entire (x, t) space.

2.3.7 Entropy condition and uniqueness

When it comes to weak solutions, uniqueness is not guaranteed. These weak solutions can

be non-physical and violate fundamental principles in Physics. Therefore, we need a new

constraint to properly isolate the physically acceptable weak solution. This condition is

known as entropy condition and for smooth solutions is an equality of the form

s
(
q
)
t + ψ

(
q
)

x = 0, (2.45)

where s is the conserved entropy and ψ is the entropy flux. For discontinuous solutions it

is an inequality. A detailed discussion on this topic can be found in LeVeque (2002).
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Figure 2.5: Solution of the inviscid Burgers equation (2.44) for two different initial conditions
q(x, t = 0) = tanh(x) (left column) and q(x, t = 0) = 1 − tanh(x) (right column). This is
a simple case that illustrates how non-linear hyperbolic equations can lead to discontinuities
starting with smooth data. The second row shows the characteristic curves. On the left, they
diverge giving rise to the so called rarefaction wave whereas on the right, they collide to form
a shock wave.

2.3.8 Riemann problem for a non-linear hyperbolic system

In the linear case, the solution is a superposition of m propagating discontinuities traveling

at the characteristic speeds of the linear system. In the non-linear case, the solution con-

sists in a set of waves in each characteristic family, separating regions where the solution

is constant. These waves may be discontinuities such as shocks (right column in figure

2.5) and contact discontinuities or smooth transition waves such as rarefaction waves (left

column in figure 2.5). A rigorous and detailed treatment of this topic falls out of the scope

of this chapter and therefore, we refer to LeVeque (2002) for the interested reader.

2.3.9 P-characteristic field: Linear degeneration and genuinely non-
linear

In the previous section we mentioned that contact and shock waves are discontinuities.

Here we characterize both of them. The p-characteristic field ∇λp is said to be degenerate
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if

∇λp · rp ≡ 0 ∀q ∈ Ω, (2.46)

and genuinely non-linear if

∇λp · rp , 0 ∀q ∈ Ω. (2.47)

A shock wave is a discontinuity in a genuinely non-linear p-characteristic. On the

other hand, a contact discontinuity is a discontinuity in a linearly degenerated field. As

with any discontinuity, both need to verify the Rankine-Hugoniot condition.

2.4 Finite Volume Methods

In this section, we will work out the basics of finite volume methods (FVM) in one dimen-

sion. The numerical solution in higher dimensions can be accomplished by repeatedly ap-

plying the one-dimensional approach. For a more thoughtful discussion on this and higher

dimensions, see LeVeque (2002). FVM allow us to solve numerically integral conserva-

tion laws (2.5). This is an advantage over Finite Difference methods when considering

discontinuous solutions. In FVM, we start by discretizing our computational domain and

then we average the solution to form the numerical approximation to 2.5. Let us consider

a grid cell Ci ∈

[
xi− 1

2
, xi+ 1

2

]
. In each grid cell, at time tn we define the quantities

Qn
i ≈

1
∆x

∫
Ci

q (x, tn) dx, (2.48)

Fn
i± 1

2
≈

1
∆t

∫
Ci

f
(
q
(
xi± 1

2
, tn

))
, (2.49)

where ∆x is the grid cell length and ∆t is the time step used to advance our solution from

tn to tn+1. Qn
i and Fn

i± 1
2

are an approximation to the ”volume” average of the conserved

quantities q and the flux. If we apply the integral form of the conservation law to the cell

Ci, we get

Qn+1
i − Qn

i = −
∆t
∆x

(
Fn

i+ 1
2
− Fn

i− 1
2

)
. (2.50)
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This equation is the fundamental numerical scheme of finite volume methods. As the

continuous counterpart, the discrete scheme reflects the fact that changes in the solution in

cell Ci are due to the flux through the boundaries. This idea is captured in figure 2.6. One

of the key tasks when applying finite volume methods is to find the proper numerical flux.

As we have seen, in hyperbolic problems information travels at a finite speed, therefore, it

is reasonable to think that at first order, the numerical flux at tn and xi+ 1
2

is a function of

the left and right states Qn
i and Qn

i+1

Fn
i+ 1

2
= F

(
Qn

i ,Q
n
i+1

)
. (2.51)

Hence, for sufficiently small time steps ∆t, only the adjacent cells affect our solution

in the cell Ci. We can rewrite equation 2.50 as

Qn+1
i = Qn

i −
∆t
∆x

[
F

(
Qn

i ,Q
n
i+1

)
− F

(
Qn

i ,Q
n
i−1

)]
. (2.52)

The specific method to advance the system from Qn
i → Qn+1

i depends on the function

F. However, any of them will be an explicit 3-point stencil method.

𝑄𝑖
𝐹
𝑖−
1
2

𝐹
𝑖+
1
2

𝑥
𝑖−
1
2

𝑥
𝑖+
1
2

𝑄𝑖−1 𝑄𝑖+1

Figure 2.6: Discontinuity propagating with speed s, separating the pair of constant states(
ql, qr

)
.
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2.4.1 The Courant-Friedrichs-Lewy (CFL) condition

As we said, it is reasonable to think that at first order the numerical flux is a function of

the left and right states around the cell edge. We can make this statement more precise

by limiting the length of the time step, making sure that only information coming from

the immediately adjacent grid cells is crossing the edge xi+ 1
2
. The CFL condition is what

we are looking for and in fact, it is a necessary condition for our FVM to be numerically

stable (LeVeque, 2002). Any FVM must fulfill the CFL condition given by the inequality:

λ
∆t
∆x
≤ 1. (2.53)

The propagating speed (λ) of the wave is an outcome, while the space resolution is

fixed by the requirements of the phenomenon that we want to explore. We are left with

one degree of freedom, the time step that we will have to vary depending on the two other

parameters.

2.4.2 First order Godunov’s method for hyperbolic linear systems

Godunov introduced his method as an approach to solving the Euler equations of gas dy-

namics. If we approximate the solution q (x, t) at the cell Ci by means of the corresponding

cell average, that is

q (xi, tn) ≈ q̃ (xi, tn) = Qn
i , (2.54)

we have the following Riemann problem at each cell edge xi− 1
2
:

q̃ (x, tn) =


Qn

i xi− 1
2
< x,

Qn
i−1 x < xi− 1

2
.

(2.55)

Therefore, advancing our solution a time step at Ci according to 2.52 requires solving

two Riemann problems at the left and right edges of the cell. As we have seen in previous

sections, the Riemann problem centered at xi− 1
2

has a similarity solution that is constant

along the ray

x − xi− 1
2

t − tn
= const. (2.56)
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Let us denote the exact solution to the Riemann problem at xi− 1
2

and tn by q↓
(
Qn

i−1,Q
n
i

)
,

if the time step, that is |tn+1 − tn|, is small enough, then we have that

Fn
i− 1

2
=

1
∆t

∫ tn+1

tn
f
(
q↓

(
Qn

i−1,Q
n
i

))
dt = f

(
q↓

(
Qn

i−1,Q
n
i

))
. (2.57)

In summary, Godunov’s method consists of the following steps:

1. At each time step t, solving the Riemann problem at each grid edge xi− 1
2

with left

and right states
(
Qi−1,Qi

)
to compute q↓

(
Qn

i−1,Q
n
i

)
.

2. Compute the flux Fn
i− 1

2
= F

(
Qn

i−1,Q
n
i

)
by means of equation 2.57.

3. Advance the solution to the next step by using the flux difference equation 2.50.

2.4.3 Approximate Riemann solvers

Finding the exact solution to a Riemann problem is computationally intensive, specially

for non-linear hyperbolic systems and higher-dimensional problems. The exact solution

of a Riemann problem requires finding the full-wave structure and wave speeds to locate

where the information is coming from at a specific point. Many times it suffices to find

an exact solution to an approximate Riemann problem at each cell interface. Approximate

Riemann solvers are cheaper than the exact solvers and results are fairly good. However,

they also come with other issues as we will briefly see. A typical approach consists of

using a local linearized Jacobian:

f ′
(
q
)
→ Â

(
ql, qr

)
, (2.58)

where Â is a constant matrix. By solving this related Riemann problem, we can determine

the numerical flux and advance our solution to the next time step according to what we

have discussed so far.

The matrix Â must fulfill some basic requirements such as having real eigenvalues {λp}

and a set of linearly independent eigenvectors {rp}. The matrix Â should also smoothly

converge to the Jacobian matrix

ql, qr → q =⇒ Â
(
ql, qr

)
→ f ′

(
q
)
. (2.59)
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As we have already explained, the solution to a linear Riemann problem consists of

a set of traveling waves Wp propagating at a given speed by the eigenvalues λp of the

Jacobian. In some cases it is also required that the approximate solution is conservative,

that is, it obeys a conservation law in a region surrounding the Riemann solution

f
(
qr

)
− f

(
ql
)

=
∑

p

λpW p. (2.60)

The right-hand side represents the rate of change of the solution due to the moving

jump discontinuities and the left-hand side net effect of the fluxes.

2.4.4 Roe’s solver

Roe’s solver is one of the most popular approximated Riemann solvers. It was originally

proposed by Roe to solve the Euler equations. The idea here is to determine a solution q̂

to the Riemman problem given by

q̂r + Â
(
ql, qr

)
qx = 0, (2.61)

where Â
(
ql, qr

)
is a locally linearized version of the original Jacobian f ′

(
q
)
. The issue

now is to determine the linear matrix. Roe suggested the following:

1. Â
(
ql, qr

) (
qr − ql

)
= f

(
qr

)
− f

(
ql
)
.

2. Â
(
ql, qr

)
is diagonalizable with real eigenvalues.

3. ql, qr → q =⇒ Â
(
ql, qr

)
→ f ′

(
q
)

smoothly.

The first condition has two nice effects. One is that any flux-difference splitting defined

with the linear matrix Â, will be a flux-difference splitting with the true flux. The other

is that if we consider a solution consisting of just a single shock wave we can solve this

exactly:

s
(
qr − ql

)
= f

(
qr

)
− f

(
ql
)

= Â
(
ql, qr

) (
qr − ql

)
. (2.62)

The first equality is the Rankine-Hugoniot condition and the second equality holds due

to the first point. Essentially, we have that the difference qr − ql is an eigenvector of the

matrix Â
(
ql, qr

)
. In this case, the approximate solution is also conservative.
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A way to fulfill points 1. and 2. is to build Â upon what is named as Roe’s average

state q̂
(
ql, qr

)
Â

(
ql, qr

)
= f ′

(
q̂
(
ql, qr

))
. (2.63)

This Roe’s average state depends on the system in particular. An extensive discussion

about this can be found in LeVeque (2002).

Godunov’s method gives weak solutions satisfying correct entropy conditions. How-

ever, approximate Riemann solvers are discontinuous and converge to discontinuous en-

tropy violating conditions, even when the solution is a smooth rarefaction wave. Roe’s

solver is prone to this kind of problem and requires an “entropy fix”, which consists of

using an entropy condition (see section 2.3.7).

2.4.5 Wave propagation algorithms

Godunov’s method was originally built upon flux-differences. Nonetheless, there is an

alternative and useful approach. The solution to a Riemann problem at xi− 1
2

can be seen as

a series of jumps W p
i− 1

2
propagating at speed sp

i− 1
2
, so we can express the jump with left and

right states
(
Qn

i−1,Q
n
i

)
as

Qn
i − Qn

i−1 =

Mw∑
p

W p
i− 1

2
. (2.64)

A right-going wave W p
i− 1

2
will modify Qn

i an amount ∆t
∆x sp

i− 1
2
W p

i− 1
2
. Analogously, at the

edge xi+ 1
2
, the left going wave W p

i+ 1
2

will modify Qn
i an amount ∆t

∆x sp
i+ 1

2
W p

i+ 1
2
, so that the net

effect on Qn
i can be written as:

Qn+1
i = Qn

i +
∆t
∆x

∑
p

(
sp

i− 1
2

)+

W p
i− 1

2
+

∑
p

(
sp

i+ 1
2

)−
W p

i+ 1
2

 . (2.65)

Note that the wave has gone through a re-averaging process by multiplying by the

factors
sp

i± 1
2

∆x
∆t

. If we denote A+∆Qi− 1
2
≡

∑
p

(
sp

i− 1
2

)+

W p
i− 1

2
and A−∆Qi− 1

2
≡

∑
p

(
sp

i+ 1
2

)−
W p

i− 1
2
, we

can write the expression above as

Qn+1
i = Qn

i +
∆t
∆x

[
A+∆Qi− 1

2
+ A−∆Qi+ 1

2

]
. (2.66)
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A−∆Qi− 1
2

and A+∆Qi+ 1
2

are called left and right going fluctuations respectively and

represent the net effect of the left and right going waves on the cell average Qn
i . This

approach is applicable for hyperbolic systems in non-conservative form. When applied to

hyperbolic systems in conservative form, this approach has to verify

f
(
Qi

)
− f

(
Qi−1

)
= A+∆Qi− 1

2
+ A−∆Qi+ 1

2
. (2.67)

If we use an approximate Riemann solver, the above relation is equivalent to

f
(
Qi

)
− f

(
Qi−1

)
=

Mw∑
p

sp
i− 1

2
W p

i− 1
2
. (2.68)

2.4.6 High resolution methods

As we have seen through the chapter, discontinuities readily appear when solving hyper-

bolic equations. So far we have described Godunov’s method, which uses an exact or

approximate solution of the Riemann problem and does not produce oscillations around

shock or contact discontinuities. However, it is first-order accurate and it smooths dis-

continuities out and shows slow convergence around them. Higher-order methods such

as Lax-Wendroff, are second-order away from discontinuities and exhibit spurious oscil-

lations near them. This calls for high-resolution methods able to describe sharp transition

regions while accurate in smooth regions. Godunov’s method seems to be a good starting

point but we need to revise it to improve it. Godunov’s method is based upon a piecewise

constant reconstruction

q̃ (x, tn) = Qn
i ∀x ∈ Ci, (2.69)

which results in an overall first-order accurate method.

We can improve this by allowing a linear dependence on x (figure 2.7):

q̃ (x, tn) = Qn
i + σn

i (x − xi) ∀x ∈ Ci. (2.70)

The slope essentially brings the idea of smoothness but it can also lead to overshooting.

Figure 2.7 shows how overshoots in the piecewise linear reconstruction function produce
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overshoots in the solution. Slope limiter methods prevent these overshoots. Slope limiters

are a topic of research on their own. For more details, see LeVeque (2002). In summary,

high-resolution methods achieve better accuracy by adding second-order corrections to the

first-order method. After adding these corrections, 2.52 is read as:

Qn+1
i = Qn

i −
∆t
∆x

(
A−∆Qi+ 1

2
+ A+∆Qi− 1

2

)
−

∆t
∆x

(
F̃i+ 1

2
− F̃i− 1

2

)
, (2.71)

where the second-order correction to the fluxes F̃i± 1
2

is given by

F̃i± 1
2

=
1
2

m∑
p=1

∣∣∣∣∣sp
i± 1

2

∣∣∣∣∣ (1 − ∆t
∆x

∣∣∣∣∣sp
i± 1

2

∣∣∣∣∣) (φW p
i± 1

2

)
, (2.72)

with φ being a limiter function.

𝑥
𝑖−
1
2

𝑥
𝑖+
1
2

Figure 2.7: An overshoot in the pice-wise linear reconstruction (red solid line) 2.70 can lead
to an overshoot in the solution (green solid line).

2.4.7 Multidimensional systems

So far we have been working with 1D hyperbolic systems of equations. The algorithms

described above can be extended to higher dimensions. Essentially, at each cell interface
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we need to solve a 1-dimensional problem. For a 2-dimensional system the cell average

is:

Qn
i, j =

1
∆x∆y

∫ ∫
q̃
(
x, y, t

)
dxdy. (2.73)

In terms of the flux difference, the change in Qn
i, j is given by

Qn+1
i, j − Qn

i, j = −
∆t
∆x

(
Fn

i+ 1
2 , j
− Fn

i− 1
2 , j

)
−

∆t
∆y

(
Gn

i+ 1
2 , j
−Gn

i− 1
2 , j

)
, (2.74)

and in terms of the fluctuations

Qn+1
i, j = Qn

i, j −
∆t
∆x

(
A−∆Qi+ 1

2 , j
+ A+∆Qi− 1

2
, j

)
−

∆t
∆x

(
B−∆Qi+ 1

2 , j
+ B+∆Qi− 1

2
, j

)
. (2.75)

If we go to a higher dimension, we would have to add similar terms to the equation

above. However, this is just first-order. If we wanted to include second order corrections,

the previous equation is rewritten in the following way:

Qn+1
i, j = Qn

i, j −
∆t
∆x

(
A−∆Qi+ 1

2 , j
+ A+∆Qi− 1

2 , j

)
−

∆t
∆x

(
B−∆Qi, j+ 1

2
+ B+∆Qi, j− 1

2

)
−

∆t
∆x

(
F̃i+ 1

2 , j
− F̃i− 1

2 , j

)
−

∆t
∆y

(
G̃i, j+ 1

2
− G̃i, j− 1

2

)
.

(2.76)

2.4.8 Source terms

In our derivations we have only considered conservation equation laws and not balance

equations. The most popular method to solve an equation of the form

qt + qx = Ψ (2.77)

is the fractional step method, which consists of solving at each time step the conservation

equation

qt + qx = 0, (2.78)
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and then solving

qt = Ψ. (2.79)

This is a quite simple but robust approach in most cases. However, this method does

not work well when there is an steady-state since qx ≈ Ψ. As a result, the fractional step

method is not able to properly resolve the steady-state. For our purpose in this thesis, the

fractional step method will be enough.

2.5 Poisson’s equation

In the set of equations that we want to solve, the electric field appears explicitly in the

advection terms but also implicitly through parameters such as the mobility of charged

species or the rate coefficients in the source terms. The determination of the electric field

with enough accuracy is fundamental when dealing with propagation phenomena such as

streamer discharges. In these discharges, a high electric field is confined to regions whose

thickness is just a few micrometers at atmospheric pressure.

Poisson’s equation is an elliptic partial differential equation that relates the electric

potential and its sources. The problem at hand consists of a boundary value problem

(BVP),

4φ (x) = f (x) , x ∈Ω

φ (x) = g (x) , x ∈ ∂Ω

(2.80)

where f (x) = −
∑
s

qsns(x)
ε0

and g (x) denotes the boundary conditions. Unfortunately, this

BVP is analytically solvable in very few cases, with simple charge distributions and do-

main geometries. This calls for numerical methods that provide a way to solve such a

fundamental equation in physics.

2.5.1 Discretization

Finite difference methods approximate derivatives with finite differences. We start from

ordinary/partial differential equations (O/PDE) and transform them into a system of linear
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equations that can be solved with different numerical methods that we will shortly describe

later. Since we are working with a 2-D cylindrically symmetric system, the Laplacian

operator in equation 2.80 takes the form:

4 �
1
r
∂

∂r

(
r
∂

∂r

)
+
∂2

∂z2 , (2.81)

where r represents the radial coordinate and z the axial coordinate.

Now we discretize our computational domain by means of a grid with uniform spacing

∆r = ∆z = h. Each node is labeled by the pair
(
i, j

)
, with coordinates ri = h

2 + (i − 1) h for

i = 1, ...,m and z j = h
2 +

(
j − 1

)
for j = 1, ..., n. We will be working in a staggered grid

and then we will calculate the electric field at the cell faces. The potential at each node

φ
(
ri, z j

)
is denoted by φi j. For our study, we require a second order approximation of the

derivatives. Then, Poisson’s equation is written in the following way:

φi+1, j

1 +
h

2ri, j

 + φi−1, j

1 − h
2ri, j

 − 4φi, j + φi, j+1 + φi, j−1 = h2 fi, j. (2.82)

This can be rearranged as a linear system, in a matrix form Ax = b where

X =
(
φ11, φ21, φ31, ..., φ12, ...

)T , (2.83)

A contains the coefficients of the linear system and b contains the inhomogeneous terms.

2.5.2 Boundary conditions

As we have argued, our problem is complete when we consider some boundary conditions.

The two most common boundary conditions are Dirichlet and Neumann. In Dirichlet

boundary conditions, the potential is specified at the boundary,

φi,n+1 = 2φi,n+ 1
2
− φi,n. (2.84)

In Neumann boundary conditions, what we specify is the value of the electric field. So

for a null electric field at the boundaries

φi,n+1 = φi,n. (2.85)
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2.5.3 Poisson’s solvers

Now that we have got Poisson’s equation as a linear system, we need the methods to solve

it. There are two main categories of solvers, iterative and direct. Iterative methods start

with an initial guess and improve it after each iteration until convergence is achieved. They

only need matrix multiplication and there is no need to access matrix elements. However,

their efficiency depends on good preconditioners. On the other hand, direct solvers go

through different steps as converting the system of equations into an augmented matrix,

then an upper-triangular matrix and finally solve. After a certain number of steps, we

arrive at a final solution. Direct solvers are more computationally expensive however they

are very good at solving small matrices reliably and quickly.

2.6 Numerical code

The hydrodynamic and advection-diffusion-reaction part of our numerical code is built

upon CLAWPACK/PETCLAW (Alghamdi et al., 2011; LeVeque, 2002), a library that im-

plements Finite Volume Methods. PETCLAW is built upon PETSc (Balay et al., 2016a,b)

and allows us to split the simulation domain into different subdomains (problems) that

can be solved in parallel. Poisson’s equation is solved using the Improved Stabilized ver-

sion of BiConjugate Gradient solver from the PETSc numerical library. The adaptive

time-step is constrained by a Courant-Friedrichs-Lewy number, the shortest chemical time

scale τs = ns(dns/dt)−1 and the Maxwell relaxation time (eq. 1.20) among all species s.

A few samples of our code are available at https://gitlab.com/amaro/space_stem

and https://gitlab.com/amaro/streamer2d.
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Chapter 3

A domain-decomposition method
to implement electrostatic free
boundary conditions for electric
discharges

3.1 Introduction

In this thesis, we deal with leader and streamer discharges, which are characterized by

a large aspect ratio Length
Width . For instance, streamers are thin filaments of ionized air that

precede most electric discharges in long gaps at atmospheric pressure. The main challenge

for simulating streamers is the wide separation between length scales: whereas the total

length of the streamer channel at atmospheric pressure ranges from about one to some tens

of centimeters, the ionization of air molecules is mostly confined to a layer thinner than

one millimeter. Despite this difficulty, there are many numerical codes that explain most

of the observed properties of streamers Ebert et al. (2006); Liu and Pasko (2006); Luque

and Ebert (2012); Liu et al. (2015); Qin and Pasko (2015); Teunissen and Ebert (2018).

In the past decades these models have gradually improved and successfully overcome

many of the challenges posed by streamer physics. However, they are still computationally

intensive and often require days of runtime to produce meaningful simulations.
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In this chapter, we look at one of the problems that prominently impacts numerical

codes built upon uniform grids and that is behind these long running times: the large

aspect ratio of a single-channel discharge. Whereas the width of an atmospheric-pressure

streamer is at most about one centimeter, its length spans many times this extension. In

order to minimize the amount of work performed in a simulation, one strives to adapt the

computational domain to the dimensions of the streamer, which means using a narrow

cylindrical domain with a diameter only slightly larger than the streamer width. However,

in such a narrow domain the electrostatic interaction between separate points in the channel

is strongly affected by the boundary conditions imposed on the electric potential at the

outer boundaries.

One widespread approach used in streamer simulations to avoid this artifact while

keeping a narrow domain around the streamer is to calculate the boundary values of the

potential by direct integration of the electrostatic Green’s function in free space Babaeva

and Naidis (1996, 2000); Liu and Pasko (2004, 2006); Bourdon et al. (2007):

φ
(
rboundary

)
=

∫
Ω

ρc
(
r′
)∣∣∣rboundary − r′

∣∣∣dV ′. (3.1)

These values are then imposed as inhomogeneous Dirichlet boundary conditions in the

solution of the Poisson equation. In a cartesian grid with M cells in the radial direction and

N cells in the axial direction the direct integration of the Green’s function at each of the N

nodes in the external boundary requires about MN2 operations. Since the work employed

by fast Poisson solvers scales as MN log(MN) (MN for multigrid solvers), the computa-

tion of boundary values by direct integration may easily dominate the work employed in

the electrostatic calculations. This is mitigated in part by using a coarse-grained charge

distribution in the integration. However, in that case there is a tradeoff between the degree

of coarsening and the minimal radial extension of the domain required for a tolerable error.

Another simple and common approach affordable for codes that incorporate Adaptative

Mesh Refinement (AMR) techniques is to make a sufficiently large domain so that the

boundary conditions effects are negligible.

Beyond these common approaches used to solve Poisson’s equation in electric dis-

charges, some other methods have been developed. A family of these methods has been
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built upon the idea of the decoupling of local and far-field effects (Anderson, 1986) and

the computation of the boundary potential by means of a potential generated by a set of

screening charges located in the outer surface of the computational domain (James, 1977).

Based on these two methods mentioned above, Balls and Colella (2002) use a domain

decomposition approach to exploit parallel computing capabilities; first, Poisson’s equa-

tion subject to unbounded boundary conditions is solved in a set of disjoint patches. As

a second step a coarse-grid representation of the space charge is obtained and Poisson’s

equation is again solved in a global coarse-grid whose solution is used to communicate

far-field effects to local patches. Finally, Poisson’s equation is solved in a fine grid us-

ing boundary conditions computed from the coarse-grid solution corrected with local field

information.

A different family of methods uses the convolution with Green’s function subject to

free boundary conditions. They manage the singular behaviour of Green’s function by

either regularizing it (Hejlesen et al., 2013), or by replacing the singular component to

the integrand of the convolution by an analytical contribution (Anderson, 2016). These

methods have achieved an order of convergence greater than two.

In this chapter, we adapt to the cylindrical geometry of electric discharges the domain-

decomposition method described by Anderson (1989) (see also Bayliss et al. (1982) for a

review of similar techniques). In section 3.2 we will apply the method to a discharge that

develops between two planar electrodes. As we discuss below, this method requires two

calls to the Poisson solver but otherwise the leading term in its algorithmic complexity

follows the scaling of the Poisson solver itself. Therefore for large grid sizes our approach

is more efficient than the direct integration method. Furthermore, as we do not reduce

the resolution, we do not introduce any numerical error in addition to the discretization

error of the Poisson equation. We believe that the method we present is simple enough

that it can be easily implemented on top of any existing streamer simulation code. As a

benchmark, we present a simple test of a spherical charge density. We have also applied

the domain-decomposition method to our streamer codes and we present the results too.

Some applications may also require free boundary conditions for the z-direction: for

instance, when the discharge develops far from the electrodes. In those cases one may

also reduce the computational domain in the longitudinal direction while the core of the
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simulation remains inside the computational domain. We have considered this topic of

interest in section 3.3 where we have applied the domain decomposition method to obtain

free boundary conditions also in the longitudinal direction. This extension requires an

extra solution of Poisson’s equation. To test our approach, we have run several streamer

simulations, where the streamer develops far from one of the electrodes that we set at

infinity by applying free boundary conditions at z = L.

Note that streamers are not the only type of discharge that typically exhibits a large

aspect ratio and that therefore our scheme is also applicable to other processes such as

leaders and arcs.

3.2 Electrostatic free boundary conditions in the radial
direction

3.2.1 Domain decomposition

The most convenient decomposition of the domain depends on the problem at hand. The

decomposition we present here is suitable for elongated discharges and probably some

other applications but the procedure and the highlighted ideas are not restricted to this

particular scheme.

We consider the geometry sketched in figure 3.1, where an elongated, cylindrically

symmetrical streamer propagates between two planar electrodes. With minimal changes,

our scheme can be extended to more complex geometries commonly employed in streamer

simulations, such as protrusion-plane, protrusion-protrusion and sphere-plane. The elec-

trostatic potential φ satisfies the Poisson equation with appropriate boundary conditions:

∆φ = f in Ω,

φ = g on ∂Ω,
(3.2)

where f = −q/ε0, with q being the charge density and ε0 the vacuum permittivity. In

principle an arbitrary boundary condition, here denoted by g, can be applied to the upper

and lower electrodes. However, to simplify our discussion we limit ourselves to the most

common case where g = 0, meaning φ = 0 at z = 0 and z = L (to impose a potential

difference V between the two electrodes we simply add φinhom = zV/L to the solution
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R

Ω1 Ω2

L

O

Γ

Ω

Figure 3.1: Geometry of the discharge considered in this work. An elongated channel prop-
agates between two conducting electrodes. The space between these electrodes, Ω is divided
into two domains: the inner domain Ω1 is our computational domain and contains all the space
charge. The outer domain Ω2 extends indefinitely outwards from the external boundary of Ω1

and does not contain any space charge. The cylindrical surface Γ is the common boundary
between Ω1 and Ω2.
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of the homogeneous problem). The domain Ω is the space between the two electrodes,

defined as

Ω =
{
x ≡

(
ρ, θ, z

)
∈ R3/0 ≤ ρ, 0 ≤ θ < 2π, 0 ≤ z ≤ L

}
. (3.3)

Since our geometry is cylindrically symmetrical, we will henceforth omit the variable

θ and consider the two-dimensional domain spanned by the variables (ρ, z).

Our purpose is to decompose the physical domain Ω into two, which we name Ω1 and

Ω2, such that Ω = Ω1∪Ω2 (Ωi is the closure of the set Ωi), Ω1∩Ω2 = ∅ and supp( f ) ⊂ Ω1,

i.e. all the space charge is contained in Ω1. The inner domain Ω1, extending up to a given

radius R, is our computational domain and therefore must be selected to be as narrow as

possible.

Under this domain decomposition the problem (3.2) turns into two coupled problems:

∆φi = f in Ωi,

φi = 0 on ∂Ωi \ Γ,

φi = φΓ on ∂Γ,

(3.4)

where i = 1, 2 and Γ = ∂Ω1 ∩ ∂Ω2 is the cylindrical surface at ρ = R that separates the two

domains.

Since at the interface Γ both, φ1 and φ2, are equal to the boundary value φΓ, they fulfill

φ1 = φ2. But besides this condition, in order for φ1 and φ2 to be consistent with the solution

φ of the original problem (3.2), they must also satisfy

∂φ1

∂ρ
=
∂φ2

∂ρ
on Γ. (3.5)

The continuity of the radial derivatives follows from applying Gauss’ law

∮
∂A

E · dS =
1
ε0

∫
A
ρdV, (3.6)

to a Gaussian pillbox A with two ends locally parallel to Γ. These ends can be made

arbitrarily close together and, in the limit, the only contribution will be

∮
∂A

E · dS = −
∂φ1

∂ρ
+
∂φ2

∂ρ
= 0 on Γ. (3.7)
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3.2.2 Linearity

The linearity of the Poisson problems (3.4) with respect to their sources f allows us to

decompose the potentials as

φi = φ̄i[φΓ] + φ̃i[ fi], (3.8)

where φ̄i[φΓ] results from the boundary values φΓ at the interface Γ and φ̃i[ fi] results from

the original sources f restricted to Ωi (we use [·] to denote a functional dependence). The

precise definitions read

∆φ̄i = 0 in Ωi,

φ̄i = 0 on ∂Ωi \ Γ,

φ̄i = φΓ on ∂Γ,

(3.9)

and
∆φ̃i = f in Ωi,

φ̃i = 0 on ∂Ωi \ Γ,

φ̃i = 0 on ∂Γ.

(3.10)

In terms of these components the flux equation (3.5) can be expressed as

∂φ̄1

∂ρ

[
φΓ

]
−
∂φ̄2

∂ρ

[
φΓ

]
= −

∂φ̃1

∂ρ

[
f
]

on Γ, (3.11)

where on the right-hand side we have used that φ̃2 = 0, since f = 0 in Ω2.

3.2.3 Expansion in orthonormal solutions of the Laplace equation

The potentials φ̄i in (3.9) are solutions of the Laplace equation in cylindrical geometry and

they can be expanded using an orthogonal basis of solutions (see e.g. Jackson (1975)):

φ̄1 =

∞∑
m=1

αmI0
(
kmρ

)
sin (kmz) , (3.12a)

φ̄2 =

∞∑
m=1

βmK0
(
kmρ

)
sin (kmz) , (3.12b)

where αm and βm are expansion coefficients, km = mπ/L and In (x) and Kn (x) are the

modified n-order Bessel functions of the first and second kind respectively. Note that the

set S =
{
sin (kmz)

}∞
m=0 is an orthogonal basis of

L2 ([0, L]) =

{
f : [0, L] 7→ R :

∫ ∣∣∣ f (z)
∣∣∣2 dz < ∞

}
, (3.13)
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that is, the space of real functions in [0, L], with finite L2-norm.

Therefore, φΓ can be expanded as:

φΓ (z) =

∞∑
m=1

am sin (kmz) . (3.14)

If φΓ is continuous and piecewise differentiable on [0, L], φ′
Γ
∈ L2 ([0, L]) and φΓ sat-

isfies homogeneous Dirichlet boundary conditions, then the sine series converges to φΓ

uniformly on [0, L]. Note that the term with m = 0 vanishes due to the homogeneous

boundary conditions at z = 0 and z = L.

The boundary conditions at z = 0 and z = L restrict the basis of solutions. Homo-

geneous Dirichlet boundary conditions are simpler because there is only need for sine

functions. However, if we had some other boundary conditions such as homogeneous

Neumann, the convenient basis should also include cosine functions to allow for non-zero

values of the potential at z = 0 and z = L.

3.2.4 Continuity of the normal derivative

Imposing that φ̄1 = φ̄2 = φΓ at ρ = R we solve for αm and βm and write (3.12) as

φ̄1 =

∞∑
m=1

am
I0

(
kmρ

)
I0 (kmR)

sin (kmz) , (3.15a)

φ̄2 =

∞∑
m=1

am
K0

(
kmρ

)
K0 (kmR)

sin (kmz) . (3.15b)

Using these expressions into the equation for the normal derivatives (3.11) we obtain

∞∑
m=1

amkm

[
I1 (kmR)
I0 (kmR)

+
K1 (kmR)
K0 (kmR)

]
sin(kmz) = −

∂φ̃1

∂ρ

∣∣∣∣∣∣
ρ=R

, (3.16)

where we have used the identities I′0(x) = I1(x), K′0(x) = −K1(x). As we have expanded

our solutions in terms of an orthogonal basis S , we can easily obtain equations for the

coefficients am:

L
2

kmam

[
I1 (kmR)
I0 (kmR)

+
K1 (kmR)
K0 (kmR)

]
= −

∫ L

0
dz sin (kmz)

∂φ̃1

∂ρ

∣∣∣∣∣∣
ρ=R

. (3.17)
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In a space discretization based on a cartesian grid the integral in the latest expression

is approximated by a finite sum with the form of a Discrete Sine Transform (DST). This

leads to the following expression for the coefficients am

am = −
2

mπ

[
I1 (kmR)
I0 (kmR)

+
K1 (kmR)
K0 (kmR)

]−1 N∑
i=1

h sin (kmzi)
∂φ̃1

∂ρ

∣∣∣∣∣∣
ρ=R,z=zi

+ O(h2), (3.18)

where h is the grid size and {zi}
N
i=1 are the solution nodes in the z-direction. In a discrete

problem the series in (3.14) is also truncated above m = N.

3.2.5 Algorithm

We are now ready to detail the domain-decomposition algorithm that allows us to solve the

Poisson equation in the reduced computational domain Ω1 with free boundary conditions

in the radial direction:

1. Solve the Poisson equation in Ω1 with the source term f and homogeneous Dirichlet

boundary conditions at the boundary Γ. Call the result φ̃1.

2. Calculate the normal derivative of φ̃1 at Γ. Apply a DST and use expression (3.18)

to obtain the coefficients am.

3. Use these coefficients to obtain the boundary values φΓ by means of a second DST

and expression (3.14).

4. Solve again the Poisson equation in Ω1 but now use φΓ as inhomogeneous Dirichlet

boundary condition at Γ. The result, φ1 is the solution of the Poisson equation with

free boundary conditions.

To this algorithm we add the following remarks:

1. After obtaining the coefficients am one is tempted to use (3.15a) together with φ1 =

φ̄1 + φ̃1 to avoid solving the Poisson equation a second time. However, in a grid of

M×N cells this procedure takes about MN2 operations whereas solving the Poisson

equation requires only MN log(MN) or MN operations.
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2. The computational domain Ω1 has to be as narrow as possible in order to reduce

the computational cost of the simulation. Of course this narrowing is limited by the

constraint that Ω1 contains the support of the space charge density. In an electrostatic

discharge the charge density typically decays smoothly away from the channel so in

some cases one has to decide at which level it is safe to truncate the charge density

with an acceptable error. Nevertheless, given the fast decay of the charge away from

the channel, this is probably not a serious concern in most cases.

3.2.6 Tests and sample implementation

3.2.6.1 Tests

In order to test our scheme we consider now a simple setup where the Poisson equation has

a closed-form solution. An example of such a configuration is an uniformly charged sphere

located between two grounded, infinite planar electrodes. The electrostatic potential in this

setup can be calculated by the method of images (see e.g. (Jackson, 1975)) and equals the

potential created in free space by an infinite series of spheres with alternating charges.

Suppose a sphere centered at (ρ, z) = (0, z0) with radius a < min(z0, L − z0) and total

charge Q. At a point with cylindrical coordinates (ρ, z) the potential reads

φ(ρ, z) = φ0(ρ, z) +
Q

4πε0

∞∑
k=−∞
k,0

(−1)k[
ρ2 +

(
z − z0 − 2k(L − z0)

)2
]1/2 , (3.19a)

with

φ0(ρ, z) =
Q

4πε0


1[

ρ2+(z−z0)2
]1/2 if ρ2 + (z − z0)2 > a2,

3a2−ρ2−(z−z0)2

2a3 if ρ2 + (z − z0)2 ≤ a2.

(3.19b)

Figure 3.2 shows a comparison between the electric fields computed using expression

3.19 and using the approach described in section 3.2. Here we took a = 3 mm, L = 10 mm,

Q = 1013 e (e is the elementary charge), z0 = L/2. For the discretized solution we used

∆r = ∆z = 10−2 mm and a radial extension of the computational domain R = 5 mm.

We also include the electrostatic potential calculated by imposing homogeneous Neumann

boundary conditions at the external boundary.
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3.2 Electrostatic free boundary conditions in the radial direction

Figure 3.2: Comparison between electric fields created by an uniformly charged sphere be-
tween two planar infinite electrodes calculated by the approach presented in this work, by the
method of images and by imposing homogeneous Neumann boundary conditions at the exter-
nal boundary of the computational domain. Note the overlap between the lines corresponding
to free boundary conditions and to the method of images.

We see that the field calculated with the approach presented here is indistinguishable

from the field from the method of images. The homogeneous Neumann conditions, on the

other hand, produce an electric field that at the surface of the sphere deviates by about 15%

from the other two in the worst case, i.e. with R = 5 mm. To investigate the convergence

of the homogeneous Neumann solution we extended the computational domain by com-

puting the field also for R = 10 mm and R = 20 mm. As we move the external boundary

away, the solution with Neumann conditions approaches our reference solution (Method

of Images). The Neumann condition forces a stronger screening of the electric field as the

external boundary moves closer to the charged sphere. As we will see, applied to streamer

simulations, this leads to slightly lower values of the electric field in the streamer head and

therefore less ionization.

3.2.6.2 Order of accuracy

We have checked that the method described above does not change the order of accuracy

of the discretization of the Poisson equation by constructing a closed-form solution of the
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Poisson equation that satisfies homogeneneous Dirichlet boundary conditions in the upper

and lower electrodes. We have used the potential

φ = sin
(
π

z
L

)
e−

r2

σ2 −
(z−z0)2

σ2 , (3.20)

whose Laplacian has the form

∆φ =
1

L2σ4

{
4Lπσ2 (z − z0) cos

(
π

z
L

)
+

[
π2σ4 + L2

(
−4r2 + 6σ2 − 4 (z − z0)2

)]}
× sin

(
π

z
L

)
e−

r2

σ2 −
(z−z0)2

σ2 .

(3.21)

Although this charge density is not strictly bounded, the contribution of charges ex-

cluded from the domain decays super-exponentially as the domain becomes wider and can

thus be neglected as long as the external radius of the computational domain is significantly

longer than σ.

We have solved the Poisson equation corresponding to the Laplacian (3.21) with L =

1 m, σ = 0.1 m and z0 = 0.5 m within a cylindrical domain with a radius R = 0.5 m, where

we imposed free boundary conditions with the method described above. In this manner

we checked that the convergence in the `2-norm is of second order, the same as that of the

finite difference scheme. This is as expected because φ̃1 and the Fourier coefficients (3.18)

retain convergence of order O
(
h2

)
.

We are also interested in the convergence as we expand the outer boundary. Following

the example of the previous section, this time we change the radius of the sphere to 0.1 mm

and the mesh spacing to 1 µm. Errors are presented in Table 3.1. As we can see, `2-norm

and `1-norm increases with increasing radius. Enlarging the domain and therefore adding

more points to the computation just increases the error estimated with these two norms.

On the other hand, the `∞-norm reveals that the maximum difference between the exact

solution and our approximation reduces as we extend the radius. We can have the outer

radius as close as 0.15 mm without a significant increase in error.

rmax(mm) ‖ε‖2
‖ε‖2
‖φ‖2

‖ε‖1
‖ε‖1
‖φ‖1

‖ε‖∞
‖ε‖∞
‖φ‖∞

0.15 5.164 × 10−5 4.582 × 10−4 1.947 × 10−2 6.194 × 10−4 2.897 × 10−7 3.525 × 10−4

0.3 6.960 × 10−5 5.710 × 10−4 3.756 × 10−2 8.127 × 10−4 2.879 × 10−7 3.504 × 10−4

0.6 9.593 × 10−5 7.702 × 10−4 7.372 × 10−2 1.273 × 10−3 2.877 × 10−7 3.501 × 10−4

Table 3.1: Error obtained with change in outer radius
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3.2 Electrostatic free boundary conditions in the radial direction

Figure 3.3: Streamer simulations using free boundary conditions (left column) and homo-
geneous Neumann boundary conditions (right column) in the external boundary of the com-
putational domain. For each selection of the boundary conditions we show three simulations
where the computational domain extends to a radius R = 0.5 cm (top), R = 1 cm (middle) and
R = 2 cm (bottom).

3.2.7 Streamer simulations

In elongated electric discharges, Neumann boundary conditions are often considered more

appropriate than Dirichlet to be applied at rmax because there is not a physical electrode in

the radial direction, and therefore there is no reason to keep constant the potential there.

The development of electric discharges is driven by long range interactions and therefore

boundary conditions certainly affect the solution inside the computational domain. These

effects can be reduced by enlarging the domain in the radial direction at the expense of

a higher computational cost. The procedure we have described allows us to keep the

boundary rmax close to the core of the simulation without noticeable numerical effects on

the electric discharge. The following simulations clearly illustrate the features mentioned.

We simulated the propagation of streamer discharges between two planar electrodes

with our in-house electro-hydrodynamic code described in chapter 2. The chemical model

includes impact ionization and dissociative attachment. The Poisson equation is solved
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using the Improved Stabilized version of BiConjugate Gradient solver from the PETSc

numerical library Balay et al. (2016b,a).

We selected an inter-electrode gap of L = 2 cm and a background electric field of

27 kV/cm. The streamer is initiated by a neutral gaussian seed attached to the electrode

at z = 0, on the central axis. The peak electron density in this seed is 1014 cm−3 and the

e-folding length is 0.7 mm.

As we are interested in the effect of the external boundary conditions, we run sim-

ulations both with free boundary conditions, implemented as described above, and with

homogeneous Neumann conditions for the electrostatic potential (as mentioned above, it

is generally assumed that Neumann boundary conditions introduce slightly smaller arti-

facts). We also use different radii of the computational domain, R = 0.5 cm, R = 1 cm

and R = 2 cm. In figure 3.3 we show snapshots of the electric field resulting from these

simulations at time t = 30 ns, shortly after the streamer branches in the simulations with

free boundary conditions. Note however that the cylindrical symmetry of the simulations

prevents proper branching.

In the plots we see that the simulations with free boundary conditions are essentially

identical regardless of the lateral extension of the computational domain. The simulations

with homogeneous Neumann conditions on the other hand depend artificially on the radius

of the computational domain. The streamer barely develops with R = 0.5 cm and only the

simulation with R = 2 cm reproduces accurately the branching time of the simulations

with free boundary conditions. We conclude that, even in this case where the aspect ratio

of the discharge is not extremely high, the computational gain from reducing the domain

size (roughly a factor 4) more than compensates for the cost of solving twice the Poisson

equation, resulting in an overall improvement of about a factor 2.
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3.3 Full free boundary conditions

3.3 Full free boundary conditions

Throughout this chapter we have described a method to implement free boundary con-

ditions in the outer boundary of a discharge confined between two parallel plates. This

method can also be extended to implement free boundary conditions in all boundaries of a

simulation with cylindrical symmetry. In this section we describe this extension.

3.3.1 Domain decomposition

In section 3.2 we solved the Poisson equation in the space between two infinite, parallel

planes. We can build the solution in free space upon this procedure. First, we decompose

the full-space domain Ω into three disjoint subdomains, which we name Ω0, Ω1 and Ω2

(see figure 3.4). We assume now that the support of the charge distribution f is contained

in Ω0 and thus arrive at the three coupled problems

∆φ0 = f in Ω0,

φ0 = φΓ0i on ∂Γ0i, i = 1, 2,
(3.22a)

and
∆φi = f in Ωi,

φi = φΓ0i on ∂Γ0i,
(3.22b)

where i = 1, 2 and Γ0i = ∂Ω0 ∩ ∂Ωi are the surfaces z = 0 and z = L respectively.

Since there are two interfaces, the normal derivative is subject to two conditions:

∂φ0

∂z
=
∂φi

∂z
on Γi, i = 1, 2. (3.23)

3.3.2 Linearity

As we did before, due to the linearity of the equations, we can split the problem into

∆φ̄0 = 0 in Ω0,

φ̄0 = φΓ0i on ∂Γ0i, i = 1, 2,
(3.24a)

∆φ̃0 = f in Ω0,

φ̃0 = 0 on ∂Γ0i, i = 1, 2
(3.24b)
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Ω1

Ω2

L Ω0

Γ2

Γ1

Figure 3.4: Geometry of the problem. Ω is divided into three subdomains: Ω0, Ω1 and
Ω2. The three extend indefinitely outwards and the latter two also downwards and upwards
respectively.

and for i = 1, 2,

∆φ̄i = 0 in Ωi,

φ̄i = φΓ0i on ∂Γ0i,
(3.25a)

∆φ̃i = f in Ωi,

φ̃i = 0 on ∂Γ0i.
(3.25b)

Since there is no charge outside the computational domain, φ̃i = 0 for i = 1, 2. These

equations naturally fulfill the condition that the potential vanishes at −z, z, ρ→ ∞.

Note now that the problem (3.24b) can be solved by the procedure described in section

3.2, since φ̃0 is the union of the solutions to the problems at (3.4).

In terms of these components, the flux equation (3.5) can be expressed as

∂φ̄0

∂z

[
φΓ0i

]
−
∂φ̄i

∂z

[
φΓ0i

]
= −

∂φ̃0

∂z
[
f
]

on Γ, ∀i. (3.26)
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3.3.3 Expansion in solutions of the Laplace equation

The potentials φ̄i in (3.25a) are solutions of the Laplace equation in cylindrical coordinates

and they can be expanded using a set of solutions (see e.g. Jackson (1975)). Since the

domain is unbounded in the radial direction, instead of a series expansion we obtain an

integral transform, which we can write in terms of the zero-order Hankel transform as:

φ̄0 =

∫ ∞

0
k dk

[
A (k) ekz + B (k) e−kz

]
J0

(
kρ

)
, (3.27a)

φ̄1 =

∫ ∞

0
k dk C (k) ekzJ0

(
kρ

)
, (3.27b)

φ̄2 =

∫ ∞

0
k dk D (k) e−kzJ0

(
kρ

)
, (3.27c)

where J0 (x) is the zero-order Bessel function of the first kind and the functions A, B,C,D

weight the independent solutions to the Laplace equation. Note that, although the factor

k can be absorbed into these functions, it appears explicitly in order to show the Hankel

transform structure.

The function φΓ0i can also be written as:

φΓ0i

(
ρ
)

=

∫ ∞

0
k dkEi (k) J0

(
kρ

)
. (3.28)

Casting these equations in the form of a Hankel transform is important because as the

Hankel transform can be inverted (it is its own inverse) we can use the fact that, subject to

some regularity assumptions,

∫ ∞

0
k dk F (k) J0

(
kρ

)
= 0 ⇐⇒ F(k) = 0. (3.29)

3.3.4 Continuity of the normal derivative

Imposing that φ̄0 = φ̄i = φΓ0i at z = 0 and L, we solve for A, B,C,D using (3.29) and write

(3.27) as

φ̄0 =

∫ ∞

0

k dk
e2kL − 1

[(
E2ekL − E1

)
ekz +

(
−E2 + E1ekL

)
e−k(z−L)

]
J0

(
kρ

)
, (3.30a)
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φ̄1 =

∫ ∞

0
k dk E1ekzJ0

(
kρ

)
, (3.30b)

φ̄2 =

∫ ∞

0
k dk E2e−k(z−L)J0

(
kρ

)
. (3.30c)

Using these expressions into the equation for the normal derivative (3.26) we obtain∫ ∞

0

2ekLk2 dk
e2kL − 1

(
E2 − E1ekL

)
J0

(
kρ

)
= −

∂φ̃0

∂z

∣∣∣∣∣∣
z=0

, (3.31a)

∫ ∞

0

ekLk2 dk
e2kL − 1

(
E2ekL − E1

)
J0

(
kρ

)
= −

∂φ̃0

∂z

∣∣∣∣∣∣
z=L

. (3.31b)

The Bessel functions fulfil the closure relation and in particular the zero-order Bessel

function

∫ ∞

0
rJ0 (kr) J0

(
k′r

)
dr =

1
k
δ
(
k − k′

)
, (3.32)

where δ
(
k − k′

)
represents the Dirac delta function.

We can obtain the coefficients E1 and E2 going back to the k-space by means of the

Hankel transform and using the closure relation (3.32):

E1 (k) =
1
2

(
e−kLIL − I0

)
, (3.33a)

E2 (k) =
1
2

(
IL − e−kLI0

)
, (3.33b)

where

I0,L (k) = −
1
k

∫ ∞

0
ρ dρ

∂φ̃0

∂z

∣∣∣∣∣∣
z=0,L

J0
(
kρ

)
. (3.34)

In this expression φ̃0 and its normal derivative are known from the algorithm described

in 3.2.5. Therefore we can compute I0,L and, using (3.33) E1,2. These functions in turn can

be inserted in (3.28) to yield the boundary condition to impose on Γ1,2.

So far we have got φΓ1,2 , however, we need to calculate again the boundary conditions

at r = R using equation 3.30a.
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3.3.5 Algorithm

We are now ready to detail the domain-decomposition algorithm that allows us to solve the

Poisson equation in the reduced computational domain Ω0 with free boundary conditions

in the radial direction and at the top and bottom boundaries of the computational domain:

1. Compute φ̃0 by following the algorithm in section 3.2.5.

2. Calculate the normal derivative of φ̃0 at z = 0, L. Apply a Hankel transform and use

expressions 3.33 to obtain the coefficients E1 and E2.

3. Use these coefficients to obtain the boundary values φΓ1,2 by using a second Hankel

transform (3.30b, 3.30c).

4. Update boundary values at r = R with an additional Hankel transform (3.24a)

5. Solve the Poisson equation in Ω0 with the boundary conditions computed in the

previous steps.

3.3.6 Tests and sample implementation

3.3.6.1 Tests

In order to test our scheme we consider now a simple setup where the Poisson equation

has a closed-form solution. An example of such a configuration is an uniformly charged

sphere located in free space (see e.g. (Jackson, 1975)) .

Suppose a sphere centered at (ρ, z) = (0, z0) with radius a < R and total charge Q. At

a point with cylindrical coordinates (ρ, z) the potential reads

φ(ρ, z) =
Q

4πε0


1[

ρ2+(z−z0)2
]1/2 if ρ2 + (z − z0)2 > a2,

3a2−ρ2−(z−z0)2

2a3 if ρ2 + (z − z0)2 ≤ a2.

(3.35)

Figure 3.2 shows a comparison between the potential along the z-axis computed using

expression 3.35 and the approaches described in section 3.2 and Section 3.3. Here we

took a = 3 mm, R = 5 mm, Q = 1013 e (e is the elementary charge), z0 = 5 mm. For the

discretized solution we used ∆r = ∆z = 25 × 10−3 mm and a longitudinal extension of the

computational domain ∆L = 10 mm.
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Dirichlet B.C. at zmin and zmax = 1.0 cm
Dirichlet B.C. at zmin and zmax = 2.0 cm
Dirichlet B.C. at zmin and zmax = 4.0 cm
Exact solution
Free B.C. at zmin and zmax = 1.0 cm

Figure 3.5: Comparison between the electrostatic potential along the z-axis created by a uni-
formly charged sphere in free space using the approach described in section 3.3, the potential
3.35 and solving Poisson’s equation with Dirichlet boundary conditions in three domains of in-
creasing length. Note the overlap between the lines corresponding to free boundary conditions
and the reference solution 3.35.

The potential calculated with the approach presented in this section is indistinguishable

from the analytic solution (3.35). Dirichlet boundary conditions at the two ends, on the

other hand, produce a potential that deviates nearly 25% from the analytic solution at the

center of the sphere. To investigate the convergence of the homogeneous Dirichlet solution

we extended the computational domain and computed the potential for L = 20 mm and

L = 40 mm. As we move zmin and zmax away from the center of the charged sphere,

the solution with Dirichlet conditions approaches our reference solution (3.35). As the

charged sphere gets closer to the electrodes, the electric potential shows a more prominent

drop to fulfill the condition φ (z = 0, L) = 0. In streamer simulations this causes slightly

higher values of the electric field at the streamer head as we will see in the next section.
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3.3.6.2 Order of accuracy

We have checked that the method described above does not change the order of accuracy

of the discretization of the Poisson equation by constructing a closed-form solution of the

Poisson equation that decays at infinity. We have used the potential

φ = e−
r2

σ2 −
(z−z0)2

σ2 , (3.36)

whose Laplacian has the form

∆φ =
1
σ4

[
4r2 − 6σ2 + 4 (z − z0)2

]
× e−

r2

σ2 −
(z−z0)2

σ2 .

(3.37)

Although this charge density is not strictly bounded, the contribution of charges ex-

cluded from the domain decays super-exponentially as the domain becomes larger and can

thus be neglected as long as zmax − z0 and zmin − z0 are sufficiently larger than σ.

We have solved the Poisson equation corresponding to the Laplacian (3.37) with L =

1 m, σ = 0.1 m and z0 = 0.5 m within a cylindrical domain with a radius R = 0.5 m. We

have imposed free boundary conditions at every boundary of the domain. In this manner

we checked that the convergence in the `2-norm is of second order, the same as that of the

finite difference scheme.

We are also interested in the convergence as we move the boundaries zmin and zmax

away from the charged sphere. Following the example in subsection 3.3.6.1, this time we

change the radius of the sphere to 0.1 mm, R = 10 mm and the mesh spacing to 10 µm.

Errors are presented in Table 3.2.

∆L(mm) ‖ε‖2
‖ε‖2
‖φ‖2

‖ε‖1
‖ε‖1
‖φ‖1

‖ε‖∞
‖ε‖∞
‖φ‖∞

0.3 2.539 × 10−3 1.773 × 10−2 1.385 2.393 × 10−2 5.504 × 10−6 5.586 × 10−3

0.6 1.811 × 10−3 1.095 × 10−2 1.401 1.429 × 10−2 2.491 × 10−6 2.753 × 10−3

1.2 1.265 × 10−3 6.941 × 10−3 1.385 8.965 × 10−3 1.216 × 10−6 1.344 × 10−3

Table 3.2: Errors obtained with changes in the longitude of the domain

3.3.7 Streamer simulations

As we did before for the case of free boundary conditions in the radial direction, in this

subsection, we present the results of several negative streamer simulations where we apply
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Figure 3.6: Comparison of the module of the electric field along the z-axis for a streamer
simulation with Dirichlet boundary conditions at z = 0 (solid blue line), Dirichlet boundary
conditions at both ends with domain lengths 1.5 cm (solid orange line) and 3.5 cm (dashed
green line). As the streamer approaches the electrode at zL = 1.5 cm (solid orange line), the
electric field at the streamer head increases since the electrostatic potential drop occurs in a
shorter distance.

electrostatic free boundary conditions at r = R and z = zL. The solution to this problem is

obtained by simply considering the boundary values calculated at ΓL and setting I0 = 0 in

equation 3.33b. As for the extent of the domain, R = 0.4 cm and we vary zL in the three

streamer simulations: two of the streamers simulations with Dirichlet boundary conditions

at both ends zL = 1.5, 3 cm and one streamer simulation with free boundary conditions at

zL = 1.5 cm.

Initial conditions are the same as in subsection 3.2.7, except for the background electric

field that we set to 25 kV/cm here.

Figure 3.6 shows the results of the three simulations for the module of the electric field

along the z-axis at t = 40 ns. The dashed line represents the reference solution (zL = 3 cm)

since the electrode is far enough from the streamer head. As we can see, the solution
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Figure 3.7: Comparison of streamer velocity for a streamer simulation with Dirichlet bound-
ary conditions at z = 0 (solid blue line), Dirichlet boundary conditions at both ends with
domain lengths 1.5 cm (solid orange line) and 3.5 cm (dashed green line). As the streamer ap-
proaches the electrode at zL = 1.5 cm (solid orange line) the streamer head accelerates. This is
not observed in the two other simulations where the streamer head keeps a constant velocity.
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with free boundary conditions at zL = 1.5 cm approximates the reference solution fairly

well. On the other hand and as expected, the solution with Dirichlet boundary conditions

at zL = 1.5 cm deviates from the reference solution. The electric field in the streamer

body/head is slightly overestimated, specially as the streamer approaches the electrode at

z = zL.

As a result of this, the propagation velocity of the the streamer head is different (fig.

3.7) and for the case of Dirichlet B.C. at zL = 1.5 cm, the streamer head accelerates while

for the other two cases, the streamer head keeps a constant velocity.

3.4 Discussion and conclusions

Most electric discharges develop as elongated channels. Despite different physical con-

ditions and ionization mechanisms this feature is common to streamers, leaders and arcs.

The underlying reason for this shared property is that all these processes are affected by a

Laplacian instability Arrayás et al. (2002); Derks et al. (2008), whereby small bumps in

a discharge front enhance the electric field ahead and thus grow faster than the surround-

ing regions. This prevents the formation of wide, smooth discharges and creates branched

discharge trees of many filaments Luque and Ebert (2014).

Since this is the preferred shape of a discharge, it is reasonable to optimize our numer-

ical models for elongated channels, selecting high-aspect-ratio computational domains.

The method that we have presented here can be used to achieve this efficiently and without

losing accuracy.

We have presented a first extension of this method, where we also set free boundary

conditions at the upper and lower simulation boundaries. This can be useful for the in-

vestigation of discharges not attached to any electrode or, with appropriate modifications,

attached to a single electrode. This extension can be computationally more expensive if

Hankel transforms are not properly treated.

A second extension is to adapt the method to run in parallel in several processors.

If we parallelize the Poisson solver by decomposing the domain, the application of the

method described above requires collecting information about the initial solution around

the external boundary and then performing a one-dimensional Fourier transform. The
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overhead of these steps is small compared to the operations required for the solution of

the Poisson equation so the method can be efficiently parallelized. This method has been

integrated in our code and succesfully runs in parallel (MPI framework) upon thousands

of computing nodes.

Finally, one may ask about the suitability of this method for non-uniform meshes and,

in particular, for adaptively refined meshes. Although the application of the method is in

principle straightforward, a careful analysis is required to understand the error incurred

due to a possibly coarser resolution around the boundary than around a localized charge

density. This analysis, however, falls out of the scope of the present chapter.

Note that although we have focused on the solution of the Poisson equation, this

method can be easily generalized to other elliptic partial differential equations. This can

then applied to other components of streamer simulation codes such as the speeding-up

of photoionization calculations by approximating the interaction integral by combining

solutions of a set of partial differential equations, as proposed in references Ségur et al.

(2006); Luque et al. (2007); Bourdon et al. (2007). Our code includes the computation of

the photoionization term (see eq. 2.2) using this method.
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Chapter 4

Spontaneous emergence of space
stems ahead of negative leaders in
lightning and long sparks

4.1 Introduction

One of the outstanding mysteries in atmospheric electricity concerns the progression of

negative lightning leaders. Being hot and ionized channels, leaders are initiated in a thun-

dercloud and expand bipolarly, with their positive and negative extremes advancing in

more or less opposite directions. For some elusive reason, negative leaders advance in a

stepped fashion, with waiting times of tens of microseconds punctuated by sudden jumps

of microsecond time scale (Dwyer and Uman, 2014). This behavior is observed not only in

lightning leaders but also in negative laboratory discharges longer than about two meters.

Besides being a fundamental but mysterious process in electric discharges, leader steps

are relevant because they produce the Very High Frequency (VHF) radio pulses that re-

veal the development of lightning flashes in Lightning Mapping Arrays (Thomas et al.,

2001). Leader steps are also correlated with X-ray emissions detected around a light-

ing discharge (Dwyer et al., 2005) and therefore they are possibly linked to Terrestrial

Gamma-ray Flashes (TGFs) detected by satellites orbiting hundreds of kilometers above

ground (Fishman et al., 1994; Smith et al., 2005; Marisaldi et al., 2010; Briggs et al.,
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2013).

The first observation of leader stepping can be traced back to the pioneering work

of Schonland et al. (1935) in the 1930s, who coined the term “stepped leader” for the

intermittent advance of downward negative lightning channels recorded in their streak

camera. In the decades after Schonland’s work, advances in this topic arose mostly from

laboratory experiments with meter-long spark discharges. The work of, among others,

Gorin et al. (1976) and the Les Renardières group (1978a) revealed the dynamics of a

negative leader step: the leader tip is preceded by a filamentary corona containing a bright

nucleus termed “space stem”. After some microseconds the space stem evolves into a

“space leader” that propagates in both directions and whose extremes are surrounded by

additional coronas of both polarities. The leader completes one step when the space leader

bridges the gap to the main leader channel.

Recordings with the high-framerate video cameras fielded in the last decade show that

lightning leaders, although they involve slightly different space- and time-scales, follow

the same pattern as long laboratory sparks. With integration times of a few microseconds,

the observations of Hill et al. (2011) for natural stepped leaders and Biagi et al. (2014)

and Gamerota et al. (2014) for leaders in triggered lightning captured images of the space

stem ahead of the leader tip, embedded in a filamentary corona.

Despite these observational advances, our understanding about the physics of stepped

leaders is still very incomplete. Measured optical spectra indicate that the leader tempera-

ture reaches around 5000 K (Cooray, 2003) and even 30 000 K (Kieu et al., 2020) for lab-

oratory discharges and up to 30 000 K in lightning leaders (Orville, 1968), which, in both

cases and according to chemical models, suffices to sustain a high ionization (Gallimberti,

1979). On the other hand the filaments in the corona, called streamers, are not much above

ambient temperature; their ionization, lower than that of leaders, is created mostly at their

tips, where they enhance the electric field strongly enough to accelerate electrons up to

the threshold of impact ionization (Ebert et al., 2010). Models for the streamer-to-leader

transition (Popov, 2003; da Silva and Pasko, 2013) successfully reproduce the transition

time scale of around 1 µs for atmospheric pressure but depend on manually imposing a

total electric current that in reality is an outcome of the discharge physics. They also ne-

glect the longitudinal inhomogeneity of the discharge and therefore they sideline leader
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stepping and the formation of space stems. The physical mechanism governing the latter

remains a mystery (see e.g. (Biagi et al., 2010; and Raizer, 2010)); a recent review (Dwyer

and Uman, 2014) included this problem in the top ten questions in lightning research.

In this chapter, we show that space stems originate from an attachment instability

inside streamer channels. Since space stems are the key to leader stepping, our results

open the door to the full understanding of this mechanism as well as its associated radio

and energetic particle emissions. Originally investigated in the 1970s (Douglas-Hamilton

and Mani, 1974; Sigmond, 1984), the attachment instability is triggered by regions of

lower conductance per unit length (i.e. conductivity integrated over a cross-section) inside

a corona, which we show arise spontaneously when a negative streamer emerges from a

leader. One major and slightly counter-intuitive aspect of our work is that bright regions

inside a corona reveal regions of lower, not higher, electron density. Although this is in

complete correspondence with a regular electric circuit where energy is mostly dissipated

in high-resistivity components, this insight has escaped previous interpretations of the

space stem. At high-altitude, in leader-less discharges (sprites), the attachment instability

forms standing patterns called beads and glows (Luque et al., 2016b; Luque and Ebert,

2010; Liu, 2010).

4.2 Space stem

4.2.1 Model and Initial Conditions

Since lightning leaders and long laboratory sparks share the same mechanism of propaga-

tion, to simplify our computations we choose to focus here on the propagation of a leader

under laboratory conditions. Typical laboratory leaders span from tens of centimeters to

around one meter and are surrounded by streamer coronas with roughly the same exten-

sion (Kostinskiy et al., 2018). These dimensions are too computationally demanding so, as

we detail below, our simulated system is somewhat smaller.

We opt for simulating a single streamer that emerges from a leader tip; our assumption

here is that the surrounding corona is not an essential component of the physics of space

stems. We cannot rigorously justify this assumption but it is beared out by the similarity

between observations and our results.
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We thus investigate the formation of space stems ahead of a negative leader channel

with our 2D cylindrically symmetric model (z, r) for electric discharges that includes heat-

ing and expansion of the background gas fully self-consistently (see chapter 2).

The kinetic scheme employed in our simulations includes impact ionization, attach-

ment/detachment, and water cluster formation/breaking. A detailed description of the

scheme can be found in the supplementary material of Luque et al. (2017). The only

difference is that for the three-body attachment reaction

O2 + O2 + e −−−→ O −
2 + O2, (4.1)

here we have used the rate from Kossyi et al. (1992).

We emphasize the presence of water in the chemical model of our simulations. The

relevance of water vapor for the evolution of streamer channels was previously discussed

by Gallimberti (1979) and Luque et al. (2017). By clustering around negative ions, even

a small quantity of water molecules effectively suppresses electron detachment and thus

strongly influences the evolution of the electron density on time scales of tens of nanosec-

onds.

Streamer discharges develop as thin and elongated channels which call for a nar-

row computational domain. To achieve this while suppressing the influence of the radial

boundary conditions in the Poisson’s equation we use the domain decomposition method

described in chapter 3. Using this method, we solve Poisson’s equation with Dirichlet

boundary conditions at z = 0 and free boundary conditions elsewhere to prevent boundary

effects as the streamer grows. By free boundary conditions we mean: 1) the potential tends

to zero as the distance tends to infinity and 2) they are consistent with the charge inside

the domain. The full domain size is 25 cm × 3 cm.

The term Qe f f
T in equation 2.1 couples the electrodynamics and bulk gas dynamics

and accounts for dissipated power due to the electric current inside the corona. But note

that this power is distributed unequally among the degrees of freedom of the underlying

gas. Since the time scales involved in the streamer-to-leader transition are too short to

reach thermodynamic equilibrium, the fraction of energy deposited into different degrees

of freedom depends on the local conditions and, in particular, on the local electric field

(Flitti and Pancheshnyi, 2009; da Silva and Pasko, 2013). A small fraction is directly
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converted into translational energy of gas molecules and quickly thermalized. A larger

amount excites electronic and ionization states; this is responsible for the process of fast-

heating (Popov, 2001) and relaxes into thermal energy at time scales on the order of 100 ns.

Another fraction of the energy is spent in dissociation of oxygen and nitrogen molecules

and, finally, the remaining energy excites vibrational states and its time to thermalization

is on the order of one second at ambient temperature and only significant compared with

our relevant time scales once the temperature reaches about 104 K: this relaxation is ne-

glected in the present study. Since, as we describe later, most heating is due to energies

dissipated at or around the conventional breakdown electric field, roughly 30 kV/cm, we

take the energy branching ratios corresponding to this field, where about half of the energy

is frozen into vibrational excitations (see e.g. figure 1 in (Flitti and Pancheshnyi, 2009)).

Furthermore, since the characteristic time of gas temperature increase is much longer than

100 ns, for the sake of simplicity, we consider fast-heating to be instantaneous. Then, we

arrive at

Qe f f
T = ηj · E, (4.2)

where η ≈ 0.5, j =
∑
s

qsnsvs and s run over all the species involved in our model.

Our initial condition consists in a short portion of leader with a small ionization patch

slightly ahead of the tip that mimicks an irregularity of the leader head. Thus, the initial

electron density is the sum of a uniform background nbg
e plus

nleader
e = ne0 exp

−max (z − zL, 0)2

2σ2
L

−
r2

2σ2
L

 , (4.3a)

and

nseed
e = ne0 exp

− (z − zS )2

2σ2
S

−
r2

2σ2
S

 , (4.3b)

where zL = 5 cm is the location of the leader tip, the seed center is at zS = 6.1 cm, the

e-folding lengths are σL = 3 mm, σS = 1.5 mm and the electron density peaks at ne0 =

1021 m−3. The initial electron density is neutralized by an identical density of positive

ions. Note that we selected these initial conditions after a few trials where we disregarded

cases in which the streamer branches because these cannot be captured by our cylindrically

symmetrical model. Besides, as mentioned above, to keep our computations feasible, the

initial leader is somewhat shorter than experimental stepped leaders.
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We have run two different simulations: one with photo-ionization (nbg
e = 0) following

the method presented by Luque et al. (2007), and another with a pre-conditioning of the

gas surrounding the leader due to preceding coronas by adding a constant background ion-

ization level nbg
e = 1015 m−3. In both cases, we observed similar formation of a space stem

but the simulation with photo-ionization exhibited an oscillation of the electric field at the

streamer head that we attribute to a numerical artifact due to insufficient resolution for the

smallest length scales involved in photo-ionization (Zhelezniak et al., 1982; Wormeester

et al., 2010). Henceforth we limit ourselves to the simulation without photo-ionization.

To check that this does not affect our key results we used another numerical code at our

disposal (PESTO, described by Luque (2017)) that includes photoionization but does not

account for gas heating or long-term chemistry. Using PESTO, we run simulations with a

numerical resolution of 6 µm that produced results similar to those described below.

The embedding gas is a mixture of 79% N2 and 21% O2. Initially, the gas pressure

is 1 atm and the mechanical energy is zero. The ambient temperature is 300K and the

temperature of the leader follows the same distribution as nleader
e with a peak value of

2700K. Note that our model does not include high-temperature chemistry for the leader:

in our simulation the role of leader is merely to provide the electrostatic environment for

the streamer propagation. Finally, the simulation is driven by an external electric field

pointing towards the leader with magnitude E0 = 10 kV/cm + (20 kVcm−1µs−1)t, where t

is the simulation time.

With these conditions we simulated the inception and propagation of a streamer emerg-

ing from the leader tip. Our total simulation time was limited to about 100 ns at which point

the streamer leaves the simulation domain. As we see below, this time is enough to see the

formation of the space stem but too short to observe the full streamer-to-leader transition.

4.2.2 Results

Figure 4.1A summarizes our simulation. As the streamer emerges from the leader it goes

through a narrowing phase where the conductance per unit length decreases. The charge

transport through the streamer channel tends to homogenize the electric current flowing

across the streamer channel, which implies a higher electric field in the narrow section. As

sketched in figure 4.1B, where we plot the effective ionization rate of air, this enhanced
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Figure 4.1: As a streamer propagates out of a leader tip it creates a segment of reduced
conductivity that evolves into a space stem. Panel A summarizes the evolution of the streamer
in terms of the electron density (top), electric field (middle), and temperature (bottom). The
electric field row includes equipotencial lines with constant spacing 12.5 kV, 13.5 kV and 14.5
kV (from left to right). The streamer leaves in its wake a segment of lower conductance per
unit length that evolves into a space stem due to the attachment instability process sketched in
panel B: a higher electric field accelerates the depletion of electrons, which in turns enhances
the electric field. Finally, in panel C we show that our simulation reproduces the features of
a space stem by plotting light emitted in the second positive system of the nitrogen molecule
during the full simulation. We have masked (white region) leader emissions to focus on the
space stem.
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field triggers an attachment instability (see chapter 1): the higher field increases the rate

of dissociative electron attachment, decreasing further the conductance per unit length and

increasing the field. This process enhances the electric field inside the narrow section of the

channel until it saturates at an electric field where the net ionization curve slopes upward,

between 25 and 30 kV/cm. A necessary condition for this process is that the electric field

inside the streamer channel steps above the minimum of the effective attachment rate,

around 10 kV/cm (see figure 4.1B). Hence, the emergence of space stems is favoured in

streamers with high internal electric fields.

To check that the narrow segment with an enhanced electric field reproduces the ob-

served features of a space stem, we computed the spatial distribution of light emissions.

We included in our model the electron impact excitation of nitrogen molecules to the

N2(B3Πg) and N2(C3Πu) electronic states, which are responsible respectively of the first

and second positive systems of N2 (see section A.1 in the Appendix for further details

on the chemistry used to describe light emissions). We found that in our conditions the

emissions of light are dominated by the second positive system and panel C of figure 4.1

shows these emissions integrated over the 100 ns of simulation. There we notice a bright

spot embedded in a dim channel, clearly reminiscent of images in high-speed recordings

of leader progression (Hill et al., 2011; Biagi et al., 2014; Gamerota et al., 2014). Based

on this resemblance we will henceforth use the name stem for this bright nucleus within

the channel.

Let us now analyze the gas heating produced by the discharge. This is represented in

the bottom row of panel A in figure 4.1, where we show the temperature variation relative

to the initial conditions. The air in the stem heats up about 6 K in 100 ns. However, in our

simulation the electron density decreases both in the stem and in the surrounding channel

with a time scale close to 100 ns. This is consistent with previous models and experiments

that investigated the effect of the repetition rate in streamer discharges (Nijdam et al., 2014)

and therefore it is unlikely that this electron depletion is due to shortcomings of our model.

In our context it implies that the heating ratio diminishes: we do not expect a much higher

temperature even if, by increasing our domain size, we extended our simulation time.
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4.2.2.1 Formation of the Space Stem

Our key result is that the attachment instability is responsible for locally warmer regions

ahead of a leader. A number of processes may reduce the channel conductance per unit

length and trigger the instability, among them a jittering of the leader potential during the

streamer propagation or pre-existing conductivity or gas-density perturbations along the

streamer path (Luque and Gordillo-Vázquez, 2011; Luque et al., 2016b). Neither of these

processes was included in our simulations and nevertheless the space stem formed sponta-

neously, which suggests that isolated stems are robust features of leader propagation.

In our simulation the stem results from a narrowing of the channel. Note that the nar-

rowing of negative streamers ahead of a leader or a pointed electrode has been observed by

Kochkin et al. (2014) and by Kostinskiy et al. (2018). As we show in figure 4.2 the streamer

head is initially wide because it is affected by the divergence of electric field lines emerg-

ing from the leader’s curved tip. As this divergence decreases away from the leader tip, the

streamer head shrinks. The narrowing of the streamer channel enhances more strongly the

electric field at the tip, increasing the degree of ionization left in the streamer head’s wake.

The total conductance per unit length of the channel scales approximately as R2ne, where

R is the channel radius and ne the electron density: initially the significant decrease of the

radius dominates and the conductance per unit length diminishes; afterwards the increase

of ne due to a higher field at the tip overcomes the narrowing and the conductance per unit

length increases again. The resulting minimum is the origin of the space stem as we show

in the upper panel of 4.3. In the same figure (lower panel) and as we stated before, despite

the noticeable variation of the conductance per unit length, the intensity is homogeneous

across any section of the channel, including the space stem.

Let us now discuss the observed asymmetry between positive and negative leaders.

Stepping is more prominent and readily observable in negative leaders but there are now

clear observations (Kostinskiy et al., 2018) that under conditions of high relative humidity,

positive leaders also experience stepped progression although space stems have never been

observed in positive leaders. Our results provide a natural explanation for this asymmetry:

the attachment instability is triggered by elevated electric fields inside a streamer channel

and due to stronger ionization in positive streamers, these fields are higher in negative
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Figure 4.2: The space stem emerges due to the narrowing of the streamer channel. As sketched
in panel A, when the streamer is still close to the leader tip it is widened by the diverging elec-
tric field lines around the curved leader tip; as it distances itself from the leader, the streamer
is driven by a more homogeneous electric field and becomes narrower. This is shown in panel
B, where we plot the streamer radius as a function of the streamer head position. The radius is
defined here as the radius of curvature on the central axis of the surface defined by the max-
imum of the electric in the z direction around the head. The reduction of the radius leads to
higher peak electric fields (panel C) and the resulting total channel conductance per unit length
exhibits a minimum that afterwards evolves into the space stem as described in figure 4.1.
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Figure 4.3: The upper panel shows the conductance per unit length around the space stem
(grey area) at 25 ns, 50 ns and 100 ns. As the streamer propagates away from the leader
tip (25 ns curve), the channel undergoes a narrowing until the conductance per unit length
reaches a minimum (space stem). Right after, the channel starts to be able to compensate
this narrowing with an increase of the electron density produced by a higher electric field
and then the conductance per unit length rises. The two remaining curves show latter states
of the conductance at the space stem, where the electron depletion is clear after attachment
instability effects. The lower panel supports the idea that the low conductance in the space stem
is countered by a high electric field to achieve an homogeneous intensity along the channel.
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Figure 4.4: Positive streamer propagating in a background field of 7 kV/cm after 100 ns.
The attachment instability is triggered close to the leader tip, where the electric field is locally
enhanced. This supports the idea that isolated stems cannot exist in positive leader

streamers (Luque et al., 2008) for the same external field. Besides, positive streamers

are initiated more easily (Liu et al., 2012) so they are launched from the leader tip at a

lower potential and thus a lower driving electric field than negative streamers. To check

this explanation we run simulations of positive streamers under driving electric fields of

10 kV/cm and 7 kV/cm; there the attachment instability was triggered only in regions of

the channel very close to the leader tip (see fig. 4.4), supporting the idea that steps in

positive leaders exist but they are so small that isolated space stems cannot be observed.

4.3 Two-Sphere Model for a Leader Corona

In the previous section we described in detail the initial 100 ns of the streamer-to-leader

transition. This time is sufficient to establish the space stem but it is clearly too short to

reach the characteristic temperatures inside a leader. Unfortunately, for the reasons ex-

plained there, currently microscopical models cannot be extended to long times. However,

we may obtain a glimpse of the most important physics at these longer time scales.

We present here a streamlined and heavily simplified model of the corona ahead of a

leader. Although it is clearly insufficient to produce accurate predictions, it illustrates two

things of the physics of the streamer-to-leader transition: (1) that for the streamer-to-leader
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transition to occur there must be a mechanism that either creates new streamers or increases

the conductivity of existing channels by means of consecutive ionization waves and (2)

that a small difference in initial electron density in the stem leads to large differences in

the heating rate of this segment compared to the rest of the corona.

4.3.1 Model Description

The model’s geometry is sketched in figure 4.5. The leader tip is mimicked by a conducting

sphere of radius a at a potential VL, whereas the electric charge in the corona is distributed

within another sphere with radius b. The centers of the two spheres are separated by a

length L. In order to simplify our calculations we assume that the corona sphere has a

uniform potential VC arising from a total corona charge QC . The electrostatic system of

two conducting spheres with potentials VL, VC and charges QL and QC is defined by a

capacitance matrix C such that QL

QC

 =

 CLL CLC

CCL CCC


 VL

VC

 , (4.4)

where the elements of C can be calculated by repeated application of the method of images.

From (4.4) we obtain

VC = −
CCL

CCC
VL +

QC

CCC
. (4.5)

The two spheres are connected by streamer channels, which this model represents as

linear electric resistors. Of these, N are identical, unperturbed resistors of length L (we

neglect differences in these distances) whereas one perturbed channel contains the space

stem and is thus divided into three serially connected resistors: the space stem, of length `

is surrounded by two channels of length (L − `)/2.

The current inside each resistor is generated by the drift of current carriers, each with

mobility µs, where s = 1, . . . indexes the species (this includes electrons and positive and

negative ions). The underlying charge carrier densities and mobilities in the streamers are

respectively n0,s in the unperturbed, long channels, nstem,s in the stem and n1,s in the two

channel segments surrounding the stem. These densities are uniform within the channels,

all of them of cylindrical shape and with a radius r.
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VL

a

QC , VC

b

L

`

R0(t)

R0(t)

R0(t)

R0(t)

R1(t) Rstem(t) R1(t)

leader

corona

Figure 4.5: Sketch of the model. Two conducting spheres, representing respectively the
leader tip and the corona space charge are connected by channels representing the streamer
discharges. Most of these channels are uniform and modeled as single resistors. One of the
channels is perturbed to contain a space stem, represented by a different resistor (shown in red).
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Assuming now that the electric field that drives the charge carriers inside each channel

can be approximated by its average, we obtain the current in the unperturbed channels as

I0 =
πr2e(VL − VC)

L

∑
s

µsn0,s =
VL − VC

R0
, (4.6)

where the resistance R0 is defined as

R0 =
L

πr2e

∑
s

µsn0,s

−1

. (4.7)

Defining similarly the resistance of the stem as

Rstem =
`

πr2e

∑
s

µsnstem,s

−1

, (4.8)

and that of the two channel surrounding the stem as

R1 =
(L − `)
2πr2e

∑
s

µsn1,s

−1

, (4.9)

yields for the current in the perturbed channel

I1 =
VL − VC

Rstem + 2R1
. (4.10)

The charge accumulation in the corona then follows

dQC

dt
= NI0 + I1. (4.11)

The species densities evolve according to the chemical system described in the main

text subjected to electric fields averaged over the extension of each path, which can be

calculated from Ohm’s law as Ēc = RcIc/lc, where c indicates the kind of channel (unper-

turbed, stem or stem-neighbors) and lc is the channel’s length. Furthermore, each channel

dissipates energy at a rate RcI2
c and therefore its temperature increases at a rate

dT
dt

=
ηRC I2

C

πr2lcnaircV
, (4.12)

where nair is the number density of air at standard temperature and pressure and cV is

the specific heat capacity of air, which we take as cV = (5/2)kB, kB being Boltzmann’s

constant.

89



4. SPONTANEOUS EMERGENCE OF SPACE STEMS AHEAD OF NEGATIVE LEADERS IN
LIGHTNING AND LONG SPARKS

Parameter Value
L 1 m
a 1 cm
b 25 cm
r 0.5 mm
VL 1 MV
N 50

Table 4.1: Parameter values employed in our simulations.

Note that as the stem heats up some processes that are not included in our chemical

model, such as vibrational-translational relaxation, play an increasingly significant role.

Therefore high temperatures in this simplified model cannot be considered as quantitative

predictions.

The parameters used in the following simulations are listed in table 4.1. As initial

conditions we set an electron density ne = 1019 m−3, balanced by N +
2 and O +

2 in a ratio

matching the air fractions of molecular nitrogen and oxygen. In the “stem” resistor this

initial density is reduced by a factor 0.75. Once this different initial condition is set, all

resistor follow the same evolution equations. Note that our input values have not been

fine-tuned to obtain the results described below.

4.3.2 Single Corona Discharge

As a first step, let us check that results from this simplified model are broadly consistent

with the fluid model described in section 4.2. Figure 4.6 shows the evolution of the most

relevant variables of the model. The main result is that, as we noticed in section 4.2, the

electron density is depleted with a time scale of around 100 ns. Hence the temperature

in any of the channels does not increase further than a few Kelvin. However, the small

perturbation in electron density introduced in the “stem” channel is sufficient to excite the

attachment instability described and thus drives this component to higher electric fields and

more dissipation. The increase in temperature is thus significantly higher in this segment

but still far below that needed to transition to a leader.

Note however that the potential drop between the leader and the corona has barely
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Figure 4.6: Simulation of a single corona discharge in the two-sphere model. Here we show
100 ns of simulation. The top panel shows a small decrease in the potential drop; the cen-
tral panel shows that the electron density decays quickly, faster in the space stem that in the
other channels. Finally, the lower panel plots a small increase of gas temperature, which is
nevertheless much more significative in the stem.
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bulged and there is still a high potential in the leader that is available to initiate new dis-

charges.

4.3.3 Multiple Discharges

We hypothesize that the large electrostatic potential remaining at the leader tip after the

electron density has been depleted generates subsequent ionization waves that prevent

the conductivity region ahead of the leader tip to disappear completely. To substantiate

this hypothesis we provide here an example of how the physics of the streamer-to-leader

transition may work on long time scales after the space stem has formed.

Assume then that due to its high potential, the leader tip launches successive streamer-

like ionization waves that propagate along or close to previous existing channels. A similar

process was observed by Nijdam et al. (2014). As an example, let us assume that these

waves are launched every 100 ns and that their effect is to increase the channel ionization

by a factor 10. Given their fast time scales, these ionization waves can be implemented in

our model by instantaneous increases of the electron and ion densities.

The result is plotted in figure 4.7, where we show the evolution of the system after

10 ionization waves. The gas heating in this case is stronger, with the stem reaching

a temperature close to 800 K compared to only about 400 K for the rest of the corona

channels.

4.4 Discussion and Conclusions

Our simulations show that the attachment instability explains the features of space stems

ahead of propagating leaders. However at around 100 ns the overall conductivity of a

streamer channel decays, stalling the increase in temperature. Our results thus stress the

role in maintaining the corona played by poorly understood processes such as the inception

of counter-propagating streamers (Kochkin et al., 2016; Luque et al., 2016b) or the prop-

agation of successive ionization waves along pre-existing channels (Phelps, 1974; Nijdam

et al., 2014; Babich et al., 2015; Rison et al., 2016). Previous models (Popov, 2003; da

Silva and Pasko, 2013) missed the relevance of these processes because they were not self-

consistent and set a constant current intensity in the channel. In these models a reduction
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Figure 4.7: Corona discharge followed by multiple ionization waves that sustain a high ioniza-
tion in the streamer channels. In this case the electrostatic potential drop (top panel) decays sig-
nificatively, whereas the electron density (middle panel) increases slowly. The temperature of
the channels (lower panel) increases up to around 800 K for the stem and only to around 400 K
for the rest of the channels.
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of the electron density is immediately counteracted by an increase in the applied electric

field so electrons are never significantly depleted. However, no physical mechanism with

such an effect has been described in the literature.

As we have already shown, a single streamer discharge is unable to dissipate enough

power to transit into a leader. Nontheless, the relatively poor conductivity of a streamer

corona together with a variable potential at the leader tip imply that there is often a sig-

nificant electric field within the corona. This field triggers either new streamer burtsts,

as observed by Kochkin et al. (2014) or ionization waves retracing previous streamers, as

proposed by Babich et al. (2015). It is also responsible for counter-streamers seeded by

charges in existing stems. Remarkably, all of these mechanisms have been linked to X-ray

emissions from long sparks (Kochkin et al., 2015; Østgaard et al., 2016; Ihaddadene and

Celestin, 2015; Köhn et al., 2017; Babich and Bochkov, 2017; Luque, 2017; Babich et al.,

2015) and these X-rays are in turn linked to leader stepping (Dwyer et al., 2005).

To check that these mechanisms may indeed explain the streamer-to-leader transition

within the currently established observational constraints, we have developed a simplified

model of a leader corona that we describe in section 4.3. The model shows that ionization

waves increasing the electron density a factor of ten and repeating every 100 ns would lead

to a significant increase of the temperature of the channel. But the main outcome is that

a small difference in initial electron density in the stem leads to large differences in the

heating rate of this segment compared to the rest of the corona.

An important simplification of our model is the assumption that a space stem can form

within a single streamer channel and that streamer branching, even if present, is not an

essential ingredient in the process. We base this assumption in two key observations: (1)

space stems are generally observed as bright segments within longer, dimmer channels

(Biagi et al., 2010; Hill et al., 2011) and (2) in laboratory images negative streamer coro-

nas contain thick, almost-straight channels with extensions of up to one meter (Kochkin

et al., 2014; Kostinskiy et al., 2018). Although these channels are surrounded by smaller

streamers, there is no reason to believe that these short bifurcations play an essential role

in the dynamics of the main channel. Interestingly, this is not the case for positive coronas

(Kochkin et al., 2012; Kostinskiy et al., 2018), which may be yet another reason for the

polarity asymmetry in leader propagation.
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Our results explain the formation of brighter and warmer inhomogeneities ahead of

a negative leader channel. This is the first stage in the streamer-to-leader transition in a

stepped leader. The subsequent evolution of the space stem is still not understood: namely

we do not know the mechanism that maintains the corona conductivity long enough to

reach thousands of degrees. A full understanding of lightning progression and associated

phenomena such as the emission of X-rays will only result from the successful investiga-

tion of this mechanism.
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Chapter 5

On the emergence mechanism of
carrot sprites

5.1 Introduction

First reported by Franz et al. (1990), sprites are filamentary electric discharges that develop

tens of kilometers above thunderclouds (55-80 km altitude). Early work by Pasko et al.

(1996, 1998); Raizer et al. (1998) suggested that sprite filaments are streamers, as was later

confirmed by high-speed observations (Stanley et al., 1999; Cummer et al., 2006; McHarg

et al., 2007; Stenbaek-Nielsen and McHarg, 2008). Nowadays it is accepted that sprites

originate from a quasi-electrostatic field produced by uncompensated electric charges due

to lightning in the troposphere (Pasko et al., 1995, 1997). Several works (Luque and

Ebert, 2009; et al., 2015; Köhn et al., 2019; Wu et al., 2019) point out to the presence of

inhomogeneities as a requirement for the initiation of sprite streamers.

After the streamer head passage, the streamer wake develops column-like (glows)

and spot-like (beads) intricate luminous patterns (Stenbaek-Nielsen and McHarg, 2008;

Stenbaek-Nielsen et al., 2020). Here we adopt the term ”glow” following previous works

(Stenbaek-Nielsen et al., 2013; Luque et al., 2016a). These structures fade out on time

scales spanning from a few milliseconds to a few hundred milliseconds (Luque et al.,

2016a). Observations (Stenbaek-Nielsen and McHarg, 2008; Stenbaek-Nielsen et al., 2020)

report glows expanding and merging with beads, sometimes seeding the launch of upward-
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sideways streamers. Previous work about the launch of upward streamers in sprites as-

sumed that they emerge from the negative tip of a double-headed streamer (Qin et al.,

2012, 2013b), but this does not seem to be supported by observations.

Different numerical models indicate that the long-lasting emissions from glows (Luque

and Ebert, 2010; Liu, 2010) and beads (Luque and Gordillo-Vázquez, 2011) stem from a

persistent electric field and current. Luque et al. (2016a) suggested the attachment instabil-

ity (Douglas-Hamilton and Mani, 1973, 1974) as the mechanism responsible for glows and

beads. Simulations show the formation of glow-like structures at altitudes above which the

electric field can excite the attachment instability. The situation for beads is still unclear:

they often appear as periodic patterns in observations. Luque et al. (2016a) proposed that

they emerge from pre-existing horizontal modulations of the atmosphere.

Based on their shape, sprites are classified as carrot-sprites or column-sprites (Wescott

et al., 1998; Stenbaek-Nielsen and McHarg, 2008). The main difference is that col-

umn sprites only propagate downwards whereas carrot sprites also shoot upward-sideways

streamers in a second stage of evolution. The inception of these streamers is related to the

evolution of the inner electric field in the streamer body and therefore it depends on the

transport of charge and the dominant plasma chemistry.

In the previous chapter, we showed the spontaneous emergence of a space stem pre-

cursor due to the action of the attachment instability in a region of the streamer channel

separated from the leader tip. Nonetheless, after 100 ns the temperature stops increasing

as a result of a decreasing conductivity in the streamer channel. In sufficiently long spark

discharges, space stems are promoted to space leaders through the heating caused by an

electric current flowing through them. The mechanisms maintaining the current are so far

uncertain as we have discussed in chapter 4. However, experiments (Kochkin et al., 2016)

show that space stems are able to shoot counter-propagating streamers which may be re-

sponsible for extending the space stem lifespan. As we have described above, a similar

phenomenology is observed in a sprite streamer glow, reminiscent of a ”cold” space stem

precursor.

In this chapter we aim to study the mechanism underlying the development of carrot-

sprites. From this we can get an insight into the mechanism that enables space stems to

shoot counter-propagating streamers and understand its later development.
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This chapter is organized as follows: in section 5.2 we describe the 3D model used to

study sprite glows and the emergence of upward streamers. This model is implemented

in Afivo-streamer code (Teunissen and Ebert, 2017; and Teunissen, 2019), based on the

Afivo framework (Teunissen and Ebert, 2018). In section 5.3 we provide observations of

a carrot sprite. In section 5.4 we present and discuss our simulation results and compare

them with the observation.

5.2 Sprite streamer model

To study the evolution of the upward streamer and the glow itself we use a 3D streamer

model. The equations underlying this model are described in chapter 2. This model does

not include the gas dynamics so we are left with the drift-diffusion-reaction equations for

electron and ions 2.2 and the Poisson equation 2.3.

Here, we consider ions as motionless over time scales of interest (a few miliseconds).

Regarding the chemistry, we have tested two kinetic schemes. The first one (Luque

et al., 2016a) includes electrons, N2, O2, O+
2 , N+

2 and O− and accounts for impact ionization

and dissociative attachment. The second one is an extended version with more species and

some other processes such as electron detachment. A detailed description of this second

model can be found in the supplementary material of Luque et al. (2017). Whereas the

first model agrees well with observations, the second does not reproduce the long lasting

emissions from glows and beads and the exponential decay of the channel reported by

observations (a similar problem was discussed by Luque et al. (2016a)). Hence, we only

present the results of the simpler chemical scheme.

To validate our results against observations, we computed the electron impact excita-

tion of nitrogen molecules to the N2(B3Πg) and N2(C3Πu) electronic states which radiate

in the first and second positive systems of N2 (for details, see section A.1 in the Appendix).

Our starting point is a single sprite streamer channel right after the streamer head pas-

sage. Thus, our initial condition consists of a vertical neutral column. Detailed streamer

simulations show that 1) the radial electron density profile is well approximated by a trun-

cated parabola (Luque and Ebert, 2014) and that 2) ne ∝ nair when the streamer runs into

increasing air density (Luque and Ebert, 2010). As the streamer propagates downwards,
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branching or not, it transports positive charge to the lower region that leads to the decay of

the sprite. To model this we add neutral electron-ion densities in the shape of a truncated

funnel attached to the bottom of the column. Figure 5.1 shows the initial electron density,

that reads (Luque et al., 2016a)

ne,ch (r, z) =


ne0,ch (z) a2

0

a(z)2 max
(
0, 1 − r2

a(z)2

)
, ∀r 50 km < z < 80 km

0 elsewhere,
(5.1)

where ne0,ch (z) = Cnair (z) is the electron density at the axis of the column, nair (z) =

nair,0e(−z/7.2 km) is the air density scaled at altitude z from the ground air density nair,0 =

2.5 × 1025 m−3 and C = 3.33 × 10−11. The value of C is determined from the equality

ne0,ch
(
60 km

)
= 2 × 1011 m−3. The factor a2

0/a(z)2 ensures that the total electron density

integrated in a horizontal cross section extends smoothly from the funnel to the column.

The term a0 is the radius of the column and a(z) is a continuous piecewise linear function

modeling the radius of the channel and the funnel. The funnel is characterized by the

radius of the base (5 km), its altitude (zb = 50 km) and the vertex altitude (zu = 60 km):

a (z) = max
(
a0,

zu − z
zu − zb

× 5 km
)
. (5.2)

Outside the channel our background electron density follows a Wait-Spies profile (Wait

and Spies, 1964), ne,bg = 10−2 cm−3 exp
(
− z−60 km

2.86 km

)
(Hu et al., 2007).

For the results that we present in this chapter the computational domain is a 20 × 20 ×

40 km3 box starting at 40 km altitude and the finest resolution is 1 m. To solve Poisson’s

equation, we ground the bottom boundary and set the top boundary to 2.9 MV. This is

equivalent to a background electric field of 72.38 V/m pointing downwards, that yields

a reduced electric field E/nair of approximately 120 Td at around 77 km. For the lateral

boundaries we set homogeneous Neumann boundary conditions. We also apply Neumann

boundary conditions at the six boundaries to solve electron and ions equations.

Our 3D model is implemented in Afivo-streamer code (Teunissen and Ebert, 2017;

and Teunissen, 2019), which is based on the Afivo framework (Teunissen and Ebert, 2018).

This framework includes geometric multigrid methods to solve Poisson’s equation, octree-

based adaptative mesh refinment and OpenMP parallelism. Plasma-chemical reactions
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Figure 5.1: The initial electron density consists of a vertical column and a truncated funnel
attached to the bottom of it. The funnel models the effect of a propagating positive streamer
corona on the background electric field.

and variations in the air density are newly added in Afivo-streamer code for the present

simulations.

Afivo-streamer code also includes a 2D cylindrically symmetric version of the model

explained above. We have used this 2D version as a probe for suitable conditions to launch

upward streamers. These tests show that a sufficiently high vertical electric field suffices

to launch upward conical ionization waves. In 3D, this implies that many streamers would

emerge from the glow since there is no preferred direction. Under these conditions, our

3D simulations are unapproachable because the extent of the finest grid would be too

large. Therefore, we add a small lateral component to the background electric field to

break the symmetry. By doing this we are able to study the propagation of single upward
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streamer, although more streamers emerge at later stages of our simulations. We have

tested several lateral electric fields, however we present the results of a representative

simulation, Ebackground = (18, 0,−72.38) V/m. The initial (neutral) charge distribution

will rapidly evolve to screen the background electric field.

One typical 3D simulation, where the finest grid size is 1 m, took 3 days in 32 cores.

We have checked the convergence of our results by systematically increasing the resolu-

tion in our simulations, down to a mesh size of 0.5 m. Practically the same results were

obtained for a grid cell size at and below 1 m. Therefore, in this chapter we show results

calculated for 1 m grid spacing.
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Figure 5.2: Time series from high-speed video observations of a sprite. The sequence shows
the sprite glow and the upward streamer launch, propagation and the optical extinction of the
glow. The time origin was set in the first frame prior to the launch of the upward streamer.
To emphasize the main milestones of the evolution, intervals between the snapshots are not
uniform.

5.3 Observations

In this section we present observations of the emergence of an upward streamer from a

glowing segment. After inspecting multiple high-speed sprite observations provided by

courtesy of H. C. Stenbaek-Nielsen and M. G. McHarg, we selected one event where this

process is particularly clear. Consistent with earlier results by McHarg et al. (2007), in all

these observations we did not find any event where it could be definitely concluded that an

upward streamer did not emerge from a glow.
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The selected event occurred on 5 July 2011 at 08:54:14 UTC and was associated with

a large thunderstorm complex over north-eastern South Dakota, USA. The event was ob-

served with a Phantom high-speed imager recording at 10,000 frames per second onboard

an aircraft flying at 14.4 km altitude over south-eastern South Dakota about 180 km north

of the storm.

Figure 5.2 shows a time sequence of the recorded event with seven 3.29x1.55 degree

subsections from the original 15.23x7.54 degree field of view Phantom images. Once the

main channel glow is established, a negative streamer launches and propagates upward,

causing a noticeable decrease of the light emissions of the upper part of the glow. Also

remarkable is the formation of a secondary channel glow as highlighted in the figure.

We do not have the location of the event or the causal lightning stroke, but NLDN

reported 5 strikes within about 1 second of the event, all in the region within the Phantom

field of view. Assuming that the event is over that region, the range of 180 km mentioned

above, defines the altitude scale shown. Because sprites may occur several tens of km from

the causal strike (Stenbaek-Nielsen et al., 2008) there is considerable uncertainty on the

altitude. This event was observed at an elevation angle of about 18 degrees and an increase

in range by 10 km will increase the altitude by 3.3 km.

5.4 Results and Discussion

Now we focus on our numerical simulations. Figure 5.3 shows the evolution of the sprite

channel through different milestones: glow formation, upward streamer launch and prop-

agation and glow deactivation. After 1 ms the initial channel appears sharply segmented

into high and low conductivity regions below and above 70 km respectively. The emissions

in the First Positive System of molecular nitrogen (1PN2) (third row in fig. 5.3), can be

compared with the recorded event shown in Fig. 5.2. In both simulation and observations,

the lower region is almost dark whereas the low conductivity region glows strongly. 1PN2

emissions are determined by the electron density and the reduced electric field. Despite

its low conductivity, the upper region emits more intensely because the excitation rate of

the 1PN2 is highly non-linear in the reduced electric field as figure 5.4 shows. This glow-

ing structure in the upper part of the channel agrees with observations, as the first frame

103



5. ON THE EMERGENCE MECHANISM OF CARROT SPRITES

Time = 0 ms Time = 1.15 ms Time = 1.30 ms Time = 1.50 ms Time = 2.00 ms

! "
#$
(&
')

) #
(*

+,
)

1P
N2
	em

iss
ion

s(
⁄

9ℎ
;<
;)
=
=*

, )

Time = 3.89 msTime = 1.40 ms

Joint

Figure 5.3: Cross sections of a 3D simulation in a box domain 20 km× 20 km× (40− 80) km.
We show the evolution in terms of the reduced electric field (top row), the electron density
(middle row) and the emissions in the First Positive System of molecular nitrogen (1PN2).
The channel develops a sharply defined region above 70 km characterized by high reduced
electric fields and low conductivity that strongly emits in the 1PN2 for a long time. At 1.15 ms,
a negative streamer emerges close to the lower boundary of the glowing structure, propagates
upwards and connects to the electron reservoir in the upper region of the computational domain.
The rightmost two columns highlight the effect of the upward streamer on the 1PN2 emissions
for altitudes above 76 km.
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Figure 5.4: Non-linear behaviour of the rate coefficient for the production of N2(B3Πg).

of Fig. 5.2 shows. In chapter 4 we saw that the appearance of this glowing structure is

driven by the attachment instability (Douglas-Hamilton and Mani, 1973, 1974), which is

triggered by relatively high internal electric fields. This is the reason why sprite glows

appear in the upper region of the sprite channel (Luque et al., 2016a).

The boundary of the glow region is characterized by a net negative charge density as

previously shown by Luque and Ebert (2010). This is due to current continuity: elec-

trons drift upwards and, around 0.8 ms into our simulation, the electron density exceeds

the density of positive ions. In the low conductivity region electrons are more effectively

converted to negative ions which, being slower than electrons, accumulate there, leading to

a surplus of negative charge that locally enhances the electric field. This electric field has

both a vertical and a lateral component, and at some point, becomes high enough to launch

a negative streamer near the lower boundary of the glow. The streamer propagates up-

wards with a velocity of 2 × 107 m/s, typical of streamer observations (Stenbaek-Nielsen
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et al., 2013), and connects to the electron reservoir in the lower ionosphere (see figure 5.3).

This is very similar to previous works (Pasko and Stenbaek-Nielsen, 2002) and our results

(fourth frame in fig. 5.3 ). Other works (Li et al., 2011; Bór, 2013) show upward streamers

bending towards the main streamer channel. In our simulation, the upward streamer prop-

agation is mostly straight because we apply a small lateral field that charges negatively the

side of the glow closer to the negative upward streamer, which is slightly repelled.

The left plot of fig. 5.5 shows the evolution of the electric current at different altitudes

according to the following equation:

I =

∫
Ω={r=[0,R],z=h}

j · ds = 2π
∫ R

0
jz (r, z = h) rdr, (5.3)

where jz is the axial component of the current density at z = h, r is the radial coordinate

(cylindrical coordinates) and R is the radial extent of the integration domain. Solid lines

represent the electric current flowing through the main sprite channel (R = 400 m) while

dashed lines are the current flowing through cross sections spanning the full lateral extent

of the domain (R = 20 km). Initially in the main streamer channel (solid lines) the electric

current at different altitudes quickly converges (∼ 0.5 ms) to the same value despite the

initial differences in the background electron density, air density and reduced electric field

for each altitude. Afterwards (∼ 1.4 ms), the upward streamer sets two regions below and

above 70 km. In the whole system (dashed lines), we see sudden current increases at 74 km

and 76 km. The peaks for those altitudes at 1.3 ms and 1.4 ms are due to the passing of the

upward streamer head (Luque et al., 2017).

As visible in fig. 5.3, the launch point of the upward streamer is slightly separated from

the main channel. The resulting gap or joint initially has a low electron density but around

1.4 ms, this joint between the upward streamer and the main channel becomes more con-

ductive (see Fig. 5.3) and, as a result, the currents at 68 km and 70 km slope upward. Right

after, most of the current starts to flow through the secondary streamer channel, since its

higher electron density allows for a higher conductivity, and within the next 0.3 ms and for

altitudes above 70 km the current halves inside the central channel, which has lower elec-

tron density. In the system composed of both the main channel and the upward streamer

channel, Kirchhoff’s current law is a reasonable approximation despite not being strictly

applicable to this finite-conductivity, non-steady-state system. The subsequent decay of
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the currents at different altitudes seems to obey a similar decay constant. This decay is

due to the transport of charges inside the streamer channel that increasingly screens the

background electric field. Also noticeable is a current peak around 2.7-2.8 ms at 74 km.

This is caused by two negative upward streamers that symmetrically emerge from the main

channel, propagate upwards and reconnect to the main channel.

1PN2 emissions are useful to track the evolution of the main streamer channel and the

impact of the secondary channel on it. In the right panel of fig. 5.5 we plot the evolution of

the 1PN2 emissions integrated over 1 km-height boxes centered at the channel axis, with

the lateral extension of the channel diameter (800 m). The emissions at 68 km rapidly drop

due to the screening of the electric field. At other altitudes, specially at 76 km, the effect of

the upward streamer is clear after the rise in conductivity in the joint between the upward

streamer and the main channel (see Fig. 5.3). Above 70 km the upward streamer induces

a reduction of the light emissions whereas below 70 km the emissions slightly increase.

When the upward streamer effectively connects (joint becomes conductive enough) to the

main streamer channel, the joint glows strongly (at around 1.5 ms in Fig. 5.3). In the

observations of Fig. 5.2, this occurs around 0.3-0.5 ms. Later, the emissions in the upper

section of the glow decay noticeably. The optical structure of the remnant emissions in

the last two frames matches what we see in our simulations (Fig. 5.3), where most of the

emissions come from the lower part of the glow and the region of the upward streamer

channel closer to it.

The last stage in the evolution of the upward streamer in our simulation reveals an in-

teresting result (fig. 5.3, last column). The secondary streamer channel develops a sharply

defined glowing similar to the glow in the main channel. This portion of the secondary

channel has entered the attachment instability regime at around 1.4 ms. As a result, the

upper boundary of this structure is positively charged and, by a mechanism similar to the

one we have described above, it may launch a positive downward streamer. The result-

ing optical emissions in that case would feature a vertical channel accompanied at its side

by an inverted V. Although infrequently, this formation has indeed been observed and is

called “angel” sprite (Pasko et al., 2012; Bór, 2013).

As mentioned above, we tested two chemical models. We discarded one including

detachment because it cannot reproduce long-lasting glows beyond the detachment time
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Figure 5.5: The left plot shows the evolution of the electric current flowing through the main
streamer channel (solid lines) and the whole domain (dashed lines). Sudden peaks in the cur-
rent reveal the passing of the upward streamer head at that altitude. At around 1.4 ms the up-
ward streamer channel and the main streamer channel get effectively connected cutting off the
current flowing in the main channel above 70 km. Subsequent peaks in the current at different
altitudes are caused by two negative streamers that emerge from the glow and reconnect to the
main channel. The plot to the right shows the emissions from the 1PN2 integrated over a 1km-
height box. It clearly shows the effect of the upward streamer, specially at 76 km. Nonetheless,
there is also a decrease in the luminosity for 72 km and 74 km.

scale around 2 ms. An extensive discussion about the implications of detachment on the

glow emissions can be found in Luque et al. (2016a). According to other simulations that

we do not provide here, detachment delays the upward streamer but does not prevent it as

long as its onset occurs before 2 ms (in our simulations) .

The morphology of the sprite is related to the electric field at mesospheric altitudes. We

tested electric fields with smaller vertical components, and we found that for lower electric

fields the glow is shorter. This means that the upward streamer, if it were to appear, would

emerge later. If the glow is too small to accumulate enough charge at the lower boundary,

it is unlikely that it launches upward streamers. Column-sprites, which are associated to

less intense electric fields (Qin et al., 2013a,b), would hardly launch upward streamers.
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5.5 Conclusions

Our simulations show for the first time the evolution of a sprite streamer channel where

a glow region forms in its upper part and launches several upward streamers. We have

proposed a mechanism for the emergence of carrot sprites: the sprite glow results from an

attachment instability that seeds the lower boundary of the glow with negative charge that

locally enhances the electric field and finally launches an upward negative streamer. The

evolution of the upward streamer and the glow itself agrees well with observations for the

time scales we have simulated. Essentially, the upward streamer cuts off the current flow-

ing from the lower part of the sprite channel to the glow region, which then darkens. This

agrees with many observations where the glow gets dimmer once the upward streamers are

emitted. Of course, the details depends on the strength and number of upward streamers.

In their last stage, our simulations reveal a region in the upward streamer that mimics the

glowing structure in the main channel. We have seen that positive charge accumulates in

its upper boundary. This new region might be the origin of positive downwards streamers

which would give rise to the “angel” sprite structure (Pasko et al., 2012; Bór, 2013). Ob-

servations rarely report “angel” sprites and in our simulations, we have not succeeded in

reproducing them. Therefore, its production must be constrained to a small subset in our

parameter space.

There is still a puzzling question concerning the electron detachment in sprite simula-

tions. It is a process that we should consider to study the streamer propagation for suffi-

ciently long times. However, results point out that detachment should somehow be sup-

pressed or treated in a different way. At atmospheric pressure the presence of a sufficiently

high water concentration effectively suppresses the electron detachment (see chapter 4).

Noctilucent clouds reveal the presence of water at sprite altitudes. Whether this suffices

to affect detachment noticeably is still unknown. Nevertheless, water is a candidate to be

considered in future work.

In this chapter we have seen how the attachment instability is able to develop sharply

defined regions in sprite streamer channels that readily launch upward-sideways stream-

ers. This could be somehow similar to those streamers that emerge from the space stem

precursor. We have also seen that the electron detachment is closely related to the lifetime
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of persistent glowing structures in sprites. In the next chapter we will explore the influ-

ence of water in the space stem development as well as the role of secondary streamers in

sustaining the electron conductivity in this region.
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Chapter 6

Stepping mechanism in humid air

6.1 Introduction

An outstanding problem in long spark discharges is the polarity asymmetry: Observations

of natural and artificial lightning (Hill et al., 2011; Biagi et al., 2010, 2014; Gamerota

et al., 2014; Jiang et al., 2017), as well as laboratory long spark discharges (Les Re-

nardières group, 1978a; Gorin et al., 1976), show that in virgin air negative leaders prop-

agate in a stepped manner, mediated by an isolated segment in the streamer corona, the

space stem. On the other hand, positive leaders propagate in a continuous fashion in the

most common laboratory conditions of dry air and fast rise-time voltage generators. (Les

Renardières group, 1978b; Domens et al., 1991; Gallimberti et al., 2002).

By stepping, we mean an abrupt elongation of the leader channel followed by a streamer

corona outburst emerging from the new leader tip. The stepped propagation is not exclu-

sive of negative leaders.In lightning, positive leaders exhibit both, continuous and stepped

propagation (Rakov and Uman, 2003b; Wang et al., 2016; Srivastava et al., 2019; Gao

et al., 2020). Some authors (Saba et al., 2015) argue that in some cases, the stepped prop-

agation of positive leaders may be triggered by steps of a negative leader tip at the opposite

end of the channel and therefore not a feature of its own. However, studies of laboratory

positive leaders carried out by Les Renardières group (1978b) and more recently by Kostin-

skiy et al. (2018) observed the abrupt elongation of positive leaders in conditions where

they could discard an induced stepped propagation.
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Yet, an important feature is still missing in the positive leader stepping. The observa-

tion of space stems is limited. Kostinskiy et al. (2018); Huang et al. (2020) observed the

formation of space-stem-like structures in the streamer corona of positive stepped leaders

under high humidity conditions. Similar structures were observed in stepped positive lead-

ers in triggered lightning by (Jiang et al., 2020). In none of these cases, it is clear whether

these structures extend from the primary channel or there is an actual gap.

Humidity conditions seem to be a relevant factor to understand the stepped propagation

of leader discharges. There are two well known effects on a streamer channel regarding the

water vapor content of air (Gallimberti, 1979; Phelps and Griffiths, 1976): 1) an increase

of the 3-body attachment rate and 2) it prevents the electron detachment from O− and O−2

through the formation of water clusters O− (H2O) and O−2 (H2O)n.

In chapter 4, we showed the formation of space stem precursors ahead of a leader

channel and stressed the importance of water vapor on its onset. However, those results

were limited to a time scale of 100 ns. This chapter is a step forward in the modeling of

the streamer-to-leader transition. To do so, we update the model described in chapter 2

by extending the chemistry used in chapter 3, tracking the evolution of the N2 vibrational

energy, and taking into account the effects due to the non-equilibrium condition TV � T .

With our updated model we study the evolution of a space stem precursor for longer time

scales under a current-driven approach in dry and humid air, trying to understand the

effects of water vapor on the streamer-to-leader transition. The forced current is meant

to mimic the effect of a counter-propagating streamer corona launched from the space

stem.

6.2 Model

In this chapter, we study the early stages of the streamer-to-leader transition driven by an

externally imposed electric current I that results from the inception of a counter-propagating

streamer corona from the space stem. In chapter 3, we worked with temperatures of a few

Kelvin above room temperature and therefore we considered the system decoupled from

the vibrational degrees of freedom, i.e. the characteristic time of our system was much

shorter than the vibrational-translational relaxation time scale.
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This time, the system will reach 1000 K to 2000 K and a non-equilibrium vibrational

evolution TV � T . Thus, it is convenient to track the evolution of the vibrational energy

of N2 molecules, which is given by the following equation (da Silva and Pasko, 2013)

∂εvib
∂t

+ ∇ · (εvibv) = Qe f f
vib , (6.1)

where εvib is the vibrational energy density and Qe f f
vib is the net energy density deposition

rate in the vibrational degrees of freedom. The vibrational energy is related to the (effec-

tive) vibrational temperature TV through the harmonic oscillator formula (Capitelli et al.,

2000)

εvib =
nN2~ω

e
~ω

kBTV − 1
, (6.2)

where ~ω = 0.29 eV is the vibrational quantum of the N2 molecule and nN2 is the N2

number density.

Note that in equation 6.1 we neglect the diffusion of vibrationally excited nitrogen

molecules (Shneider et al., 2012) since the associated time scale is on the order of tens of

microseconds, still far from the time scales that we will reach.

As we discussed in chapter 1, the drifting of charged species, that is, the electric cur-

rent, underlies an energy exchange between charged particles and the neutral molecules of

the background gas. The power density released by the electric current is given by equa-

tion 4.2. Figure 6.1 shows the energy flow of the Joule heating term Q. The ionic power

Qi is considered to instantly relax into translational energy (da Silva and Pasko, 2013).

On the other hand, the electronic power QE is unequally distributed between the different

degrees of freedom. Most of it goes to vibrationally excite nitrogen molecules (QV ). The

second largest contribution goes into the excitation of N2, O2 and H2O electronic states,

including ionization. A small part of the electronic power is spent in elastic collisions QL

and the excitation of rotational levels of N2 but also O2 and H2O (Capitelli et al., 2000)

Rotational levels quickly relax into translational energy and thus, we include them in the

term QL. The electronic states are mainly deactivated by quenching collisions. The time

scale associated with this energy exchange is shorter than the heating time scale and there-
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Figure 6.1: Energy flow chart that shows the partition of the Joule heating term Q into the
different degrees of freedom of the background gas reproduced from Liu and Becerra (2017)

fore this contribution is referred as fast heating (Popov, 2011), usually denoted as QT . In

this work we assume that QT ≈ 30%QE (Popov, 2011).

Here, we calculate QV and QE using Bolsig+ (Hagelaar and Pitchford, 2005). For

the electronic power, we take into account electron-impact reactions, step-wise ionization,

excitation of electronic states, and electron-impact dissociation reactions (see section A.2

in the Appendix).

There are three different mechanisms for the vibrational-translational energy exchange

that we note as QVT , QVV and QD in figure 6.1.

The term QVT refers to the vibrational-translational energy exchange in collisional-

quenching deactivation of N2 (v = 1) vibrations, that is,

N2 (v = 1) + M j → N2 (v = 0) + M j, (6.3)
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where M j denotes the species in Table 6.1. QVT is given by (Capitelli et al., 2000)

QVT =
εvib (Tv) − εvib (T )

τVT
, (6.4)

where τVT is the vibrational-translational relaxation time scale defined as (Chernyi, 2002)

1
τVT

=

(
1 − e−

~ω
kBT

)∑
j

kVT
j n jL j, (6.5)

with kVT
j being the de-excitation rate coefficient of the vibrations N2(ν = 1) with jth

species (see Table 6.1)) and L j the Losev correction factor (Capitelli et al., 2000) that takes

into account the dependence of QVT on the vibrational temperature and the anharmonicity

of the N2 potential. However, we will set L j = 1 since the correction in QVT due to

these effects is negligible compared to the weight of the translational temperature in the

vibrational-translational time scale.

A nitrogen molecule can be excited vibrationally (v → v′, v′ > v) by electron impact.

This excitation requires a quantum of energy ~ω. The energy is not indefinitely stored in

the first level but can be exchanged through the vibrational-vibrational (VV) reaction

N2 (v) + N2

(
v′
)
→ N2 (v − 1) + N2

(
v′ + 1

)
for v′ > v, (6.6)

populating higher vibrational levels. However, due to anharmonicity effects (unequal en-

ergy spacing between vibrational levels) part of the quantum energy is lost to translational

energy degrees of freedom. The rate of vibrational (translational) energy loss (gain) asso-

ciated with VV exchange is denoted by QVV . Nonetheless, this is a minor effect compared

to the mechanism associated with QVT . In this work, we will not consider this contribution.

The strong vibrational-translational non-equilibrium, i.e. TV � T , increases the dis-

sociation rate of N2 molecules (see section A.2 in the Appendix) and therefore the density

of vibrationally excited nitrogen molecules in the dissociation level v = vmax. The dissoci-

ation of N2 molecules removes 2QD from the vibrational energy pool where QD = ED
N2

S D,

S D is the net dissociation rate of reactions R81−85 and R96, and ED
N2

= 9.76 K is the energy

loss per dissociation act. The factor two in the energy rate removal comes from anhar-

monicity effects (Marrone and Treanor, 1963).

115



6. STEPPING MECHANISM IN HUMID AIR

Species kVT
j

(
cm3s−1

)
Reference

N2,O2,NO 6.4 × 10−12 exp
(
−137/T

1
3

)
(da Silva and Pasko, 2013)

H2O 2.06 × 10−11 exp(−54.3/T
1
3 ) (Popov, 2016)

N,O 2.3 × 10−13 exp
(
− 1280

T

)
+ 2.7 × 10−11 exp

(
− 10840

T

)
(Capitelli et al., 2000)

Table 6.1: De-excitation rate coefficients of N2(v = 1) with the jth species.

Moving on to the initial conditions, our streamer channel consists of a pre-ionized neu-

tral plasma with a depleted density around the center that mimics the space stem precursor

of chapter 4 and is given by:

ne = ne0 exp
− r2

σ2


1 − d exp

−
(
z − L

2

)2

σ2
d


 , (6.7)

where ne0 = 2 × 1020 m−3 is the peak electron density, d = 0.5 is the depletion depth,

σd = 3 mm is the depletion width and σ = 0.3 mm is the radial e-folding length (da Silva

and Pasko, 2013).

Following the work by Popov (2003); da Silva and Pasko (2013) we will use a driven-

current approach so that the axial electric field is

Ez = EOhm −
∂φ

∂z
, (6.8)

where EOhm is calculated from the current I through Ohm’s law (Popov, 2003)

EOhm =
I∫ ∞

0 σ (r) 2πrdr
, (6.9)

and φ is the electrostatic potential created by space charges in the domain with homoge-

neous Dirichlet boundary conditions at z = 0 and z = L and free boundary conditions at

the outer radial boundary following the method of chapter 3. The actual size of the com-

putational domain of our simulations is 2 cmx0.3 cm. We set a current I = 1 A (da Silva

and Pasko, 2013) and we vary the water content: from 0%, passing by 1.5% and till 3% of

absolute humidity at STP.
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Figure 6.2: Evolution of the electron density (left panel) and electric field (right panel) at the
space stem (solid lines) and far from it (dashed lines) under different humidity conditions. For
humid air, the inhomogeneity is preserved and enhanced.

6.3 Results and discussion

Figure 6.2 shows the evolution of the electron density and the electric field for a point in

the space stem region (solid lines) and far from it (dashed lines) in dry and humid air with

a water content of 1.5% and 3%.

The first thing to notice is that the electron density experiences an inversion, i.e., the

electron density at the space stem initially lower, surpasses the electron density outside of

it. This is something that we expect in a constant drive-current approach: initially, those

regions with a lower electron density are exposed to a higher electric field, in fact, above

the breakdown value, which leads to a higher ionization rate.

After this quick ionization process that takes less than 10 ns, the electric field at the

space stem decreases. In dry air, the subsequent electric field is above the breakdown

value and the electron density increases. This is not the case for humid air, in which the

electric field drops below breakdown leading to further electron depletion.

Nevertheless, in humid air, the electric field is significantly higher than in dry air. The

main consequence is a more profuse production of O− ions and atomic oxygen through the
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dissociative attachment reaction

e + O2 → O + O−. (6.10)

In dry air, O− quickly serves as the main source of electrons in the detachment reaction

O + O− → e + O2. (6.11)

However, in humid air, water molecules clusterize around O− in the reaction

O− + H2O + O2 → O− (H2O) + O2, (6.12)

preventing an early detachment through reaction 6.11. As a result, (see fig. 6.2) in humid

air, the inhomogeneity is preserved while it is removed in dry air. This also manifests in

the evolution of the gas temperature (see Fig.6.3): the space stem heats up to significantly

higher temperatures than the rest of the channel.

In humid air, an enhanced electric field is sustained around 100 ns, readily producing

O− ions and O atoms. Electron detachment through reaction 6.11 is the main mechanism

supplying electrons back to the streamer channel once these two species become suffi-

ciently abundant. Note that the electron density and temperature increase more abruptly in

humid air than in dry air, due to this higher abundance.

6.4 Conclusions

In this chapter we have studied the evolution of a space stem precursor in a driven-current

approach in dry and humid air. Under moderate electric fields, results show that water

plays a role in preserving and enhancing electron inhomogeneities in the streamer channel

as opposed to dry air, where they tend to dilute due to electron detachment processes.

As it has been discussed, space stems mediate the stepping propagation of negative

leaders. Stepping has also been observed in positive leaders, but a clear sign of space

stems is still absent. Our preliminary results and the experiments by Kostinskiy et al.

(2018) highlight the relevance of water in the stepping mechanism.
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Figure 6.3: Evolution of the gas temperature at the space stem (solid lines) and far from it
(dashed lines) for different content of water in air. In humid air, the space stem heats signifi-
cantly faster increase of temperature is more abrupt than in dry air.

In chapter 3 we discussed the emergence of space stem precursors in streamer coronas

at a smaller distance from the leader tip for positive polarity. As we argued, the attach-

ment instability is favored by sufficiently high inner electric fields in the streamer channel,

a condition that is more easily fulfilled in negative streamers. In humid air, clustering

processes, enhanced attachment and electron-ion recombination lead to a more prominent

electron depletion that turns into a high inner electric field in the streamer channel. These

conditions are more suitable to produce space stem precursors in the streamer corona of

positive leaders, away from the leader tip and therefore, easier to resolve in observations.
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Chapter 7

Summary and conclusions

7.1 Summary

Negative leaders in long spark discharges (& 2 m) propagate in a stepped fashion, meaning

that they suddenly jump after standing still for a few tens of microseconds. This propaga-

tion is mediated by the so-called space stem, an isolated, bright and warm plasma segment

inside the streamer corona ahead of the leader. The space space stem shoots counter-

propagating streamers that pave the path for its bidirectional propagation until it connects

to the main leader channel. In this way, the negatively charged end of the space stem be-

comes the new leader tip and a step is completed. Despite its relevance, the mechanism

underlying the space stem onset remains elusive.

The sequence of events described above mostly comes from observations from natural

lightning and artificial discharges. However, these observations are still far from resolving

the smallest space and time scales that could shed some light on the formation of the space

stem. At this point, numerical simulations turn out to be relevant. They allow us to study

electric discharges in a controlled environment impossible to achieve in a laboratory.

To study the propagation of leader discharges we have developed a numerical model

that couples the transport of charged species and their electrostatic interactions and gas

expansion and heating. This model has been built on top of CLAWPACK, a library that

implements Finite Volume Methods. Besides, long electric discharges involve widely sep-

arated scales that on uniform grids call for scalable models. In order to address this issue,
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our model is based on the MPI framework.

State-of-the-art numerical models seek the efficient solution of the equations at hand.

Our model is built upon a uniform grid. In these cases, solving Poisson’s equation becomes

a very time consuming task. To address this issue, we implemented a method that allows

us to encapsulate the discharge in a narrow computational domain, halving the computing

time. We have also applied this method to speed-up of the photoionization term. This

method and the test simulations are presented in chapter 3 and published in Malagón-

Romero and Luque (2018).

Our model is scalable, meaning that it is able to run in thousands of computing cores.

Taking advantage of this, we requested access to MareNostrum 4 and Picasso, supercom-

puters belonging to Red Española de Supercomputación (RES), where we have run most

of the simulations presented in this thesis.

The first of our simulations was run in MareNostrum 4. We studied the propagation of

a negative streamer emerging from the leader tip. We tested our hypothesis, whether an at-

tachment instability is a feasible mechanism to explain the onset of space stem precursors.

Our results showed that the space stem emerges in the streamer wake close to the non-

uniform electric field adjacent to the leader tip. This non-uniform electric field causes a

narrowing of the streamer channel that enhances the electric field triggering the attachment

instability locally and leading to a locally warmer plasma inhomogeneity. However, after

around 100 ns, the heating in the space stem stalls. As we argue in chapter 4, this is due to

the drop of the electric current in the streamer channel. We then propose mechanisms to

maintain this conductivity such as ionization waves or new streamer bursts emerging from

the space stem. All the results and discussion about this topic are presented in chapter 4

and published in Malagón-Romero and Luque (2019).
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7.2 Conclusions

Experiments show counter-propagating streamers emerging from pilot-systems. In the

literature, this is pointed out as a mechanism that promotes the heating in the space stem.

Similar phenomenology is observed in high-altitude electric discharges known as sprites

that develop structures known as glows that shoot counter-propagating streamers. Our next

step was to understand how the charge is distributed in these structures so they can launch

these streamers. To do that we used a 3D streamer model (AFIVO) and we simulated pre-

ionized sprite streamer channels. We observed that glows emerge due to an attachment

instability triggered in the upper region of the channel (above 70 km). This attachment

instability leads to accumulation of negative charge in the lower boundary of the glow.

Once the electric field in this region is high enough, numerous negative streamers are shot

upwards. This is essentially the mechanism underlying the carrot-sprite structure. These

results are discussed in chapter 5 and published in Malagón-Romero et al. (2020).

Unlike negative leaders, positive leaders mostly propagate in a continuous fashion.

Recently, experiments showed positive stepped propagation and possible signatures of

space stems in highly humid environment. We then moved to study the influence of wa-

ter molecules in the stepping mechanism. We know that current has to flow through the

space stem to heat it up to several thousand degrees. Then, we assumed a constant current

flowing through a pre-ionized streamer channel with a plasma inhomogeneity embedded

in its center mimicking the space stem. We carried out simulations in dry air and humid

air at different water concentrations. Our results show that under the same current, the

inhomogeneity is wiped out in dry air while it is enhanced in humid air. This is mostly

due to the clusterization of water molecules around O− and O−2 ions, that prevents the elec-

tron detachment, the main mechanism feeding the streamer wake with electrons after the

streamer head passage. This topic is presented in chapter 6 and we are working to publish

the results.

7.2 Conclusions

In this thesis we have investigated the propagation of leader channels in lightning and

long spark discharges using our in-house electro-hydrodynamic code. These are the main

conclusions from this work:

123



7. SUMMARY AND CONCLUSIONS

• Chapter 3: The performance of Poisson’s solvers based on uniform grids depends

on the computational domain size. Elongated discharges such as leader and stream-

ers are suitable for narrow domains. The method that we propose, allows to tightly

wrap the computational domain to the discharge, halving the computing time of the

simulation for the test cases that we explored.

• Chapter 4: Space stems are one of the most enigmatic elements in the streamer-to-

leader transition. They are readily produced in the advance of negative leaders in

virgin air. The results of the numerical model described in Chapter 2 show that the

propagation of streamer channels in highly non-homogeneous leader-like electric

field environments lead to narrow regions in its wake where the attachment insta-

bility is triggered depleting electrons and leading to plasma inhomogeneities that

resemble space stems. This confirms the attachment instability as a feasible mecha-

nism for the onset of space stems.

• Chapter 5: Pilot system structures as shown in Kochetov et al. (2011) shoot counter-

propagating streamers. These streamers are believed to heat the space stem to be-

come a space leader. A similar phenomenology has been observed in sprite glows.

Our results show how an attachment instability leads to a charge distribution that en-

ables sprite glows to shoot counter-propagating streamers. This mechanism explains

the well-known morphology of carrot sprites.

• Chapter 6: Space stems emerge in the streamer wake due to the action of an at-

tachment instability in highly non-uniform electric fields and the charge distribution

enables them to shoot counter-propagating streamers. These streamers force a cur-

rent through the space stem. For the fist time we show how the space stem develops

in a forced-current approach in dry and humid air. Our results point out to the rel-

evance of water vapor chemistry in the study of the space stem precursors. Water

molecules prevent electron detachment by clustering around negative ions. As a re-

sult, electron inhomogeneities such as space stem precursors are enhanced in humid

air.
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Chapter 8

Future Work

8.1 Future Work

Using the model described in chapter 2 we have carried out two different kinds of sim-

ulations: 1) simulations where we consistently studied the evolution of the conductivity

in a advancing streamer channel emerging from a leader-like tip (see chapters 4) and 2)

simulations where we imposed a constant current in a pre-ionized streamer-like channel

(see chapter 6).

Both types of simulations contributed to study the evolution of the conductivity in the

streamer channel for different time scales. However, consistently following the micro-

physics of a propagating streamer channel is computationally challenging, not to mention

the present unfeasibility to simulate the microphysics of a streamer corona. An alterna-

tive are the so-called tree-models (Luque and Ebert, 2014), where streamers are modeled

as macroscopic channels with a velocity, radius, conductivity and branching probability.

These models require some improvements such as time-dependent resistance. This resis-

tance varies due to the balance of attachment and detachment processes that we have seen

are the key to describe the formation and evolution of space stems.

The results obtained in this thesis provide a time evolution of single streamer channels,

which can be used as an input for tree-models. Our next step is to couple the leader model

with a circuit model for a streamer corona based on Luque and Ebert (2014) with the

improvements mentioned above. The coupling of the streamer-corona model to the leader
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8. FUTURE WORK

model takes place through the exchange of charge at the anchor points filaments-leader,

that is, the boundaries of the former leader model, the electrostatic interactions leader-

corona and the joule heating of air due to the current within the filaments.
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Appendix A

Chemical models

A.1 Light Emissions

Our discharge develops in a high pressure regime (atmospheric pressure), therefore the

dynamics of the charged species is heavily dominated by collisions. A fraction of these

collisions excites electronic states such as N2(B3Πg) and N2(C3Πu). These electronically

excited states undergo radiative deactivation:

N2(B3Πg)→ γFPS + N2(A3Σ+
u ), (A.1a)

N2(C3Πu)→ γSPS + N2(B3Πg), (A.1b)

and produce emissions known as First Positive System (FPS)1 and Second Positive System

(SPS) respectively. These species can also be collisionally quenched:

N2(B3Πg) + N2 → 2 N2, (A.2a)

N2(B3Πg) + O2 → N2 + 2 O, (A.2b)

N2(C3Πu) + N2 → N2(a′Σ−u ) + N2, (A.2c)

N2(C3Πu) + O2 → N2 + O(3 P) + O(1 S). (A.2d)

In our code we used electron impact excitation rates for reactions (A.1) obtained from

BOLSIG+ Hagelaar and Pitchford (2005) using the cross-section database Phelps and

1Also denoted as 1PN2 in this thesis
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A. CHEMICAL MODELS

Pitchford (1985). The reaction rates for the collisional quenching reactions (A.2) have

been obtained from Capitelli et al. (2000).

A.2 Chemical model

Table A.1 lists all the chemical reactions considered in this chapter 6. This chemical model

extends the model used by (da Silva and Pasko, 2013; Liu and Becerra, 2017), by adding

water clusters around O− and OH−. These clusters turn out to be relevant by affecting

the electron detachment time scale. The rates for reactions denoted as f (E/N) indicate a

dependence on the reduced electric field (E/N, with N ≡ nair). These rates are calculated

from Bolsig+ Hagelaar and Pitchford (2005), using the cross-section data from Phelps

and Pitchford (1985) and Itikawa (2005), both retrieved from the Lxcat web (Pancheshnyi

et al., 2012).

Now we move to explain the magnitudes appearing in table A.1.The electron temper-

ature Te as a function of the reduced electric field is given by

Te = T + ae

(
E/N
1Td

)0.46

, (A.3)

where T is the background gas temperature and ae = 3648.6 K (Vidal et al., 2002).

The ion temperature is calculated following Benilov and Naidis (2003) as

Ti = T + ai

(
E/N
1Td

)2

(A.4)

being ai = 0.13 K. The effective ion temperature Teff is defined as (Capitelli et al., 2000)

Te f f =
miT + mTi

mi + m
(A.5)

where mi and m are the masses of the colliding ion and neutral respectively.

A consequence of the vibrational-translational non-equilibrium is the acceleration of

electron-impact processes due to super elastic collisions with N2(v = 1). We take into

account this effect with a factor F following Benilov and Naidis (2003)

F = exp
[
C

exp
(
−~ω/kBTv

)
(E/N)2

]
(A.6)
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A.2 Chemical model

where kB is the Boltzmann constant and C = 6500 Td2.

Another consequence of this non-equilibrium situation is the enhancement of the dis-

sociation rate of N2. This effect is considered through the factor

Z (T,TV ) =
1 − exp

(
−~ω/kBTV

)
1 − exp

(
−~ω/kBT

) exp
(
−
θD − βT

Tm

)
, (A.7)

where θD = 113 260 K is the dissociation temperature of N2, β = 3 and 1/Tm = 1/TV−1/T .
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Reaction Rate (m3(n − 1)s−1) Reference

Electron impact ionization

1 e + O2 −−−→ O +
2 + 2e f (x0) Bolsig+

2 e + N2 −−−→ N +
2 + 2e f (x0) Bolsig+

3 e + NO −−−→ NO+ + 2e F × 5 × 10−15 × exp
(
− 460

E/N

)
34

4 e + O −−−→ O+ + 2e F × 4 × 10−15 × exp
(
− 713

E/N

)
34

5 e + H2O −−−→ H2O+ + 2e f (x0) Bolsig+

Associative ionizationt ionization

6 N + O −−−→ NO+ + e 1.5 × 10−21 × T × exp
(
−32 000

T

)
34

7 N2(A) + N2(a′) −−−→ N +
4 + e 5 × 10−17 34

8 N2(a′) + N2(a′) −−−→ N +
4 + e 2 × 10−16 34

Dissociative attachment

9 e + O2 −−−→ O + O– f (x0) Bolsig+

10 e + H2O −−−→ OH– + H f (x0) Bolsig+

11 e + H2O −−−→ O– + H2 f (x0) Bolsig+

12 e + H2O −−−→ H– + OH f (x0) Bolsig+

3-body attachment

13 e + O2 + O2 −−−→ O –
2 + O2 f (x0) Bolsig+

14 e + O2 + N2 −−−→ O –
2 + N2 1.07 × 10−43 ×

exp(1500×(1/T−1/Te ))
((Te/300)2×exp(70/T ))

34

15 e + O2 + O −−−→ O –
2 + O 1 × 10−43 81

16 e + O2 + H2O −−−→ O –
2 + H2O f (x0) Bolsig+

Electron-ion recombination

17 e + O +
2 −−−→ O + O(1 D) 2 × 10−13 ×

(
300
Te

)
34

18 e + NO+ −−−→ O + N(2 D) 4 × 10−13 ×
(

300
Te

)1.5
34

19 e + O +
4 −−−→ O2 + O2 1.4 × 10−12 ×

(
300
Te

)0.5
34

20 e + N2O +
2 −−−→ N2 + O2 1.3 × 10−12 ×

(
300
Te

)0.5
34

21 e + O +
2 + M −−−→ O2 + M 6 × 10−39 ×

(
300
Te

)1.5
34

22 e + N +
2 −−−→ N + N(2 D) 2 × 10−13 ×

(
300
Te

)0.5
81

23 e + N +
4 −−−→ N2 + N2(C) 2 × 10−12 ×

(
300
Te

)0.5
81

25 e + O +
2 · (H2O) −−−→ O2 + H2O 2 × 10−12 ×

(
300
Te

)0.5
81

25 e + H2O+ −−−→ OH + H 3.15 × 10−13 ×
(

300
Te

)0.8
81

26 e + H3O+ −−−→ H2O + H 3.15 × 10−13 ×
(

300
Te

)0.5
81

27 e + H3O+ · (H2O) −−−→ 2H2O + H 2.5 × 10−12 ×
(

300
Te

)0.5
81

28 e + H3O+ · (H2O)2 −−−→ 3H2O + H 4.5 × 10−12 ×
(

300
Te

)0.5
81

29 e + H3O+ · (H2O)3 −−−→ H + 4H2O 6.5 × 10−12 ×
(

300
Te

)0.5
1



Electron detachment

30 O– + N2 −−−→ N2O + e 1.16 × 10−18 × exp
(
−

(
48.9

11+E/N

)2
)

116

31 O– + O −−−→ O2 + e 5 × 10−16 34

32 O– + N2(A) −−−→ O + N2 + e 2.2 × 10−15 34

33 O– + O2(a) −−−→ O3 + e 3 × 10−16 34

34 O– + NO −−−→ NO2 + e 2.6 × 10−16 34

35 O –
2 + O −−−→ O3 + e 1.5 × 10−16 34

36 O –
2 + N2(A) −−−→ O2 + N2 + e 2.1 × 10−15 34

37 O –
2 + O2(a) −−−→ 2O2 + e 2 × 10−16 34

38 M + O –
2 −−−→ e + O2 + M 1.24 × 10−17 × exp

(
−

(
179

8.8+E/N

)2
)

116

39 O –
3 + O −−−→ 2O2 + e 3 × 10−16 34

40 O– + N −−−→ NO + e 2.6 × 10−16 28

41 O– + O2(b) −−−→ O + O2 + e 6.9 × 10−16 28

42 O– + N2(B) −−−→ O + N2 + e 1.9 × 10−15 28

43 O –
2 + O2(b) −−−→ 2O2 + e 3.6 × 10−16 28

44 O –
2 + N2(B) −−−→ N2 + O2 + e 2.5 × 10−15 28

45 H– + H −−−→ H2 + e 2 × 10−15 81

46 H– + O2 −−−→ HO2 + e 1.2 × 10−15 81

47 OH– + H −−−→ e + H2O 1.4 × 10−15 81

48 OH– + O −−−→ HO2 + e 2 × 10−16 49

Electron impact excitation of metastables

49 e + N2 −−−→ e + N2(A) f (x0) Bolsig+

50 e + N2 −−−→ e + N2(B) f (x0) Bolsig+

51 e + N2 −−−→ e + N2(a f (x0) Bolsig+

52 e + N2 −−−→ e + N2(C) f (x0) Bolsig+

53 e + O2 −−−→ e + O2(a) f (x0) Bolsig+

54 e + O2 −−−→ e + O2(b) f (x0) Bolsig+

Electron impact dissociation

55 e + N2 −−−→ N + N(2 D) + e f (x0) Bolsig+

56 e + O2 −−−→ O + O + e f (x0) Bolsig+

57 e + O2 −−−→ O + O(1 D) + e f (x0) Bolsig+

58 e + O2 −−−→ O + O(1 S) + e f (x0) Bolsig+

231 e + H2O −−−→ H + OH + e f (x0) 81

232 e + H2O −−−→ H2 + O + e f (x0) 81

Radiative deactivation of metastables, optical emission

59 N2(C) −−−→ N2(B) + hν2PN2 2.47 × 107 28



60 N2(B) −−−→ N2(A) + hν1PN2 1.34 × 105 28

Collisional quenching of metastables

61 N2(A) + O2 −−−→ N2 + O + O 2.54 × 10−18 34

62 N2(A) + O2 −−−→ N2 + O2(b) 7.5 × 10−19 34

63 N2(A) + O −−−→ N2 + O(1 S) 3 × 10−17 34

64 N2(A) + O −−−→ NO + N(2 D) 7 × 10−18 34

65 N2(A) + N2(A) −−−→ N2(B) + N2 7.7 × 10−17 34

66 N2(A) + N2(A) −−−→ N2(C) + N2 1.6 × 10−16 34

67 N2(B) + N2 −−−→ 2N2 2 × 10−18 28

68 N2(B) + O2 −−−→ N2 + 2O 3 × 10−16 28

69 N2(B) + N2 −−−→ N2(A) + N2 1 × 10−17 34

70 N2(a′) + O2 −−−→ N2 + O + O(1 D) 2.8 × 10−17 34

71 N2(a′) + N2 −−−→ N2(B) + N2 2 × 10−19 34

72 N2(C) + O2 −−−→ N2 + O + O(1 D) 2.5 × 10−16 34

73 N2(C) + O2 −−−→ N2 + O + O(1 S) 3 × 10−16 28

74 N2(C) + O2 −−−→ N2 + O + O 2.5 × 10−16 130

75 N2(C) + N2 −−−→ N2(B) + N2 1 × 10−17 34

76 N2(C) + N2 −−−→ N2(a′) + N2 1 × 10−17 34

77 O(1 D) + N2 −−−→ O + N2 1.8 × 10−17 × exp
(

107
T

)
34

78 O(1 D) + O2 −−−→ O + O2(b) 2.56 × 10−17 × exp
(

67
T

)
34

79 O(1 D) + O2 −−−→ O + O2 6.4 × 10−18 × exp
(

67
T

)
34

80 O(1 D) + O2 −−−→ O + O2(a) 1 × 10−18 28

81 O(1 D) + O −−−→ 2O 8 × 10−18 28

82 O(1 D) + N2O −−−→ NO + NO 7.2 × 10−17 81

83 O(1 D) + N2O −−−→ N2 + O2 4.4 × 10−17 81

84 O(1 S) + O −−−→ O(1 D) + O(1 D) 5 × 10−17 × exp
(
−301

T

)
34

85 O(1 S) + O2 −−−→ O(1 D) + O2 1.3 × 10−18 × exp
(
−850

T

)
34

86 N(2 D) + O2 −−−→ NO + O 1.5 × 10−18 ×
(

300
T

)−0.5
34

87 N(2 D) + O2 −−−→ NO + O(1 D) 6 × 10−18 ×
(

300
T

)−0.5
34

88 N(2 D) + N2 −−−→ N + N2 6 × 10−21 34

89 N(2 D) + O −−−→ N + O(1 D) 4 × 10−19 28

90 O2(a) + O2 −−−→ O2 + O2 2.2 × 10−24 ×
(

300
T

)−0.8
34

91 O2(a) + O −−−→ O2 + O 7 × 10−22 ×
(

300
T

)−0.5
81

92 O2(b) + O2 −−−→ O2(a) + O2 4.1 × 10−23 81

93 O2(b) + N2 −−−→ O2(a) + N2 2.1 × 10−21 81

94 O2(b) + O −−−→ O2(a) + O 8 × 10−20 ×
(

300
T

)−0.5
81



95 O2(b) + O −−−→ O2 + O(1 D) 3.4 × 10−17 × ( 300
T )0.1 × exp

(
− 4200

T

)
28

100 N2(A) + H −−−→ N2 + H 2.1 × 10−16 81

101 N2(A) + OH −−−→ N2 + OH 1 × 10−16 81

102 N2(A) + H2O −−−→ N2 + H + OH 5 × 10−20 81

103 N2(a′) + H2O −−−→ N2 + H + OH 3 × 10−16 81

104 O(1 D) + H2 −−−→ H + OH 1.1 × 10−16 81

105 O(1 D) + H2O −−−→ 2OH 2.2 × 10−16 81

106 O(1 D) + H2O −−−→ H2 + O2 3.57 × 10−16 81

107 O(1 D) + H2O2 −−−→ H2O + O2 5.2 × 10−16 81

108 O(1 S) + H2O −−−→ O + H2O 3 × 10−16 81

109 O(1 S) + H2O −−−→ OH + OH 5 × 10−16 81

110 O(1 S) + H2O −−−→ H2 + O2 5 × 10−16 81

111 O2(b) + H2O −−−→ O2 + H2O 4.6 × 10−18 81

Thermal dissociation and recombination

112 N2 + N2 −−−→ 2N + N2 Z × 5 × 10−14 × exp
(
− 113 200

T

) (
1 − exp

(
− 3354

T

))
34

113 N2 + O2 −−−→ 2N + O2 Z × 5 × 10−14 × exp
(
− 113 200

T

) (
1 − exp

(
− 3354

T

))
34

115 N2 + NO −−−→ 2N + NO Z × 5 × 10−14 × exp
(
− 113 200

T

) (
1 − exp

(
− 3354

T

))
34

115 N2 + O −−−→ 2N + O Z × 1.1 × 10−13 × exp
(
− 113 200

T

) (
1 − exp

(
− 3354

T

))
34

116 N2 + N −−−→ 2N + N Z × 1.1 × 10−13 × exp
(
− 113 200

T

) (
1 − exp

(
− 3354

T

))
34

117 O2 + O2 −−−→ 2O + O2 3.7 × 10−14 × exp
(
− 59 380

T

) (
1 − exp

(
− 2240

T

))
2

118 O2 + O −−−→ 3O 1.3 × 10−13 × exp
(
− 59 380

T

) (
1 − exp

(
− 2240

T

))
2

119 O2 + N −−−→ 2O + N 9.3 × 10−15 × exp
(
− 59 380

T

) (
1 − exp

(
− 2240

T

))
34

120 O2 + NO −−−→ 2O + NO 9.3 × 10−15 × exp
(
− 59 380

T

) (
1 − exp

(
− 2240

T

))
34

121 O2 + N2 −−−→ 2O + N2 9.3 × 10−15 × exp
(
− 59 380

T

) (
1 − exp

(
− 2240

T

))
34

122 NO + N2 −−−→ N + O + N2 8.7 × 10−15 × exp
(
−76 000

T

)
34

123 NO + O2 −−−→ N + O + O2 8.7 × 10−15 × exp
(
−76 000

T

)
34

124 NO + O −−−→ N + O + O 1.7 × 10−13 × exp
(
−76 000

T

)
34

125 NO + NO −−−→ N + O + NO 1.7 × 10−13 × exp
(
−76 000

T

)
34

126 NO + N −−−→ N + O + N 1.7 × 10−13 × exp
(
−76 000

T

)
34

127 N + N + M −−−→ N2 + M 8.27 × 10−46 × exp
(

500
T

)
34

128 O + O + N2 −−−→ O2 + N2 2.76 × 10−46 × exp
(

720
T

)
34

129 O + O + N −−−→ O2 + N 2.76 × 10−46 × exp
(

720
T

)
34

130 O + O + NO −−−→ O2 + NO 2.76 × 10−46 × exp
(

720
T

)
34

131 O + O + O2 −−−→ O2 + O2 2.45 × 10−43 × T−0.63 34

132 O + O + O −−−→ O2 + O 8.8 × 10−43 × T−0.63 34



133 N + O + M −−−→ NO + M 1.76 × 10−43 × T−0.5 34

134 O3 + O3 −−−→ O2 + O + O3 7.16 × 10−16 × exp
(
−11 200

T

)
81

135 O2 + O + M −−−→ O3 + M 6 × 10−46 ×
(

300
T

)2.6

136 OH + OH + N2 −−−→ H2O2 + N2 6.9 × 10−43 ×
(

300
T

)0.8
81

137 OH + OH + O2 −−−→ H2O2 + O2 6.05 × 10−43 ×
(

300
T

)3
81

138 OH + OH + H2O −−−→ H2O2 + H2O 1.54 × 10−43 × ( 300
T )2 × exp

(
183.6

T

)
81

139 O2 + H + N2 −−−→ HO2 + N2 5.94 × 10−44 ×
(

300
T

)
81

140 O2 + H + O2 −−−→ HO2 + O2 5.94 × 10−44 ×
(

300
T

)
81

141 OH + OH −−−→ H2O2 2.6 × 10−17 81

142 OH + H + N2 −−−→ H2O + N2 6.87 × 10−43 ×
(

300
T

)2
81

143 OH + H + H2O −−−→ H2O + H2O 4.38 × 10−43 ×
(

300
T

)2
81

Exchange of chemical bonds

144 O + N2 −−−→ N + NO 1.3 × 10−16 × exp
(
−38 000

T

)
34

145 N + O2 −−−→ O + NO 1 × 10−20 × T × exp
(
−3150/T

)
34

146 N + NO −−−→ O + N2 1 × 10−18 × T 0.5 34

147 O + NO −−−→ N + O2 2.5 × 10−21 × T × exp
(
−19 500/T

)
34

148 O + NO2 −−−→ NO + O2 5.5 × 10−18 × exp
(
−187.9

T

)
81

149 O3 + NO −−−→ O2 + NO2 3.16 × 10−18 × exp
(

1563
T

)
81

150 OH + OH −−−→ H2O + O 6.2 × 10−20 × ( 300
T )−2.6 × exp

(
945
T

)
81

151 OH + HO2 −−−→ H2O + O2 4.8 × 10−17 × exp
(

250
T

)
81

152 OH + O −−−→ H + O2 2.4 × 10−17 × exp
(

110
T

)
81

153 HO2 + HO2 −−−→ H2O2 + O2 2.2 × 10−25 × exp
(

600.2
T

)
81

154 HO2 + NO −−−→ OH + NO2 3.6 × 10−18 × exp
(

269.4
T

)
81

155 HO2 + HO2 + M −−−→ H2O2 + O2 + M 1.9 × 10−45 × exp
(

980
T

)
81

156 H + HO2 −−−→ H2 + O2 1.75 × 10−16 × exp
(
−1030

T

)
81

157 H + HO2 −−−→ H2O + O 5 × 10−17 × exp
(
−866

T

)
81

158 H + HO2 −−−→ OH + OH 7.4 × 10−16 × exp
(
−700

T

)
81

159 O + HO2 −−−→ OH + O2 2.7 × 10−17 × exp
(

224
T

)
81

160 O3 + H −−−→ OH + O2 1.4 × 10−16 × exp
(
−480

T

)
81

161 O3 + OH −−−→ O2 + HO2 1.7 × 10−18 × exp
(
−940

T

)
81

Positive ion conversion

162 O +
4 + O2(a) −−−→ O +

2 + 2O2 1 × 10−16 34

163 O +
4 + O −−−→ O +

2 + O3 3 × 10−16 34

164 O +
2 + 2O2 −−−→ O +

4 + O2 2.4 × 10−42 ×

(
Te f f
300

)−3.2
34

165 N2O +
2 + O2 −−−→ O +

4 + N2 1 × 10−15 34

166 O +
2 + 2N2 −−−→ N2O +

2 + N2 9 × 10−43 ×

(
Te f f
300

)−2
34



167 O +
4 + N2 −−−→ N2O +

2 + O2 4.61 × 10−18 ×

(
Te f f
300

)2.5
× exp

(
− 2650

Te f f

)
34

168 N2O +
2 + N2 −−−→ O +

2 + 2N2 1.1 × 10−12 ×

(
Te f f
300

)−5.3
× exp

(
− 2357

Te f f

)
34

169 O +
4 + O2 −−−→ O +

2 + 2O2 3.3 × 10−12 ×

(
Te f f
300

)−4
× exp

(
− 5030

Te f f

)
34

170 O +
2 + N2 −−−→ NO+ + NO 1 × 10−26 ×

(
Te f f
300

)−2
81

171 O +
2 + N −−−→ NO+ + O 1.2 × 10−16 34

172 O +
2 + NO −−−→ NO+ + O2 4.4 × 10−16 34

173 O +
4 + NO −−−→ NO+ + 2O2 1 × 10−16 34

174 N +
2 + N2 + M −−−→ N +

4 + M 5 × 10−41 ×
(

300
T

)2
1

175 N +
2 + O2 −−−→ O +

2 + N2 6 × 10−17 ×

(
Te f f
300

)−0.5
81

176 N +
4 + N2 −−−→ 2N2 + N +

2 2.1 × 10−22 ×

(
Te f f
300

)0.5
81

177 N +
4 + O2 −−−→ 2N2 + O +

2 2.5 × 10−16 ×

(
Te f f
300

)0.5
81

178 O+ + O2 −−−→ O +
2 + O 2 × 10−17 ×

(
Te f f
300

)−0.4
81

179 O+ + N2 −−−→ NO+ + N 1.2 × 10−18 ×

(
Te f f
300

)−1
81

180 O+ + N2 + O2 −−−→ NO+ + N + O2 6 × 10−41 ×

(
Te f f
300

)−2
81

181 O+ + N2 + N2 −−−→ NO+ + N + N2 6 × 10−41 ×

(
Te f f
300

)−2
81

Negative ion conversion

182 O– + O2(a) −−−→ O –
2 + O 1 × 10−16 34

183 O –
2 + O −−−→ O2 + O– 3.3 × 10−16 34

184 O –
3 + O −−−→ O –

2 + O2 3.2 × 10−16 34

185 O2 + O– + M −−−→ O –
3 + M 1.1 × 10−42 × exp

(
−

(
E/N
65

)2
)

116

186 O2 + O– −−−→ O –
2 + O 6.96 × 10−17 × exp

(
−

(
198

5.6+E/N

)2
)

116

187 H– + H2O −−−→ OH– + H2 3.8 × 10−15 81

188 O– + H2O −−−→ OH– + OH 6 × 10−19 45

2-body ion-ion recombination

189 O– + O +
2 −−−→ O + O2 2 × 10−13 × ( 300

Ti
)0.5 34

190 O –
2 + O +

2 −−−→ O2 + O2 2 × 10−13 × ( 300
Ti

)0.5 34

191 O –
3 + O +

2 −−−→ O3 + O2 2 × 10−13 × ( 300
Ti

)0.5 34

192 O– + NO+ −−−→ O + NO 2 × 10−13 × ( 300
Ti

)0.5 34

193 O –
2 + NO+ −−−→ O2 + NO 2 × 10−13 × ( 300

Ti
)0.5 34

194 O –
3 + NO+ −−−→ O3 + NO 2 × 10−13 × ( 300

Ti
)0.5 34

195 O– + N +
2 −−−→ O + N2 2 × 10−13 × ( 300

Ti
)0.5 74

196 O– + O+ −−−→ O + O 2 × 10−13 × ( 300
Ti

)0.5 74

197 O –
2 + N +

2 −−−→ O2 + N2 2 × 10−13 × ( 300
Ti

)0.5 74

198 O –
2 + O+ −−−→ O2 + O 2 × 10−13 × ( 300

Ti
)0.5 74



199 O –
3 + N +

2 −−−→ O3 + N2 2 × 10−13 × ( 300
Ti

)0.5 74

200 O –
3 + O+ −−−→ O3 + O 2 × 10−13 × ( 300

Ti
)0.5 74

201 O– + O +
2 −−−→ 3O 1 × 10−13 34

202 O– + NO+ −−−→ 2O + N 1 × 10−13 34

203 O– + O +
4 −−−→ O + 2O2 1 × 10−13 34

204 O– + N2O +
2 −−−→ O + O2 + N2 1 × 10−13 34

205 O –
2 + O +

2 −−−→ O2 + 2O 1 × 10−13 34

206 O –
2 + NO+ −−−→ O2 + O + N 1 × 10−13 34

207 O –
2 + O +

4 −−−→ 3O2 1 × 10−13 34

208 O –
2 + N2O +

2 −−−→ 2O2 + N2 1 × 10−13 34

209 O –
3 + O +

2 −−−→ O3 + 2O 1 × 10−13 34

210 O –
3 + NO+ −−−→ O3 + N + O 1 × 10−13 34

211 O –
3 + O +

4 −−−→ O3 + 2O2 1 × 10−13 34

212 O –
3 + N2O +

2 −−−→ O3 + O2 + N2 1 × 10−13 34

213 O– + N +
2 −−−→ O + 2N 1 × 10−13 74

214 O –
2 + N +

2 −−−→ O2 + 2N 1 × 10−13 74

215 O –
3 + N +

2 −−−→ O3 + 2N 1 × 10−13 74

216 O– + N +
4 −−−→ O + 2N2 1 × 10−13 74

217 O –
2 + N +

4 −−−→ O2 + 2N2 1 × 10−13 74

218 O –
3 + N +

4 −−−→ O3 + 2N2 1 × 10−13 74

229 A+ + B– −−−→ 1 × 10−13 74

3-body ion-ion recombination

219 O– + O +
2 + O2 −−−→ O + O2 + O2 2 × 10−37 × ( 300

Ti
)2.5 34

220 O –
2 + O +

2 + O2 −−−→ O2 + O2 + O2 2 × 10−37 × ( 300
Ti

)2.5 34

221 O– + NO+ + O2 −−−→ O + NO + O2 2 × 10−37 × ( 300
Ti

)2.5 34

222 O –
2 + NO+ + O2 −−−→ O2 + NO + O2 2 × 10−37 × ( 300

Ti
)2.5 34

223 O –
2 + O +

4 + O2 −−−→ 3O2 + O2 2 × 10−37 × ( 300
Ti

)2.5 34

224 O– + O +
2 + N2 −−−→ O + O2 + N2 2 × 10−37 × ( 300

Ti
)2.5 34

225 O –
2 + O +

2 + N2 −−−→ O2 + O2 + N2 2 × 10−37 × ( 300
Ti

)2.5 34

226 O– + NO+ + N2 −−−→ O + NO + N2 2 × 10−37 × ( 300
Ti

)2.5 34

227 O –
2 + NO+ + N2 −−−→ O2 + NO + N2 2 × 10−37 × ( 300

Ti
)2.5 34

228 O –
2 + O +

4 + N2 −−−→ 3O2 + N2 2 × 10−37 × ( 300
Ti

)2.5 34

Water cluster ions

233 O –
2 + H2O + M −−−→ O –

2 · (H2O) + M 2.2 × 10−40 50

234 O –
2 · (H2O) + M −−−→ O –

2 + H2O + M 5.5 × 10−15 × exp
(
−1.281 16 × 10−19

kBTi

)
50



235 O –
2 · (H2O) + H2O + M −−−→ O –

2 · (H2O)2 + M 5 × 10−40 50

236 O –
2 · (H2O)2 + M −−−→ O –

2 · (H2O) + H2O + M 1.25 × 10−14 × exp
(
−5.801 33 × 10−20

kBTi

)
50

237 O –
2 · (H2O)2 + H2O + M −−−→ O –

2 · (H2O)3 + M 5 × 10−41 50

238 O –
2 · (H2O)3 + M −−−→ O –

2 · (H2O)2 + H2O + M 1.25 × 10−15 × exp
(
−4.488 21 × 10−20

kBTi

)
50

239 O +
2 + H2O + M −−−→ O +

2 · (H2O) + M 2.6 × 10−40 1

240 O +
2 · (H2O) + H2O −−−→ H3O+ + OH + O2 3 × 10−16 1

230 O +
4 + H2O −−−→ O +

2 · (H2O) + O2 1.5 × 10−15 ×
(

300
T

)−0.5
105

241 H3O+ + H2O + M −−−→ H3O+ · (H2O) + M 3 × 10−39 1

242 H3O+ · (H2O) + H2O + M −−−→ H3O+ · (H2O)2 + M 3 × 10−39 1

243 H3O+ · (H2O)2 + H2O + M −−−→ H3O+ · (H2O)3 + M 3 × 10−39 1

244 O– + H2O + O2 −−−→ O– · (H2O) + O2 1.3 × 10−40 145

245 O– · (H2O) + H2O −−−→ OH– · (H2O) + OH 1 × 10−17 145

246 OH– + H2O + O2 −−−→ OH– · (H2O) + O2 2 × 10−40 8

247 OH– · (H2O) + O2 −−−→ OH– + H2O + O2 5 × 10−15 × exp
(
−1.174 16 × 10−19

kBTi

)
8

248 OH– · (H2O) + H2O + O2 −−−→ OH– · (H2O)2 + O2 3 × 10−40 8

249 OH– · (H2O)2 + O2 −−−→ OH– · (H2O) + H2O + O2 7.5 × 10−15 × exp
(
−7.434 03 × 10−20

kBTi

)
8

250 OH– · (H2O)2 + H2O + O2 −−−→ OH– · (H2O)3 + O2 1 × 10−40 8

251 OH– · (H2O)3 + O2 −−−→ OH– · (H2O)2 + H2O + O2 2.5 × 10−15 × exp
(
−5.697 11 × 10−20

kBTi

)
8

252 OH– · (H2O)3 + H2O + O2 −−−→ OH– · (H2O)4 + O2 1 × 10−40 8

253 OH– · (H2O)4 + O2 −−−→ OH– · (H2O)3 + H2O + O2 2.5 × 10−15 × exp
(
−3.890 71 × 10−20

kBTi

)
8

254 OH– · (H2O)4 + H2O + O2 −−−→ OH– · (H2O)5 + O2 1 × 10−40 8

255 OH– · (H2O)5 + O2 −−−→ OH– · (H2O)4 + H2O + O2 2.5 × 10−15 × exp
(
−2.931 93 × 10−20

kBTi

)
8
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