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mi carrera profesional.

Gracias también a todos mis compañeros del IAA por haberme abierto
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Abstract

The use of Fabry-Pérot etalons as tunable narrow-band filters has consol-
idated over the last decades in solar instrumentation. However, its per-
formance has been evaluated in most studies only to some extent —e.g.,
assuming purely monochromatic effects, isotropy, or ideal illumination—.
In this work we address the spectral, polarimetric, and imaging features of
Fabry-Pérot etalons and their influence in solar spectropolarimeters in both
collimated and telecentric configurations with especial considerations on (i)
the quasi-monochromatic nature of the observations, (ii) possible birefrin-
gent effects appearing in solid etalons, (iii) imperfections on the illumination
and (iv) the impact of etalon defects.

This thesis is based on a series of four papers on Fabry-Pérot etalon-
based instruments published in The Astrophysical Journal Supplement Se-
ries. In the first paper we start with a general outlook of the basic character-
istics of etalons. We revisit the historical approach followed to evaluate the
impact of irregularities and inhomogeneities of etalons on the transmission
profile and we generalize the commonly employed expressions for the finesse
of the profile to any arbitrary magnitude of the defects in both air-gapped
and crystalline etalons. We examine the spectral and imaging response
of each setup, collimated or telecentric, including the polychromatic effects
caused by the finite bandpass of the filter and possible deviations from ideal
illumination. In particular, we pay special attention to pupil apodization
effects occurring in telecentric mounts and we focus on the consequences of
the asymmetries, shifts and widenings induced on the transmission profile
and point-spread functions when the etalon is tilted with respect to the op-
tical axis of the instrument, when considering errors in the alignment of the
optical components, or by departures from the ideal paraxial propagation
of light through the instrument.

In the second paper, we tackle the polarimetric response of anisotropic
etalons filled with a solid material (e.g., LiNbO3). We find that the analyti-
cal form for the Mueller matrix of etalons that exhibit an arbitrary birefrin-
gence depends only on four spectral coefficients that vary rapidly along the
bandpass and show that the polarimetric response can be arranged as the
combined Mueller matrices of a retarder and a mirror, properly modulated
across the transmission profile. We derive a compact expression for the
Mueller matrix of collimated etalons and we present explicit formulae to
numerically evaluate the coefficients of the Mueller matrix for the telecen-
tric configuration. We take care of the different orientations of the principal
plane of the crystal in the two configurations and we present the explicit
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dependence of the birefringence induced in uniaxial crystals with the direc-
tion of the incident light beam and with the orientation of the optical axis,
necessary to evaluate the Mueller matrix. Then, we assess the response
of a Z-cut etalon for the telecentric and collimated cases and study the
dependence of their PSFs with the polarization of incident light.

In the third paper, we evaluate the spurious plasma velocities and mag-
netic field signals induced by the effects studied in the previous papers:
pupil apodization arising in telecentric setups, asymmetries on the pupil
apodization in imperfect telecentric mounts, and the birefringent effects
that appear in the two mounts when a uniaxial etalon is employed. For this
purpose, we simulate a spectropolarimeter in configurations similar to the
ones of PHI (Solanki et al., 2020) and IMaX (Mart́ınez Pillet et al., 2011)
and we compare the line-of-sight plasma velocities and magnetic signals
with the ones obtained when assuming an ideal behavior. We take care of
the etalon location within the optical train and we distinguish between two
important cases: when the etalon is placed after the polarimeter (occuring
in dual-beam instruments) and when it is located before the analyzer. We
also evaluate the possible contamination between orthogonal channels in
dual-beam instruments. We show that birefringence has a minimal impact
on the measured Stokes vector compared to the typical artificial signals
expected by pupil apodization.

In the fourth paper, we find an analytical formula that describes the
transmitted electric field in telecentric mounts, in excellent agreement with
the numerical solution of the electric field equation. We use such an expres-
sion to infer both the transmission profile and the transmitted wavefront
and we derive expressions for the analytical derivatives of the electric field
in order to carry out sensitivity analyses of these parameters. In particu-
lar, we obtain explicit expressions for the wavefront degradation produced
by errors across the footprint of the incident beam and we discuss their
maximum allowed magnitude to achieve diffraction-limited performance.
We focus on the dependence of the wavefront error with the f -number,
with the reflectivity and with the spectral resolution, taking care of the
integrated response of the instrument across the transmission profile. We
discuss the intrinsic errors on the optical phase introduced by the finite f -
number of the incident beam and we compare qualitatively the performance
of telecentric mounts with the one expected in collimated setups attending
to considerations related to the size, quality, and cost of the etalon and of
the instrument itself. Finally, we propose a method to analytically evaluate
the Mueller matrix of telecentric etalons adapting the formulation derived
for the isotropic case.
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Resumen

El uso de etalones Fabry-Pérot como filtros sintonizables de banda estrecha
se ha consolidado a lo largo de las últimas decadas en instrumentación solar.
Sin embargo, en la mayoŕıa de estudios realizados hasta ahora se ha evalu-
ado su comportamiento sólo hasta cierto punto —por ejemplo, suponiendo
efectos puramente monocromáticos, isotroṕıa o iluminación ideal—. En
este trabajo abordamos las caracteŕısticas espectrales, polarimétricas y de
calidad de imagen de los etalones Fabry-Pérot, aśı como su influencia en es-
pectropolaŕımetros solares en la configuración colimada y en la telecéntrica,
prestando una atención especial a (i) la naturaleza cuasi-monocromática de
las observaciones, (ii) los posibles efectos birrefringentes que aparecen en
etalones sólidos, (iii) las imperfecciones en la iluminación y (iv) el impacto
de los defectos del etalón.

Esta tesis está formada por una compilación de cuatro art́ıculos so-
bre instrumentos basados en etalones Fabry-Pérot que hemos publicado en
The Astrophysical Journal Supplement Series. En nuestro primer art́ıculo
comenzamos con una revisión general de las caracteŕısticas de los etalones.
Repasamos el enfoque histórico seguido para evaluar el impacto de las ir-
regularidades e inhomogeneidades de los etalones en el perfil de transmisión
y generalizamos las expresiones empleadas comúnmente para la fineza del
perfil con el fin de incluir defectos de magnitud arbitraria en etalones tanto
cristalinos como de aire. Examinamos su respuesta espectral y la calidad
de imagen esperada para cada configuración, colimada o telecéntrica, in-
cluyendo los efectos policromáticos provocados por el ancho de banda finito
del filtro y las posibles desviaciones de iluminación ideal. En concreto,
nos centramos en los efectos de apodización de pupila que ocurren en las
monturas telecéntricas y en las consecuencias de las asimetŕıas, desplaza-
mientos y ensanchamientos inducidos en el perfil de transmisión y en la PSF
cuando el etalón está girado respecto al eje óptico del instrumento, cuando
se tienen en cuenta errores en el alineamiento de los componentes ópticos,
o por desviaciones de la propagación paraxial ideal de la luz a lo largo del
instrumento.

En el segundo art́ıculo, abordamos la respuesta polarimétrica de etalones
sólidos uniáxicos (como el LiNbO3). Demostramos que la matriz de Mueller
en estos etalones depende sólo de cuatro coeficientes espectrales que cam-
bian rápidamente a lo largo del perfil de transmisión y que la respuesta
polarimétrica puede formularse como la combinación de las matrices de
Mueller de un retardador y de un espejo, correctamente moduladas a lo largo
del perfil de transmisión. También deducimos una expresión compacta para
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la matriz de Mueller de etalones colimado, presentamos fórmulas expĺıcitas
para evaluar numéricamente sus coeficientes para la configuración telecen-
trica, incluimos el efecto de tener diferentes orientaciones del plano principal
del cristal en cada configuración y formulamos la dependencia expĺıcita de
la birrefringencia inducida en cristales uniáxicos con la dirección de la luz
incidente y con la orientación del eje óptico. Por último, evaluamos la res-
puesta de un etalon con corte en Z para los casos colimado y telecéntrico y
estudiamos la dependencia de su PSF con la polarización de la luz incidente.

En el tercer art́ıculo, evaluamos las señales espurias de las velocidades
del plasma y del campo magnético debidas a los efectos estudiados en
los art́ıculos anteriores: la apodización de pupila que surge en monturas
telecéntricas, las asimetŕıas en la apodización de pupila que aparecen cuando
hay imperfecciones en la iluminación de etalones telecéntricos y los efectos
birrefringentes que aparecen en las dos configuraciones cuando se usa un
etalón uniáxico. Para este fin simulamos un espectropolaŕımetro en config-
uraciones similares a las de PHI (Solanki et al., 2020) e IMaX (Mart́ınez
Pillet et al., 2011) y comparamos las velocidades y campos magnéticos del
plasma a lo largo del campo de visión con los obtenidos cuando se supone
un comportamiento ideal. Para ello, tenemos en cuenta la localización del
etalón dentro del tren óptico y distinguimos entre dos casos importantes:
cuando se coloca detrás del polaŕımetro (como ocurre en instrumentos de
doble haz) y cuando se sitúa antes del analizador. Evaluamos también
la posible contaminación entre canales ortogonales que aparece en instru-
mentos de doble haz y mostramos que la birrefringencia tiene un impacto
mı́nimo en la medida del vector de Stokes en comparación con las señales
artificiales esperadas por la apodización de pupila.

En el cuarto art́ıculo, presentamos una fórmula anaĺıtica que describe
el campo eléctrico transmitido en la configuración telecéntrica que ajusta
de manera excelente con los resultados obtenidos tras resolver de forma
numérica la ecuación del campo eléctrico. Usamos esta expresión para in-
ferir tanto el perfil de transmisión como el frente de onda transmitido y
mostramos las derivadas anaĺıticas del campo eléctrico con el fin de realizar
análisis de sensibilidad de estos parámetros. En concreto, obtenemos expre-
siones para la degradación de frente de onda producida por errores a lo largo
de la huella del haz incidente y discutimos su magnitud máxima permitida
para alcanzar el ĺımite de difracción. Para ello, evaluamos la dependencia
del error del frente de onda con el número f , con la reflectividad y con la re-
solución espectral monocromáticamente y tras integrar a lo largo de todo el
perfil de transmisión. Discutimos los errores intŕınsecos en la fase óptica in-
troducidos por el número f finito del haz incidente y comparamos de forma
cualitativa el comportamiento de las monturas telecéntricas con la esperada
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en instrumentos colimados atendiendo a consideraciones relacionadas con
el tamaño, la calidad y el coste del etalón y del propio instrumento. Por
último, proponemos un método para evaluar anaĺıticamente la matriz de
Mueller de etalones telecéntricos adaptando la formulación derivada para el
caso isótropo.
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1. Introduction

Mapping the solar magnetic field with high spatial and spectral resolu-
tion in combination with a large polarimetric sensitivity is of paramount
importance to get an insight on some of the fundamental questions that
remain unanswered in solar physics, like the origin of the solar dynamo
mechanisms responsible for its structure and periodic cycles, the way dif-
ferent layers of the solar atmosphere are connected, or how the heating of
the cromosphere and corona is produced. The observation of the magnitude,
orientation, structure, and evolution the solar magnetic field is carried out
with magnetographs. Solar magnetism cannot be measured in situ, though.
Instead, magnetographs shall be regarded as imaging spectropolarimeters,
that is, instruments that image the solar surface in linear combinations
of the Stokes parameters along one or several spectral lines that are sensi-
tive to magnetic fields.1 The spectropolarimetric properties of the measured
light provide information of the magnetic field vector and line-of-sight (LoS)
plasma velocities, which can be inferred later through sophisticated inver-
sions of the radiative transfer equation (e.g., Del Toro Iniesta & Ruiz Cobo,
2016).

Modern magnetographs aim at providing for maps of the magnetic field
with sub-arcsec angular resolutions in order to resolve structures on the
solar surface as small as ∼ 10 km while sensing faint magnetic signals of
about ∼ 1 G in times scales shorter than the ones necessary for the magnetic
field structures to change considerably. In particular, fast diffraction-limited
observations with a temporal resolution of 1−10 s, challenging polarimetric
sensitivities of ∼ 10−3 and resolving powers of ∼ 105 or better are typically
requested (e.g., Mart́ınez Pillet et al., 2011). Hence, such instruments must
demonstrate not only an excellent performance in terms of image quality,
but they must provide also observations with signal-to-noise ratios higher
than 103 while achieving an accurate and rapid scanning of the spectral
lines of interest.

The wavelength tuning has been performed historically either with slit-
based spectrographs or through narrow-band tunable filters.2 Examples of
the former technology are the Tenerife Infrared Polarimeter at the VTT

1The Stokes formalism provides the most general description of polarized light. Un-
like the Jones formalism, it serves also to represent the polarization state of polychro-
matic (real) light, which is polarized only to some degree. Its use is widely accepted in
the field of solar physics and it will be followed in this thesis. A detailed description
on the formulation, physical interpretation and mathematical properties of the Stokes
formalism can be found in Del Toro Iniesta (2003).

2We refer the reader to Iglesias & Feller (2019) for an exhaustive review on the
differences between slit-based spectrographs and narrow-band filtergraphs, as well as
on the state of the art and future perspectives of the technologies employed in solar
instrumentation.
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(Mart́ınez Pillet et al., 1999), the Diffraction-Limited Spectropolarimeter
and SPINOR at the NSO Dunn Solar Telescope (Tritschler et al., 2007;
Socas-Navarro et al., 2006), the Hinode Spectropolarimeter SP (Lites et al.,
2001), or the multiline polarimetric mode of THEMIS (Molodij & Rayrole,
2003). Their main advantage over most bidimensional imaging filtergraphs
is that they capture a full unidimensional spectrum of light with a large
resolving power (150, 000 − 250, 000), and they do so in a single exposure.
In exchange, they sacrifice spatial information, since they do not image the
whole the solar scene in a shot, but they need to scan the other dimension
to get an image of the solar surface (Figure 1.1, right). Unfortunately,
the time-consuming scanning of the solar surface with such an accurate
wavelength sampling limits the study of fast solar events with reasonable
fields of view and the highest optical quality.

Meanwhile, magnetographs based on tunable filters enable an accurate
and rapid imaging of the solar scene, but only at some selected (discrete)
wavelengths along a spectral line (Figure 1.1, left) and typically with lower
resolving powers than slit-based spectrographs (∼ 50, 000−150, 000).3 One
of the most important advantages of their rapid imaging capabilities is that
post-facto image reconstructions and adaptive optics techniques are easier
to implement, thus allowing the study of fast events with the highest optical
quality. The most powerful techniques used nowadays in solar filtergraphs
are possibly Phase Diversity (Gonsalves, 1982; Paxman et al., 1992), Speckle
interferometry (von der Lühe, 1993), and (Multi-Object) Multi-Frame Blind
Deconvolution (van Noort et al., 2005). These methods provide precise in-
formation of the wavefront error introduced by the instrument and allow
for realistic (diffraction-limited) reconstructions with minimal artifacts. On
the other side, image restoration techniques in grating-based spectrographs
have proven to be difficult to implement due to the shortage of detailed
spatial information in every single exposure. Different solutions to over-
come this issue are still in development and need farther investigation (e.g.,
Quintero Noda et al., 2015), although some novel studies have shown that
achieving (near) diffraction-limited restorations is possible when a comple-
mentary slit-jaw camera is used to measure the degradation of the wavefront
on the slit of the spectrograph through conventional image reconstruction
techniques (van Noort, 2017).

Another advantage of tunable filters is that they can be used together
with dual-beam polarimetric techniques (e.g., Mart́ınez Pillet et al., 2011;

3There are some important exceptions to this rule. Initially, filtergraphs equipped
with Fabry-Pérots tended to pursue resolving powers as high as 300, 000 (at least theo-
retically), but now the trend has been reverted and more recent instruments operate at
much lower spectral resolutions (see Table 1.1).
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1. Introduction

Figure 1.1: Schematic layout of the working principle of a narrow-band
filtergraph (left) and of a slit-based spectrograph (right). The two spatial
dimensions of the solar scene (x and y) are captured simultaneously in the
former, while the wavelength dimension (λ) is scanned sequentially in a time
interval t. In the latter, an spectrum over one dimension (y) is obtained in
each frame, while the scanning is carried out through the other dimension
(x). Figure adapted from Iglesias & Feller (2019) with permission. Licensed
under CC BY 4.0.

Scharmer et al., 2008). Dual-beam polarimetry consists in splitting the or-
thogonal polarization components of incident light with a polarizing beam
splitter and focusing each one in a different detector (or in different parts of
a single detector). Observing simultaneously two perpendicular states of po-
larization makes it possible to reduce induced cross-talks between different
Stokes parameters that appear as a result of differential motions between
pairs consecutive images appearing due to jitter or seeing effects (Colla-
dos, 1999).4 To employ dual-beam polarimetry, the narrow-band filter only
needs to be placed before the polarimetric analyzer (beam splitter).

4Polarimetry is based on differential imaging techniques of the modulated observed
object. Therefore, differences between consecutive images are translated into polarimet-
ric signals. If such differences are originated by a shift of one image with respect to

12

https://creativecommons.org/licenses/by/4.0/legalcode


1.1. General properties of etalons as tunable imaging monochromators

Among the tunable filters, Fabry-Pérot etalons are the most common
choice in solar post-focus instruments (Iglesias & Feller, 2019). Some exam-
ples are the Italian Panoramic Monochromator (IPM) at THEMIS (Bonac-
cini et al., 1989, and references therein), the TESOS spectrometer at the
VTT (Kentischer et al., 1998), the Interferometric Bidimensional Spectrom-
eter (IBIS) at the Dunn Solar Telescope of the Sacramento Peak Observa-
tory (Cavallini, 1998), the CRisp Imaging SpectroPolarimeter instrument
(CRISP) at the Swedish 1-m Solar Telescope (Scharmer et al., 2008), the
Imaging Magnetograph eXperiment (IMaX) instrument (Mart́ınez Pillet et
al., 2011) aboard the Sunrise balloon observatory (Barthol et al., 2011),
the GFPI at GREGOR (Puschmann et al., 2013), the PHI instrument
(Solanki et al., 2020) on board the Solar Orbiter mission (Müller et al.,
2020) and the future Visible Tunable Filter (VTF) (Schmidt et al., 2016)
at DKIST (Rimmele et al., 2020). Some of the basic features of the men-
tioned etalon-based instruments are displayed in Table 1.1. Their success in
solar instrumentation comes from their easiness of both use and interpreta-
tion of the measured data (unlike, for instance, Michelson interferometers),
as well as for their high spectral resolution. They also show transmissions
close to 100 % and are almost insensitive to the polarization of the incident
light in most cases (Doerr et al., 2008), contrary to Lyot filters.

1.1 General properties of etalons as

tunable imaging monochromators

Fabry-Pérot interferometers are basically resonant optical cavities made
of two plane-parallel, high-reflecting surfaces that are slightly spaced —
hundreds of micrometers or a few millimeters, normally—. The high re-
flectivity of the plates causes multiple back and forth reflections across
the cavity for each incident ray. Individual rays, then, split and interfere
coherently among themselves. The difference of optical path among two
consecutive reflections is such that it causes resonances on the transmission
under some conditions. The higher the reflectivity of the surfaces, the more
the number of interfering rays and the narrower the spectral transmission
peaks at which the constructive interferences occur. The conditions of res-
onance are periodic and depend on the wavelength, refractive index, width
of the cavity and on the refracted angle of the incident rays. A change on

the other, then the inferred Stokes vector will be corrupted by an artificial contamina-
tion among different Stokes components. Such a displacement can be originated as a
consequence of the atmospheric seeing and/or of mechanical vibrations of the telescope
(jitter) that induce instabilities on the image position.
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1. Introduction

Table 1.1: Main characteristics of some solar etalon-based instruments.
From lef to right: the name of the instrument, the configuration employed
(collimated or telecentric), its resolving power (R), the number of etalons
included, their diameter (in mm), whether the instrument employs dual-
beam techniques or not, and the corresponding f -number at the etalon
location if telecentric.

Instrument Conf. R # of FPs Diam. Dual beam f#
IPM Tele > 250, 000 1 50 No 192
TESOS Tele ∼ 300, 000 3 50 No 125/265
IBIS Coll > 200, 000 2 50 No -
CRISP Tele ∼ 100, 000 2 75 Yes 150
IMaX Coll ∼ 80, 000 1(2) 60(25) Yes -
GFPI Coll ∼ 100, 000 2 70 Yes -
PHI Tele ∼ 60, 000 1 ∼ 50 No 56/63
VTF Tele ∼ 100, 000 1-2 250 No 200

the width, index of refraction or the incident direction, can be employed to
tune the peaks, although only variations on the two former parameters are
usually preferred to use the etalon as an spectrometer. In fact, the relative
shift of the transmission peak wavelength is simply given by the relative
change on the refractive index, n′, and/or on the thickness, h. Since the
relative change in wavelength necessary to scan a spectral line is typically
less than 0.01 %, a highly stable control of the width and refractive index
is crucial for an accurate wavelength sampling. Changes on the direction of
the incident light must be minimized too, since the transmission resonances
suffer from a displacement to shorter (bluer) wavelengths that increases in
a roughly parabolic fashion with the incidence angle (Figure 1.2).

The spectral resolution of the Fabry-Pérot also varies with the etalon
parameters and with the incidence angle, but in a much lesser extent. More
important is the widening of the transmission profile that arises when the
etalon plates and/or cavity suffer from imperfections (defects). Defects are
originated from inhomogeneities in the refractive index (or in the coating)
and from variations on the flatness and parallelism of the etalon plates, both
of which displace the transmission profile locally. The average result of hav-
ing individual shifts that vary from point to point across the etalon aperture
is a broadening of the transmission profile bandpass that diminishes the re-
solving power of the filter. The phase of the transmitted electric field is
also affected by defects. Errors in the phase reduce the optical quality of
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1.1. General properties of etalons as tunable imaging monochromators
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Figure 1.2: Example of the periodic spectral transmission profile, g, typical
of a Fabry-Pérot in a narrow window of ± 1 nm about the central wave-
length at which the etalon is tuned for on-axis illumination, λ0. Profiles at
incidences with respect to the normal of 0◦ (black), 1◦ (blue) and 2◦ (red)
are displayed. Note that the resonances are shifted in a non-linear (almost
quadratic) way with the incidence angle. Figure extracted from Bailén et
al. (2019a). © AAS. Reproduced with permission.

the transmitted wavefront. Contrary to other filters, the large number of
reflections of the wavefront that take place within the optical cavity of the
etalon cause an over amplification of the degradation that increases rapidly
with the reflectivity and that must be limited to achieve diffraction-limited
quality (e.g., Kentischer et al., 1998; Scharmer, 2006).

Errors can be divided in two main categories: large-scale and small-scale
defects. The former usually increase with the size of the etalon aperture
and appear during the manufacturing process or or simply because of stress
tensions caused by the coatings, by the force gravity or by the mechanical
pressures (Greco et al., 2019). These errors are usually dominated by a
radial (parabolic) departure of the thickness from the center to the edges
—spherical or parabolic defect— or by a linear change in the thickness
from one edge to the other along a given direction —parallelism defect—
(Reardon & Cavallini, 2008). Meanwhile, small-scale defects are basically
polishing errors of high frequency that are approximately randomly dis-
tributed following a Gaussian density distribution. A layout of the geome-
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1. Introduction

Figure 1.3: Layout of the geometry of the etalon plates when affected by the
three most typical defects. From left to right: spherical/parabolic defect
with a maximum departure δts, Gaussian defect with a root-mean-square
deviation across the aperture (δtg)

1/2, and parallelism defect with an edge-
to-edge divergence of δtp.

tries of the three mentioned defects is displayed in Figure 1.3. Although
departures from ideal collimated illumination are not caused by geometric
defects, they also broaden the resonances and shift them towards the blue
when compared to collimated illumination (e.g., Sloggett, 1984; Atherton et
al., 1981). Hence, they are usually treated as another defect —the aperture
defect—.

1.1.1 Use of etalons as filtergraphs

For Fabry-Pérots to work as tunable filters, isolation of only one reso-
nance order of the transmission profile is mandatory. Otherwise unwanted
light from the secondary orders will contaminate the signal and will degrade
the spectral purity of the filter. Narrow-band dichroic (interferential) fil-
ters with bandpasses comparable to the spectral distance between different
peaks of the transmission profile of the etalon (the free spectral range) are
commonly employed for that purpose. Usually, they are placed prior to
the etalon, thus receiving the name of pre-filters. The free spectral range
(FSR) of the etalon depends quadratically on the wavelength and is in-
versely proportional to its refractive index and cavity width, but is usually
of the order of several Angström. Commercial off-the-shelf dichroic fil-
ters are typically broader and custom-made solutions are, hence, normally
needed. Pre-filters with good optical quality, high transmission and with
such a low bandpass are difficult to manufacture and expensive, though.
In addition, even custom-made filters do not offer an absolute out-of-band
rejection, since their profile diverges from an ideal rectangular function.
Instead, their profile typically resembles that of an imperfect bell-shaped
curve with extended wings that let pass some residual light (∼ 1 % or more,
typically) from the neighboring resonance orders of the etalon (Figure 1.4).
Such a spectral contamination is called (spectral) stray light or parasitic
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1.1. General properties of etalons as tunable imaging monochromators

Figure 1.4: Transmission curve (in log scale) of IMaX after including the
etalon profile and the measured curve of the pre-filter. The wavelength
range covers the main transmission resonance of the etalon at λ0 = 525.02
nm and its two closest orders separated roughly± 1.9 Å and whose peaks are
about 1 % of the maximum transmission. Figure extracted from Mart́ınez
Pillet et al. (2011) with permission. Licensed under CC BY 4.0

light and can be minimized by enlarging the FSR or by using two or more
etalons with different FSRs. The former is the simplest solution and can
be achieved by reducing the cavity spacing, but there are manufacturing,
economic and even mechanical constraints that prevent it from being arbi-
trarily small. Furthermore, reducing the cavity broadens the resolution in
an inversely proportional way. A better approach consists in using two or
three etalons with a careful choice of their cavities to suppress effectively
secondary lobes on the transmission profile (Figure 1.5).

The first instruments that probably used a system of several etalons suc-
cessfully were IBIS and TESOS with two and three Fabry-Pérots, respec-
tively.5 The dual-tandem configuration has proven to be the most popular
option, though (e.g., IBIS, CRISP, GFPI, and VTF in a future upgrade).
The use of several etalons improves not only the FSR, but also the spec-
tral resolution. In fact, if two identical Fabry-Pérots are placed within the
optical path, the resolving power is improved up to a factor

√
2, although

5TESOS initially employed a tandem of two etalons, but it was later upgraded to
a three etalon system to reduce even more the spectral parasitic light (Tritschler et al.,
2002).
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Figure 1.5: Simulated transmission curves of the possible dual-etalon con-
figuration of the VTF instrument. The individual transmission profiles cor-
responding to a 0.3 nm pre-filter (magenta), the high-finesse etalon (blue),
the low-finesse etalon (green) and to the final system (red) are displayed.
Note that the relative intensity of the secondary lobes of the total trans-
mission profile are reduced below 0.5 · 10−3 with respect to the maximum
transmission. Courtesy of Schmidt et al. (2016). Reproduced with permis-
sion.

the FSR is unaffected (Álvarez-Herrero et al., 2006). An alternative ar-
rangement to improve the resolution while keeping the same FSR consists
in forcing the optical beam to go through the etalon twice (double-pass con-
figuration). This solution was adopted for IMaX, in which the Fabry-Pérot
is followed by a system of two folding mirrors that allow light to pass twice
through different subapertures (Figure 1.6).

Since Fabry-Pérots are made of highly reflecting plane-parallel plates,
the space between two etalons acts also as a resonant cavity in which mul-
tiple internal reflections take place, thus producing a secondary image that
is overlapped to the main signal if they are aligned. The spurious image
is usually referred as a ghost image and contaminates the measured signal,
too. There are several ways to get rid of it.

First, the cavities of each etalon can be chosen to reduce to the mini-
mum the amount of ghost signal, but this solution has an impact also on
the spectral parasitic light. A rigorous discussion on the best choice of the
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Figure 1.6: Optical layout of the double-pass configuration of IMaX. Light
focused by the telescope at F4 passes through the pre-filter and illumi-
nates the modulator of the polarimeter, made of a couple of liquid crystal
variable retarders (LCVRs). Light is collimated, then, through one of the
subapertures of the etalon by a relay of several lenses. Two folding mirrors
reflect the light back and illuminate again the etalon through the second
subaperture. A doublet of lenses and a third folding mirror re-direct the
light through a camera lens and a beam splitter, which provide images of
the two orthogonal polarization components on two different CCDs. Fig-
ure extracted from Mart́ınez Pillet et al. (2011) with permission. Licensed
under CC BY 4.0.

cavity ratios of the two etalons that reduce both ghost and stray-light con-
tamination can be found in Kentischer et al. (1998), Cavallini (2006), and
in Scharmer (2006). The optimum ratio have been found to be either ∼ 0.3
or ∼ 0.6, although the precise value depends on each particular instru-
ment. Nevertheless, even if the ghost signals are minimized by an accurate
choice of the cavity ratio, the spurious signals can be prohibitively large
to achieve stringent polarimetric sensitivities of 10−3 (Scharmer, 2006). A
very effective way to reduce ghost signals farther consists in placing a low-
transmission pre-filter between the two etalons. Then, their intensity is
reduced by a factor T 2

pf , where Tpf is the maximum transmission of the fil-
ter (e.g., Scharmer, 2006). This solution was implemented in IBIS, whose
pre-filter reached a maximum transmission of only Tpf ' 30 %. Nowadays,
interferential filters with much higher transmittances (∼ 80 %) can be man-
ufactured. Deteriorating intentionally the flux of photons to deal with ghost
images increases the observation time needed to accomplish the same signal-
to-noise ratio, thus limiting the observation of fast events. For this reason,
the prospects of this approach in the next generation of instruments are

19

https://creativecommons.org/licenses/by/4.0/legalcode


1. Introduction

unclear. A more effective way of dealing with this problem is probably the
one employed in CRISP and (before its upgrade to a triple-etalon system) in
TESOS, in which one of the two etalons is tilted with respect to the other.6

That way, instead of reducing the ghost signal, it is moved directly out the
instrument detector. Obviously, other problems arise when adopting this
solution, as it will be explained later.

1.1.2 Two configurations: general

Historically, there have been two ways to illuminate the etalon in solar
instruments: collimated (e.g., Bendling et al, 1992; Mart́ınez Pillet et al.,
2011) and telecentric (e.g. Kentischer et al., 1998; Solanki et al., 2020).
The most adequate choice of the configuration has been subject to debate
for decades and it continues today, since the performance of each one is
inevitably limited in distinct ways. Extensive analyses on the influence on
the spectral and imaging properties of both setups can be found in Beckers
(1998), von der Lühe & Kentischer (2000), Kentischer et al. (1998), Cavallini
(1998), Cavallini (2006), Scharmer (2006), and Righini et al. (2010).

The collimated configuration is characterized for having the Fabry-Pérot
overlapped to the pupil (or one of its images) and illuminated with a par-
allel beam of rays with various incident directions, each one corresponding
to different points of the object field (Figure 1.7, left). Examples of instru-
ments that opted for this arrangement are IBIS, IMaX, and GFPI. Placing
the etalon on a pupil image has the advantage of maintaining always the
same area illuminated. In other words, the footprint of the incident beam
does not change across the field of view (FoV). In return, the variation of
incidence angles on the etalon over the FoV shifts the transmission profile
peak across the image plane. The main consequence is a field-dependent
sampling of the observed spectral line: at the edges of the image the in-
terferometer is tuned to shorter wavelengths of the spectrum than at the
center. Fortunately, the displacement on the transmission profile can be
calibrated easily as long as it is kept smaller or comparable to the spectral
sampling interval of the instrument (e.g., Cavallini, 2006). In addition, since
the etalon is at the pupil and the footprint of the incident beam does not
change across the FoV, large local errors and aesthetic defects like dust are
smoothed out when averaging across the aperture. The optical quality of

6After the modification of TESOS from a dual-etalon system to a triple-etalon con-
figuration in 2000, the relative tilt of the Fabry-Pérots was suppressed. Instead, the three
etalons were aligned accurately to overlap the ghost images and a pre-filter between the
first and second etalon was included, followed by and additional blocking filter between
the second and third etalon, to reduce their intensity in a similar manner as in IBIS.

20
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Figure 1.7: Schematic view of the collimated configuration (left) and the
telecentric one (right). Figure extracted from Bailén et al. (2019a). © AAS.
Reproduced with permission.

the interferometer is preserved constant across the image, too. In exchange,
individual plate errors and inhomogeneities across the whole clear aperture
of the cavity have an impact on the transmitted wavefront over the whole
FoV.

In the telecentric configuration, the etalon is located at an intermediate
image plane of the instrument and the entrance pupil (or one of its images)
is placed at its object focal plane (Figure 1.7, right). This way, the chief
ray —which, by definition, passes through the enter of the entrance pupil—
comes out parallel to the optical axis no matter the incident direction. In
consequence, the etalon is illuminated uniformly across its aperture when
observing an homogeneous object and no shifts of the spectral transmission
occur across the FoV (ideally). Another important feature of this setup is
that the footprint of the incident beam on the etalon is much smaller than
in the collimated case —typically ∼ 1mm (e.g., Cavallini, 2006)— but the
illuminated area of the etalon changes across the FoV. Small individual de-
fects on the etalon with millimiter sizes are, then, projected onto the final
image plane and change the point-spread-function (PSF) and the transmis-
sion profile point to point. In return, the impact of errors on the wavefront
is minimized as long as the footprint is kept small enough, since large-scale
defects have no influence across the footprint. IPM, TESOS, CRISP, PHI
and VTF benefit from this arrangement.

The finite aperture of the incident cone of rays imposes a limit on the
maximum spectral resolution of the transmission profile even if the etalon
were free of defects, though (e.g. Atherton et al., 1981). Illuminating each
point of the etalon with rays that come from the pupil with different angles
means also that, for a given monochromatic wavelength, the pupil is “seen”
by the Fabry-Pérot as if it were inhomogeneously illuminated (Beckers,
1998). The effect is commonly referred to as pupil apodization and varies
rapidly along the bandpass of the etalon (Figure 1.8). The apodization of
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Figure 1.8: Simulated pupil apodization corresponding to an f/150 telecen-
tric etalon with a 4 pm resolution at different monochromatic wavelengths
from its wavelength peak (617.3 nm): −2.5,−1.5,−0.5, 0.5, 1.5, and 2.5 pm.

the pupil changes the monochromatic PSF in an asymmetric way across the
transmission profile of the etalon . The asymmetry over the spectral pro-
file caused by the different illumination of the pupil brings about undesired
signals when measuring the spectrum of the Stokes vector that can exceed
the polarimetric sensitivity requirements of the instrument (e.g. Beckers,
1998; Kentischer et al., 1998; von der Lühe & Kentischer, 2000; Scharmer,
2006). Pupil apodization is very dependent on the f -number of the incident
beam and on the resolution of the instrument, since the thinner the spec-
tral bandpass of the etalon and the larger the incidence angles, the more
important is the change of intensity at a monochromatic wavelength across
the pupil. Pupil apodization can be minimized, then, by using crystalline
etalons (which reduce the refracted angle of the rays), by sacrificing resolv-
ing power or by illuminating the etalon with very large f -numbers. The
latter is the solution most commonly adopted. Unfortunately, the size of
the instrument and of the etalon itself increase linearly with the f -number
of the incident beam. Hence, apertures limited to f/100− f/200 are com-
monly employed to achieve a compromise between the magnitude of the
spurious signals and the size and cost of the instrument (Table 1.1).
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1.1.3 Degradation of the PSF and spectral profile

Perturbations in the PSF and in the spectral profile have an impact not
only on both the image quality and the spectral resolution of the instru-
ment, but also on the measured spectrum of the polarization state of light.
Since the spectral dependence of the Stokes vector codify physical proper-
ties of the solar atmosphere, such a contamination is directly transferred
to the quantities inferred from it. Regarding the above-mentioned pupil
apodization effects, the first work to address consequences of the spectral
dependence of the PSF across the bandpass of the etalon characteristic of
telecentric etalons was the one by Beckers (1998). He showed that the PSF
width decreases at wavelengths towards the blue of the transmission peak
at the expense of transferring the energy to its wings, whereas towards the
red part of the passband the opposite is true: the core of the PSF gets
broader while the lobes are reduced to conserve the total energy enclosed
by the PSF (Figure 1.9). According to his numerical estimations, the con-
tamination introduced by such an asymmetric spectral response could be
as high as 30 ms−1 in regions with no real Doppler shifts. Such signals are
impossible to correct fully with post-processing techniques of the measured
data and led him to conclude that collimated setups should be used in mag-
netographs that aim to the highest performance. Although the quantitative
predictions of Beckers (1998) on the spectral behavior of the PSF in a tele-
centric mode were correct, he did not consider fluctuations on the phase
of the transmitted electric field (phase errors), but only the changes in the
module of the electromagnetic field originated by pupil apodization. Phase
errors were included later by von der Lühe & Kentischer (2000), who showed
that they foster the transfer of energy between the central part of the PSF
to its lobes. Phase fluctuations evaluated at the strictly monochromatic
wavelength of the maximum of the transmission profile exhibit a parabolic
trend with the radial coordinate of the pupil. Therefore, a refocus of the
final image plane in the way described by Scharmer (2006) can be carried
out to correct them, at least to some extent, since their radial dependence
is not necessarily that simple at other wavelengths across the transmission
profile.

Etalon defects and imperfections from ideal telecentrism deteriorate the
optical performance of telecentric etalons even more. On the one hand, local
errors on the thickness and/or the cavity homogeneity with sizes comparable
to the footprint of the incident beam invalidate the use of a PSF from a
strict point of view, since the response of the etalon is expected be field
dependent then. The same occurs with the spectral transmission, thus
losing this mount one of its main (ideal) advantages over the collimated
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Figure 1.9: Cross section in logarithmic scale of the modeled PSF of the
telecentric TESOS f/128 mode across a spectral band of ± 15 pm around
the peak of the transmission profile (at 500 nm), illustrating the spectral
behavior of the PSF across the transmission profile predicted by Beckers
(1998). Credit: von der Lühe & Kentischer (2000), reproduced with per-
mission© ESO.

mode: the preservation of the same spectral response across the FoV. The
field-dependent variations of the PSF and bandpass of the etalon can be
smoothed out by defocusing the Fabry-Pérot, which necessarily increases
the footprint of the incident beams and averages local errors over a larger
area. In return, the impact of defects on the wavefront will increase. On
the other hand, errors on the telecentrism provoke a relative tilt among
the incident chief ray and the normal of the etalon plates that vary over
the FoV. The imperfection can arise because of departures from first-order
optical properties (paraxiality) or from deviations of the optical elements
from their nominal position, both occurring in real instruments. The loss of
the axial symmetry on the pupil apodization by the off-axis incidence of the
chief ray on the etalon induces field-dependent asymmetries, broadenings
and shifts on both the PSF and the transmission profile that cannot be
compensated by refocusing the etalon.

Deviations on the incidence of the chief ray from normal illumination of
the etalon plates also occurs when tilting the Fabry-Pérot to move ghost
images out from the image sensor of the instrument, with an equivalent im-
pact on the PSF and transmission profile, but constant across the FoV in
this case.7 Since pupil apodization effects are strengthened with increasing

7We name indifferently “imperfect telecentrism” throughout this thesis to any loss
of radial symmetry on the illumination of a telecentric etalon arising from either a tilt of
the Fabry-Pérot or by deviations of the chief ray over the FoV from normal illumination,
since the consequences of both are the same in the PSF and in the spectral profiles.
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resolving powers, the tilt should be kept as close as possible to the limiting
value that ensures that the ghost image is moved away from the detector.
Moreover, in dual-etalon instruments the Fabry-Pérots are preferred to have
different spectral resolutions to apply the tilt to the one with lowest reso-
lution (Scharmer, 2006). Still, asymmetries in the PSF and in the spectral
profile cannot be eliminated completely as long as one etalon is tilted. Be-
sides, in systems with multiple etalons, a field-dependent detuning of the
transmission profiles is produced by the local differences in their individual
cavity maps. The detuning adds another contribution to the total shift and
the asymmetry of the final transmission profile that changes locally. The
former can be corrected through flat-fielding procedures during the data
processing pipeline, but calibration of point-to-point asymmetries requires
more sophisticated reduction methods (e.g., de la Cruz Rodŕıguez et al.,
2015).

In collimated instruments, cavity errors and inhomogeneities are smoothed
out across the clear aperture of the etalon and the wavelength-dependent
artifacts on the PSF do not appear at all. Unfortunately, wavefront er-
rors caused by plate defects are expected to be amplified more than in the
telecentric case, in general. The reason for this is that the footprint of
the incident beam is much larger and encompasses not only small-scale de-
fects, but also large-scale errors, whose magnitude might be comparable or
even larger (e.g. Schmidt et al., 2016). Besides, the response varies across
the FoV because of the different incidence angles on the etalon, like in the
(real) telecentric configuration, although in this case the spatial shape of
the monochromatic PSF is preserved and the loss of invariance comes only
from a shift of the transmission profile towards the borders of the image.

The presence of asymmetric defects of large scale due, for instance, to lo-
cal stresses caused by the piezo electric actuators used to control the etalon
width, is responsible also for an asymmetrization of the transmission profile
when a system of multiple etalons is used, since the final transmission pro-
file is no longer given by the product of the individual spectral profiles, but
by the average of the product of the local individual transmissions (Rear-
don & Cavallini, 2008). Even more important is probably the differential
shift among the individual transmissions of the etalons when one of them
is tilted to suppress ghost images (Cavallini, 2006; Scharmer, 2006). The
relative spectral detuning arises from the difference in incidence angles on
each etalon and produces a field-dependent asymmetry on the transmission
profile and a shift similar to the one occurring in a tandem of telecentric
etalons because of local changes on the optical cavity map. The difference
being that in this case the dependence with the field can be modeled in
a known way. Instead of tilting one etalon, the aforementioned solution

25



1. Introduction

of placing a pre-filter with low transmission among etalons proposed by
Cavallini (2006) can be applied to reduce the inner-etalon ghost signal in-
tensity without detuning the etalons. However, apart from deteriorating
the flux of photons, introducing the pre-filter between the two etalons in a
collimated beam has an additional problem: it must be of the same size of
the etalons (& 50 mm). Such large interference filters are difficult to man-
ufacture with reasonable optical qualities of ∼ λ/20 or better to achieve
diffraction limit performance of the instrument. The maximum of its trans-
mission profile would also shift differently across the FoV with respect to
those of the etalons because of the unavoidable difference in the indices of
refraction, which cause a distinct response with the incidence angle. The
impact of such a displacement on the transmission profile induces, again,
field-dependent asymmetries and shifts of the total transmission. To mini-
mize the relative variation of the the profiles over the FoV, a pupil adapter
(e.g., Greco & Cavallini, 2013) should be employed to reimage the pupil
on the pre-filter with different size, thus changing the maximum incidence
on the pre-filter according to the Lagrange invariant to produce a similar
wavelength shift. The trade off for using an adapter is that it adds more
optical elements, with the consequent impact on the optical quality and,
especially, on the size of the instrument.

Among the mentioned drawbacks of the collimated mode, the most crit-
ical to tip the scales in favor of the telecentric configuration is probably the
over amplification of plate defects and inhomogeneities of the cavity due
to the multiple reflections of the wavefront. A quantitative assessment on
this topic was studied first by Ramsay (1969) and then by von der Lühe
& Kentischer (2000), both considering strictly monochromatic incident col-
limated beams. Later, Scharmer (2006) included the effects of integrating
over the whole spectral bandpass of the etalon and found that the polychro-
matic nature of the observations relaxes the amplification of errors approxi-
mately to a half. Still, the results of von der Lühe & Kentischer (2000) and
Scharmer (2006) are pessimistic about the use of a collimated configuration
and suggest the use of the telecentric solution to achieve diffraction-limited
performance, contrary to Beckers (1998).

The predictions of Scharmer (2006) seem too hopeless to us, since his
conclusions are based on considering highly-reflective etalons that suffer
from (incorrigible) microroughness thickness deviations with a root mean
square (RMS) value of 2 nm, while etalons with errors in the range of 0.5−1
nm (including large-scale defects) are feasible to manufacture nowadays, at
least for etalons of modest sizes of the order of 50 mm (e.g., Álvarez-Herrero
et al., 2006; Greco et al., 2019). Furthermore, part of the wavefront defor-
mation can be compensated for by refocusing the etalon, especially the
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Figure 1.10: Cavity error map measured for an ICOS ET50 model etalon
(50 mm diameter) after correction of the parallelism defect through the
individual control of piezo-electric actuators. The resulting RMS of the
cavity errors is about 0.9 nm, including both small-scale and the remaining
uncorrected large-scale defects. Credit: Greco et al. (2019), reproduced
with permission © ESO.

commonly dominant parabolic defect contribution. Departures from par-
allelism can be addressed, too. In fact, an effective method to correct
dynamically the loss of parallelism in servo-controlled etalons has been pre-
sented recently Greco et al. (2019). Figure 1.10) shows an example of the
cavity error map measured by Greco et al. (2019) after applying their tilt
correction technique to a real 50 mm etalon etalon. The residual large-scale
and small-scale contributions are only ∼ 0.6 nm and ∼ 0.7 nm, respectively,
summing a total of ∼ 0.9 nm RMS error.

Excluding the parabolic and parallelism defect, residual errors of the
order of ∼ 0.5 nm or so —four times smaller than the ones modeled by
Scharmer (2006)— seem, then, feasible to achieve (e.g., Reardon & Cav-
allini, 2008; Greco et al., 2019). Novel manufacturing techniques can mini-
mize microroughness defects even more, although at the expense of increas-
ing dramatically their cost. Such is the case of the large mm VTF etalon,
whose microroughness plate errors are smaller than 0.4 nm RMS across its
large 250 mm aperture (Sigwarth et al., 2016). Of course, other more com-

27



1. Introduction

plex large-scale variations of the geometry apart from the parabolic and
parallelism defect are usually present and have not been corrected so far
(Reardon & Cavallini, 2008; Greco et al., 2019). Sometimes their magnitude
is similar or larger than the one of microroughness errors, which could pre-
vent the optical performance of the etalon to reach the diffraction limit, but
we believe that, in general, it should not be stated that collimated etalons
are not suited for diffraction-limit applications. Instead, it is crucial to ex-
plore whether tight requirements on the small-scale and the contributions
of large-scale defects that are impossible to correct can be accomplished
by the manufacturer or not. It is also mandatory to characterize in detail
the cavity map of defects once supplied by the manufacturer, since cavity
geometries can vary substantially even among similar etalons produced by
the same company (Greco et al., 2019).

1.2 Crystalline etalons

Typically, etalons are controlled by piezo-electric (servo-controlled) ac-
tuators that accurately adjust the width of the cavity for tuning purposes
(e.g., Kentischer et al., 1998; Puschmann et al., 2006; Scharmer et al., 2008).
However, there is an alternative form to change the cavity of the Fabry-
Pérot: crystalline etalons can be tuned by applying an electric field only.
Such etalons are filled with a crystal that lacks a center of symmetry (non-
centrosymmetric) and exhibits therefore linear (Pockels) electro-optical and
piezoelectric properties that allow for a change of both the refractive index
and the cavity width in the presence of a differential voltage between the
cavity plates. The main advantages of crystalline etalons is that (1) they
prevent from vibrations of the etalon caused by the mechanical actuators
and (2) their weight is low, both features being very appreciated in space
applications.8 Currently, LiNbO3 is the material par excellence in space
instrumentation (Mart́ınez Pillet et al., 2011; Solanki et al., 2020). Other
crystals, such as MgF2 have been employed in space etalons too, but only
combined with piezo-electric actuators (Gary et al., 2006). An additional
asset of these etalons is that they have a refractive index that is usually
much larger than that of air (∼ 2.3 in LiNbO3), thus reducing the re-
fracted angle within the cavity and therefore the shift of the transmission
profile across the FoV characteristic the collimated configuration and pupil
apodization effects in case the etalon is mounted on a telecentric setup (e.g.

8Michelson interferometers have also been employed successfully in space-born ap-
plications (Scherrer et al., 1995, 2012), but they present other drawbacks mentioned in
Section 1.1.
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Debi Prasad & Gosain, 2002). Solid etalons provide also more stability on
the degree of parallelism between the reflecting plates during the spectral
scanning compared to servo-controlled etalons (e.g., Greco et al., 2019).

One of their most important problems is probably that the tuning speed
of the etalons is slow compared to that of piezo stabilized Fabry-Pérots. For
instance, LiNbO3 etalons reach maximum tuning speeds of the order of 0.5
Ås−1 (Mart́ınez Pillet et al., 2011), whereas servo-controlled Fabry-Pérots
are about one to three orders of magnitude faster. They also need very
high voltages —of the order of a few thousand volts— to scan a whole
spectral line and they are very sensitive to small variations of the temper-
ature, so they must be controlled thermally.9 When used in balloon-borne
instruments they shall be pressurized too, in order to avoid electrical arc
discharges originated by the dielectric breakdown of the surrounding air,
occurring at millibar pressures (Mart́ınez Pillet et al., 2011).

The majority of noncentrosymmetric crystals are anisotropic, with the
important exceptions of the materials that belong to the cubic system, such
as GaAs, which are isotropic. In fact, crystals belonging to the trigonal,
tetragonal and hexagonal systems (e.g., LiNbO3) are uniaxial —i.e., they
have a preferred direction along which electromagnetic waves propagate
as if they were in an ordinary isotropic medium—, whereas those catego-
rized within the orthorombic, monoclinic or triclinic system are biaxial. As
anisotropic materials, they can change the polarization state of light. In
other words, they are birefringent. Crystals with a unique optical axis ori-
ented orthogonally with respect to the etalon plates are preferred, since
birefringent effects can be minimized simply by illuminating them with
beams as close to the normal of the reflecting plates as possible (Mart́ınez
Pillet et al., 2011; Solanki et al., 2020). Etalons with such an orientation of
the optical axis are said to have a Z-cut configuration, as opposed to the
Y -cut arrangement, in which the optical axis is parallel to the plates (e.g.,
Netterfield et al., 1997).

1.2.1 Anisotropy as a source of artificial signals

Even when the Z-cut configuration is chosen to avoid birefringent ef-
fects, etalons are illuminated by either converging (telecentric) light or with
collimated light with incidence angles that vary over the FoV. Cross-talks
among different Stokes parameters that can corrupt the measurement of

9The voltage and temperature tuning constants of LiNbO3 are ∼ 0.3 mÅ V−1 and
∼ 40 mÅ K−1, whereas the maximum voltage and tuning speeds limits recommended
by the manufacturer for IMaX and PHI etalons are ± 3 kV and 1.5 kVs−1, respectively
(Mart́ınez Pillet et al., 2011; Solanki et al., 2020).
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Figure 1.11: Scheme of the propagation for an off-normal ray in a Z-cut
etalon. The ray is split into two orthogonal components: the ordinary and
the extraordinary rays. Each one travels along different directions and at
a different speeds. The difference in optical paths traversed by the two
components produce a retardance in the optical phase between both rays
that is responsible for a change on the polarization state of the transmitted
light. Figure adapted from Bailén et al. (2019b). © AAS. Reproduced
with permission.

the polarization state of light are, then, expected (Figure 1.11). When con-
sidering local defects of the etalon, such a contamination is field-dependent
even in an ideal telecentric setup. Birefringent effects can also appear even
in normal illumination conditions due to the existence of local regions in
which the optical axis is misaligned with respect to the Z direction (local
domains). Such deviations may appear during the manufacturing or from
hysteresis processes that can take place when fed with very high voltages.
The latter effect has been observed in the spare LiNbO3 etalons of the PHI
instrument when voltages of ∼ 4 kV or more are applied.

The impact of the anisotropy is different also in each optical configura-
tion: collimated or telecentric. When the collimated configuration is chosen,
the direction of the incident beam varies for each point of the observed ob-
ject field and, with it, the birefringence induced in the etalon. For this
reason, its Mueller matrix is expected to change from point to point across
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the field.10 In an ideal telecentric configuration the response of the etalon
would be constant along the FoV, but imperfections on the illumination and
defects on the crystal or in the plates of the etalon cause a field-dependent
polarimetric response of the etalon if this configuration is used, much like in
the collimated case. Moreover, deviations from perfect telecentrism, or tilts
of the etalon to deal with ghost images, are responsible for an asymmetric
spectral performance of the Mueller matrix, similar to the one appearing in
the transmission profile of isotropic etalons.

Fortunately, the etalon is always placed either between the modulator
and the analyzer of the polarimeter (e.g., IMaX) to allow for the use of
dual-beam methods with a single etalon, or right after the polarimeter (e.g.,
PHI). If the etalon is placed within the polarimeter, the modulation of the
incident illumination on the etalon and the presence of a linear polarizer
right after the etalon are expected to moderate somehow birefringent effects.
Birefringent problems disappear or are minimal when the etalon is situated
in the optical path after the polarimeter, but at the cost of eliminating the
possibility of benefiting from a dual-beam configuration, unless two identical
etalons are used, one for each of the channels of the instrument, with the
subsequent increase in cost, weight and difficulty to calibrate, operate and
interpret the data retrieved by the instrument. In any case, the polarimetric
response of the etalon must be taken into account combined with that of
the rest of the instrument in order to minimize its influence or, at least, to
calibrate it.

An experimental evaluation of the influence of the birefringent proper-
ties of a uniaxial (liquid crystal) Fabry-Pérots on the transmission profile
can be found in Vogel & Berroth (2003), while numerical algorithms that
model the propagation of electric fields in crystalline etalons is performed in
Zhang et al. (2017).11 Meanwhile, studies on the artificial signals that take
place because of the polarimetric properties of the multilayer plate coat-
ings has been carried out numerically by Doerr et al. (2008) and Ejlli et al.
(2018). According to Doerr et al. (2008), the largest deviation on the PSF
introduced by the birefringence of the coatings is only of the order of 10−6

10The Mueller matrix of a system represents its (linear) response to the incident
polarized light with a given Stokes vector through a 4×4 tensor. For farther information
on the Mueller matrix formalism, we refer the reader, for instance, to Del Toro Iniesta
(2003).

11Fabry-Peróts based on liquid crystals have not been employed in solar instruments
yet because of the inherent problems of this technology. In particular, the direction of
their optical axis changes when tuned, and with it their birefringent properties. They
also suffer from a non negligible absorptivity that reduces considerably the maximum
achievable transmission.
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for etalons illuminated with typical incidence angles characteristic of solar
instruments. The influence of crystalline etalons in spectropolarimeters was
carried out by Del Toro Iniesta & Mart́ınez Pillet (2012), who considered
the effect of solid etalons by postulating that their Mueller matrix is sim-
ply given by the sum of a retarder and a mirror. With this premise, they
demonstrated analytically that a spectropolarimeter formed by a set of two
nematic LCVRs as modulator, a birefringent Fabry-Pérot as tunable filter
and a linear polarizer as analyzer can still reach the maximum polarimetric
efficiencies with proper modulations of the pair of LCVRs. However, formal
derivations of the Mueller matrix of crystalline etalons that take into ac-
count the full nature of the problem are still inexistent, up to our knowledge.
Hence, the influence of the birefringent properties of solid Fabry-Pérots in
magnetographs can be modeled only to some extent.
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2.1 Motivation

In our opinion, the influence of etalons in imaging spectropolarimeters
needs to be revisited and assessed to its full extent. In particular, we believe
that there are still some open questions that need to be addressed:

Impact of defects There are many different approaches to describe the
degradation of the spectral resolution caused by defects (e.g., Chabbal ,
1953; Meaburn, 1976; Hill, 1963; Sloggett, 1984; Hernandez, 1988), but
most of them are either limited to the case in which the broadening of the
spectral profile is very large compared to the ideal case (e.g., the limiting
finesse of Chabbal , 1953) or they are only valid to air-gapped etalons
(e.g., the aperture finesse of Atherton et al., 1981). Moreover, the manner
different types of defects contribute to the final transmission profile remains
controversial. The usual approach consists in adding quadratically the RMS
contributions of various types of defects to estimate the effective broadening
of the profile. However, as explained by Sloggett (1984), this is not strictly
correct since the distribution function of the different type of defects is not
Gaussian in general — and, hence, they are not statistically uncorrelated—.
Instead, he proposed to weight each type of defect with and ad hoc factor
that depends on its magnitude to permit the quadratic sum of the defects.
His method provides consistent results and can be generalized easily to
crystalline etalons, but it is ignored in most of the works we have reviewed
so far.

Wavefront deformation on telecentric mounts The formulas relating
cavity errors with the wavefront quality found by Ramsay (1969), von der
Lühe & Kentischer (2000) and Scharmer (2006) are just valid for collimated
etalons. As far as we know, only qualitative estimations have been presented
so far on the impact of defects in the wavefront for telecentric mounts (e.g.,
Righini et al., 2010). Typical footprints of a few millimeters on the etalon
plates —comparable or larger than the typical sizes of small-scale defects—
are, however, common in the telecentric configuration, and they could have
a considerable influence on the wavefront.

Analytic formulation of telecentric etalons An analytical solution
of the electric field equation for telecentric etalons has not been found yet,
to our knowledge. The benefits of having access to compact analytical ex-
pressions of the transmitted field in such mounts are countless. Some of
them are sensitivity analyses, like the ones needed to address the wavefront
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deformation mentioned above, or onboard calibrations of space-borne in-
struments, in which evaluating numerically the electric field point-to-point
is a heavy task from a computational perspective that consumes consider-
able resources and time.

Imperfections in telecentrism While the qualitative impact of hav-
ing an asymmetric pupil apodization produced by a tilt of the etalon or
by departures from ideal telecentric illumination is clear, we miss the exis-
tence of quantitative studies on the deformation of the PSF and the trans-
mission profile, since deviations of a few tenths of degree —found in real
instruments— could very well induce unacceptable asymmetries and field
dependencies in the profiles, especially in instruments with tight spectral
resolutions.

Polarimetric response of solid etalons To our knowledge, the only
analytical study that takes into account the polarimetric properties of bire-
fringent etalons is the one by Del Toro Iniesta & Mart́ınez Pillet (2012),
who assumed the etalon to behave as a combination of a retarder and a
mirror. Their model is probably too simple, though, as the etalon response
is neither simply that of a retarder followed by a mirror, nor spectrally flat.
Instead, the polarimetric properties of birefringent etalons are expected to
show very strong dependencies with wavelength. This complicates the cali-
bration of the instrument, since it is not possible to eliminate their influence
simply re-adjusting the modulation scheme of the polarimeter.

Effect of pupil apodization The evaluation carried out by Beckers
(1998) on the spurious plasma velocities arising in telecentric mounts is
merely an estimation based on convolving the PSF with a synthetic Gaussian-
like spectral line and subtracting the signals at two different points at its
wings. Later works have followed similar approaches (e.g., von der Lühe
& Kentischer, 2000), but the full nature of the observations is far more
complex, since the spectral and spatial information of the solar scene is
correlated and changes point to point. Moreover, since both the imaging
and the polarimetric properties of the etalon varies spectrally, the integrated
quasi-monochromatic response of the instrument depends on the object it-
self no matter the chosen setup, collimated or telecentric —i.e., the etalon
has an influence on the measured Stokes vector that comes from the corre-
lation among the observed object and its response—. This relation holds
for both isotropic and anisotropic etalons and is impossible to calibrate to
its full extent with usual flat-fielding methods.
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Collimated or telecentric? The opposite conclusions of different au-
thors regarding the use of collimated or telecentric setups are somehow bi-
ased and hamper proper comparisons among the two mounts. For instance,
the work of Beckers (1998) advocates for the collimated configuration with-
out evaluating the possible over amplification of the wavefront introduced
by cavity errors in collimated setups, whereas von der Lühe & Kentischer
(2000) and Scharmer (2006) stand up for the telecentric configuration, but
they do not discuss in detail neither the consequences of having an un-
avoidable different point-to-point response in such mounts nor the possible
degradation produced by the small, but finite, footprint of the incident
beam on the etalon.

2.2 Goals

The aim of this thesis is to provide both qualitative arguments and quan-
titative tools to analyze the imaging, spectral and polarimetric performance
of etalons in collimated and telecentric configurations, while reviewing and
highlighting all the possible benefits and disadvantages studied so far and in
here. This work aspires to enrich the understanding of the performance of
etalon-based instruments that are nowadays in use, as well as to give farther
insight on how to make the difficult decision of choosing which configura-
tion suits the best for each particular application in future instrumentation.
With the aim of pursuing these rather ambitious targets, we have divided
our specific goals in the following ones:

1. To review and summarize the main results presented by other works
so far, emphasizing on the impact of defects. We aim to present a
general analytical description on the influence of the various types
of defects on the transmission profile taking care of their magnitude
and the way they must be added. The found expressions should be
compatible with crystalline etalons, too.

2. To tackle quantitatively the impact on both the PSF and the trans-
mission profile of deviations from on-axis illumination of the chief ray
in telecentric etalons.

3. To derive an analytical expression of the Mueller matrix of uniaxial
etalons valid in general for both collimated and telecentric systems
with the purpose of exploring the birefringent effects brought about on
the measured spectrum of the Stokes vector, as well as the consequent
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spurious signals on the measured maps of the magnetic field and LoS
velocities.

4. To accurately assess the artificial signals in the magnetic field and
plasma velocities produced by the wavelength dependence of the PSF
in telecentric mounts, paying special attention to the loss of symmetry
in pupil apodization that results from tilts or deviations of the chief
ray direction across the FoV.

5. To derive analytical expressions for the module and phase of the trans-
mitted electric field in telecentric etalons and its derivatives. We pur-
sue to find a general solution valid, at least, for the usual range of
apertures employed in solar telescopes.

6. To formulate analytically and evaluate the wavefront deformation pro-
duced by defects across the footprint of telecentric etalons through
sensitivity analyses of the expressions for the transmitted phase ob-
tained in previous goal.
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3.1 Evaluation of the spectral and imaging

properties of etalons

We begin this thesis with a review of the general properties of etalons,
based fundamentally on the description provided by Born & Wolf (1999)
and Hecht (1998), summarized in Sects. 2 and 3 of Paper I (Chapter 4).
We pay special attention to the treatment of the impact of defects on the
spectral profile through a revision of the works of Chabbal (1953), Hill
(1963), Meaburn (1976), Atherton et al. (1981), Sloggett (1984), Hernandez
(1988), Vaughan (1989), and some of their references therein. We take the
general approach of Sloggett (1984), valid for defects showing either a small,
intermediate, or large impact on the profile in order to derive expressions
for the broadening of the spectral profile produced by the most common
defects. The formulation of Sloggett (1984) allows us to extend in a natural
way the classical formulae of defects to crystalline etalons. Details can be
found in Sect. 4.1 and Appendix A of Paper I.

We follow with a comparison of the collimated and telecentric config-
urations inspired mainly on the studies of Beckers (1998), von der Lühe
& Kentischer (2000), Scharmer (2006), and the notes by our friend and
former colleague José Antonio Bonet Navarro. These works focus on the
evaluation of the transmitted profile and PSF, with special attention on the
properties of the telecentric configuration. We follow their method based
on the theory of scalar diffraction to calculate the electric field transmitted
at the image plane by a telecentric solid etalon similar to the ones employed
in IMaX and PHI. Within this approach, the electric field at the image is
simply proportional to the Fourier transform of that at the pupil plane (the
Fraunhofer integral), with the Fabry-Pérot working as a pupil mask. In

particular, the electric field at the image plane, Ẽ
(t)

, for a monochromatic
wavefront impinging normally to the pupil plane, is given by Eq. [48] of
Paper I:

Ẽ
(t)

(ξ, η) =
1

πR2
pup

∫∫
pupil

E(t)(x, y) e−ik(αx+βy) dx dy, (3.1)

where (x, y) and (ξ, η) are the coordinates of the pupil and of the image
plane, respectively; Rpup is the pupil radius; E(t) is the transmitted electric
field of the etalon given by Eq. [47] of Paper I; k ≡ 2πλ−1 is the angular
wavenumber —with λ being the wavelength of the monochromatic beam
impinging the etalon—; and α and β are the cosine directors of the diffracted
wavefront by the pupil aperture. The transmission profile and the PSF are
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3.1. Evaluation of the spectral and imaging properties of etalons

derived directly from the electric field by multiplying it by its complex
conjugate.

The particular dependence of the electric field E(t) on the pupil in each
configuration is discussed in depth in Sect. 4 of Paper I. For the telecentric
mount, even if we assume an ideal etalon, the analytical integration is chal-
lenging and only numerical approaches to evaluate the integral have been
followed until now, up to our knowledge. We proceed this way in Paper
I to obtain the image plane electric field. To facilitate the convergence of
the numerical integration, we separate the real and imaginary parts of the
integral and we use polar coordinates on the pupil. Due to the circular
symmetry of the problem, we also set β = 0 to facilitate the evaluation
the electric field on the image plane expressed as a function of the radial
coordinate ρ ≡ f(α2 + β2)1/2, where f is the focal length of the instrument
at the image plane of the etalon. The numerical integration is performed
employing the Matlab routine “quad2d”, which relies on two-dimensional
adaptive quadrature integration methods. We adjust the absolute tolerance
and the maximum number iterations allowed to 10−10 and 106, respectively.
To test the goodness of the numerical solution, we reproduce some of the re-
sults presented in the papers of Beckers (1998), von der Lühe & Kentischer
(2000) and Scharmer (2006), especially those related to the wavelength-
dependent behavior of the PSF. We have tested also that our solution co-
incides with that of a collimated configuration in the limit of very large
f -numbers (f# � 1). We compare the results for moderate f -numbers of
a few decades with those predicted analytically from the aperture finesse
and spectral shift equations in Sect. 4.2.2 of Paper I.

Imperfections in telecentrism are simulated assuming that the pupil is
situated on the lens, for the sake of simplicity. The (monochromatic) prop-
agation of an incident plane wavefront with an induced off-axis direction is
then calculated. Since the pupil is overlapped to the lens, the orientation of
the wavefront incident on the pupil coincides with the one of the chief ray
on the etalon. The effect of such an off-axis incidence is included simply
by changing α and β by α′ ≡ α − α0 and β′ ≡ β − β0 in Eq. [48] of Paper
I, where α0 and β0 are the cosine directors of the incident wavefront (see,
e.g., Born & Wolf, 1999). The validity of this approach comes from the fact
that either deviations from perfect telecentrism or tilts on the etalon have
an impact on the PSF and on the transmission profile only because of the
relative misalignment with the chief ray. The position of the pupil is, then,
irrelevant to determine the response of the etalon as long as the relative
inclination of the light cone focused on the etalon is properly taken into
account. More details on the calculations can be found in Sects. 5.2 and 6
of Paper I.
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An analytical solution of Eq. [48] of Paper I for α = β = 0, is also
found for telecentric etalons. Such a particular case gives the electric field
evaluated on the intersection of the optical axis of the instrument with the
image plane (ξ = η = 0), whose absolute square and phase represent the
transmission profile and the transmitted wavefront, respectively. To find
the analytical solution, we separate again the real and imaginary parts of
Eq. [48] of Paper I. Then, we express any incidence angle as a function of the
radial coordinates of the pupil, we expand it in a power series and we assume
a small angle regime (f -numbers much larger than unity). Following this
approximation, we find integrals with closed-form analytical solutions given
in terms of known trigonometrical functions. An step-by-step explanation
of the followed method can be found in Sects. 2 and 3 of Paper IV (Chapter
7).

3.2 Derivation of the Mueller matrix of

birefringent etalons

The Mueller matrix of crystalline etalons is derived by extending the
approach of Lites (1991), valid for (Y -cut) waveplates that exhibit very
low reflectivity, to the general case of uniaxial crystals with coatings of
arbitrary reflectivity and whose axis is oriented in any possible direction.
Since the whole procedure is explained extensively throughout Paper II and
its appendices, we will only give a brief description of the method in here.

First, the different propagation of the ordinary and extraordinary rays
in anisotropic collimated etalons is considered after assuming they are given
by Eq. [47] of Paper I, except for an arbitrary relative phase which accounts
for the birefringence of the etalon (Sect. 2 of Paper II –Chapter 5–). Then,
the transmission of the electric field vector is expressed in the Jones matrix
formalism and the Mueller matrix terms are calculated analytically through
the relation given in Jefferies et al. (1989) (Sect. 3.1 of Paper II). Since the
directions along which the ordinary and extraordinary rays vibrate depend
on the principal plane —the one containing the wavefront vector and the
optical axis (e.g., Del Toro Iniesta, 2003)—, a rotation of the Mueller matrix
is considered to account for the different directions of the incident rays (Sect.
3.2 of Paper II). The dependence of the birefringence of a LiNbO3 etalon
with the incidence and optical axis angles is also found following Del Toro
Iniesta (2003) and the relations by Born & Wolf (1999) in the way described
in Sect. 4.1 and Sect. 4.2 of Paper II.

The Mueller matrix of etalons in telecentric mounts is inferred in a sim-
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ilar way. In this case, an effective polarimetric response is obtained after
integrating the Jones matrices of individual rays across the radial and az-
imuthal coordinates of the pupil, the latter being related to the orientation
of the principal plane. From the “integrated” Jones matrix, the Mueller
matrix is derived in the same way as for the collimated case (Sect. 4.3 of
Paper II).

The polarimetric imaging response is also addressed for the two mounts
by taking into account diffraction effects. For this purpose, the Fraun-
hofer integral is solved for the ordinary and extraordinary rays and, then,
a “diffracted” Mueller matrix is calculated in a similar manner than before
(Sect. 5 of Paper II).

3.3 Assessment on the impact of etalons in

solar instruments

We evaluate artificial signals arising from: (1) the wavelength depen-
dence of the PSF on the telecentric configuration, (2) deviations from ideal
telecentric illumination, and (3) the birefringence of a LiNbO3 etalon in
both setups. We obtain the response of a spectropolarimeter formed by
two liquid crystal variable retarders (LCVRs) followed by a linear polar-
izer and a LiNbO3 Fabry-Pérot as tunable filter, similar to IMaX and PHI.
Maps of the spectrum of the four Stokes components centered at the 525.02
nm Fe I line in a region of the solar surface containing a magnetic pore
are simulated from magnetohydrodynamics (MHD) simulations (Vögler et
al., 2005). The maps of the Stokes vector are modulated artificially follow-
ing the optimum scheme of IMaX and PHI (Del Toro Iniesta & Mart́ınez
Pillet, 2012). Then, the etalon is tuned along the spectral line and its
spectral PSF is convolved monochromatically with the modulated object.
The “measured” intensity at each wavelength is inferred by integrating the
monochromatic convolutions across the transmission profile. Then, the in-
cident Stokes vector is obtained demodulating the measured signal with
the optimum demodulation matrix of the polarimeter (Del Toro Iniesta &
Mart́ınez Pillet, 2012). The LoS magnetic field and plasma velocities are
calculated from the inferred Stokes maps using the center of gravity (CoG)
method (Semel, 1967) and are compared with the ones obtained assuming
the following ideal scenarios: (1) that the PSF is independent of the wave-
length, (2) that there are no relative tilts between the chief ray and the
etalon, and (3) that the etalon is isotropic. More details of the method can
be found in Sect. 2 of Paper III.
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The birefringence effects of the etalon are evaluated placing the Fabry-
Pérot before and after the linear polarizer. To take into account the different
positions of the etalon, the combined Mueller matrix of the polarimeter
and the filter is calculated by multiplication of the individual matrices, as
described in Sect. 3 of Paper III. In such a case, the modulation matrix
is obtained directly from the final Mueller matrix and the demodulation
matrix is calculated by inverting it numerically. The polarimetric efficiencies
are calculated in the way explained in Del Toro Iniesta (2003).
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Abstract

Here we assess the spectral and imaging properties of Fabry–Pérot etalons when located in solar magnetographs.
We discuss the chosen configuration (collimated or telecentric) for both ideal and real cases. For the real cases, we
focus on the effects caused by the polychromatic illumination of the filter by the irregularities in the optical
thickness of the etalon and by deviations from the ideal illumination in both setups. We first review the general
properties of Fabry–Pérots and we then address the different sources of degradation of the spectral transmission
profile. We review and extend the general treatment of defects followed by different authors. We discuss the
differences between the point spread functions (PSFs) of the collimated and telecentric configurations for both
monochromatic and (real) quasi-monochromatic illumination of the etalon. The PSF corresponding to collimated
mounts is shown to have a better performance, although it varies from point to point due to an apodization of the
image inherent to this configuration. This is in contrast to the (perfect) telecentric case, where the PSF remains
constant but produces artificial velocities and magnetic field signals because of its strong spectral dependence. We
find that the unavoidable presence of imperfections in the telecentrism produces a decrease of flux of photons and a
shift, a broadening and a loss of symmetrization of both the spectral and PSF profiles over the field of view, thus
compromising their advantages over the collimated configuration. We evaluate these effects for different apertures
of the incident beam.

Key words: instrumentation: interferometers – instrumentation: spectrographs – techniques: interferometric

1. Introduction

Fabry–Pérot interferometers (filters or etalons) are exten-
sively employed as tunable monochromators in post-focus
astronomical instrumentation. Examples can be found in the
Italian Panoramic Monochromator at THEMIS (Bonaccini
et al. 1989 and references therein), the TESOS spectrometer at
the VTT (Kentischer et al. 1998), the Interferometric
BIdimensional Spectrometer at the Dunn Solar Telescope of
the Sacramento Peak Observatory (Cavallini 2006), the CRisp
Imaging SpectroPolarimeter instrument at the Swedish 1 m
Solar Telescope (Scharmer et al. 2008; van Noort & Rouppe
van der Voort 2008), the IMaX instrument aboard SUNRISE
(Martínez Pillet et al. 2011), the GFPI at GREGOR
(Puschmann et al. 2013), and the PHI instrument on board
the Solar Orbiter mission (Solanki et al. 2015). Their main
advantage over single-slit-based spectrographs is that they
allow for fast imaging of the solar scene and for post-facto
imaging reconstruction techniques.1 They are also preferred
against other devices, such as Michelson interferometers or
Lyot filters, in terms of weight and simplicity. When used in
combination with a polarimeter, they enable dual-beam
polarimetry, which gets rid of the undesired seeing-induced
or jitter-induced contamination between Stokes parameters.
However, they present both spectroscopic and imaging draw-
backs that restrict their performance.

Fabry–Pérot etalons present a spectral transmission profile that
is characterized by periodic and narrow resonances at certain
wavelengths, whose position and width depend on intrinsic
parameters of the etalon, such as its thickness or its refraction
index, as well as on the way that the filter is illuminated. In
particular, the transmission peaks shift toward the blue when the

incident angle is different from zero, which implies a variation on
the transmission at monochromatic wavelengths. Meanwhile, the
width of the resonances broaden when imperfections (defects)
appear in the etalon, thus degrading the spectral resolution of
the filter (e.g., Chabbal 1953; Meaburn 1976; Sloggett 1984;
Hernandez 1988). Departure from collimated illumination (i.e.,
when the incident beam has a finite aperture) also widens the
peaks and shifts them toward shorter wavelengths (e.g., Atherton
et al. 1981; Sloggett 1984). Analytical expressions to determine
the broadening of the spectral resolution are usually restricted to
particular cases (e.g., the limiting finesse of Chabbal 1953). In
addition, their derivation is sometimes unclear (e.g., the aperture
finesse of Atherton et al. 1981) and the way in which different
defects are added has been subject to debate (Sloggett 1984). We
believe that this topic should be revisited to clarify the possible
discrepancies and also to discuss the validity of the expressions
given by different authors.
Concerning its imaging properties, Fabry–Pérots are used in

both collimated (e.g., Bendlin et al. 1992; Martínez Pillet et al.
2011) and telecentric configurations (e.g., Kentischer et al.
1998; Solanki et al. 2015). In the first case, the etalon is located
in a pupil plane. Consequently, different incidence angles in the
etalon are mapped to different pixels of the detector. Therefore,
in the case of a uniform object field, the image shows different
peak intensities across the detector at monochromatic wave-
lengths due to the shift induced by the different incident angles
on the etalon over the field of view (FOV). In the (image-space)
telecentric configuration, the etalon is located at the focal plane
while the exit pupil is located at infinity. In this setup (if
perfect), each point of the etalon receives the same cone of rays
from the pupil and the passband is kept constant along the
FOV. Meanwhile, each point of the etalon sees the pupil as if it
was not evenly illuminated. This effect is due to the variation
on the incidence angle for rays coming from different parts of
the pupil, which is known as pupil apodization. This produces
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1 Techniques for imaging reconstruction in spectrographs that employ slits are
still at an early stage of development (e.g., Quintero Noda et al. 2015).
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variations of the spatial point-spread function (PSF) of the
system and of the spectral passband across the detector when
defects are present in the etalon.

The image degradation introduced by the Fabry–Pérot in
telecentric mode through pupil apodization was evaluated for
the first time by Beckers (1998), who concluded that collimated
illumination of the etalon is preferred over the telecentric
configuration in diffraction-limited imaging telescopes. The
PSF varies from one wavelength to another in the telecentric
configuration, which gives raise to artificial line of sight (LOS)
velocity signals that may not be corrected during data pre-
processing. Spurious signals on the magnetic field can also
appear. The magnitude of these effects will be discussed in the
third part of this series of papers. Although his conclusions
were valid, Beckers’s (1998) calculations were not strictly
correct because he considered variations in the magnitude of
the electromagnetic field but omitted phase errors; i.e.,
fluctuations in the optical phase produced by the multiple
reflections of light within the etalon. These fluctuations were
incorporated by von der Lühe & Kentischer (2000), who
concluded that image degradation effects appearing in
telecentric configuration are even more pronounced than those
predicted by Beckers (1998). They add that most wavefront
degradation comes from pupil apodization instead of from
phase fluctuations. Scharmer (2006) showed that phase
variations can be partially compensated by refocusing the
instrument because they depend quadratically with the pupil
radial coordinate, in the same fashion as a defocus term.

The collimated configuration is not exempt of problems in
terms of image degradation because the substrate surface
roughness is amplified due to the high-reflectivity of the etalon
surfaces (von der Lühe & Kentischer 2000). The amplitude and
phase fluctuations in collimated configuration coming from
these irregularities were studied by Scharmer (2006), who
pointed out that the effects are less strong than predicted by von
der Lühe & Kentischer (2000) but are still important, especially
for high-reflecting etalons. In contrast to Beckers (1998), both
these works find that the telecentric configuration is preferred
over the collimated configuration if high-image quality is
required. In our opinion, this comparison needs to be revisited.
On the one hand, the von der Lühe & Kentischer (2000) results
about the expected wavefront distortion in a collimated setup
look too pessimistic. On the other hand, Scharmer’s (2006)
arguments about image degradation in collimated configura-
tions invite to an in-depth study.

From our point of view several aspects are yet to be studied.
First, some of the analytical approximations of the spectral
performance of the etalon are not presented within the realm of
a consistent theoretical framework and they differ from one
author to another (Sloggett 1984). Furthermore, some of them
have not been generalized to crystalline etalons (e.g., the
aperture finesse defined by Atherton et al. 1981). Second, the
effects of imperfect telecentrism (i.e., of having non-symmetric
pupil apodization over the FOV when the exit pupil is not
exactly at infinity, such as in real instruments) have not yet
been thoroughly considered (to our knowledge). Third,
disagreement between authors makes it unclear which config-
uration is to be preferred in terms of both image quality and
spectral transmission. In particular, in an imperfect telecentric
setup, both the PSF and the spectral profile can broaden and
become asymmetric over the FOV (see Section 6). This means
(among other things) that the PSF varies from pixel to pixel,

even if no defects are present in telecentric mode. This can be
critical when referring to image quality. Moreover, a spectral
shift is also produced over the FOV. Consequently, the
passband does not remain constant and the advantage of using
a telecentric setup is no longer obvious.
Etalons are sometimes made up of electro-optical and piezo-

electrical crystals for tuning purposes, especially in space
applications (Martínez Pillet et al. 2011; Solanki et al. 2015).
The tuning is carried out through variations in the refraction
index and thickness when applying a voltage. These crystals
usually present birefringent properties and, because they are
employed in polarimeters, can disturb the polarization proper-
ties of the incoming light and corrupt the polarimetric
measurement. Anisotropic effects have only been taken into
account through numerical experimentation (e.g., Doerr et al.
2008). They will be studied analytically in the second part of
this series of papers for both the collimated and telecentric
configuration, in terms of spectral and imaging performance.
This paper is structured as follows. We first summarize the

relevant theory for analyzing the spectroscopic properties of
Fabry–Pérot etalons (Sections 2 and 3). We then overview the
most common optical configurations (Section 4), while
emphasising the possible sources of the spectral profile
degradation. We will then analyze the PSF deterioration in
both perfect (Section 5) and imperfect (Section 6) telecentric
configurations.

2. Basic Parameters and Nomenclature

A Fabry–Pérot etalon is simply a resonant optical cavity
made up of two semi-reflective and semi-transparent surfaces
that separate two different optical media of refractive indices n
(the external) and n′ (the internal). Note that single refractive
indices implicitly indicate that the media are assumed to be
isotropic. We assume that the media are homogeneous.2 These
are correct assumptions for air-gapped etalons (for example)
but they are not for crystalline ones. Nevertheless, we keep the
assumptions throughout this paper and defer the discussion of
anisotropic etalons to the second paper in this series.
This optical cavity is also characterized by its geometrical

thickness h and by the amplitude reflection and transmission
coefficients r, r′, t, and t′ for the external (unprimed) and
internal (primed) faces of each surface. As shown in Figure 1, a
plane wave impinging the first (top) surface at an angle of
incidence θ partially reflects on and refracts through both
surfaces several times. The refraction angle is called θ′.
The fraction of energy reflected from and transmitted

through the etalon is given by

R r r , 12 2º = ¢ ( )

T tt , 2º ¢ ( )

where we have assumed that r=−r′. R and T are called the
reflectivity and transmittivity of the etalon. If there is no
absorption, then

R T 1. 3+ = ( )

2 An isotropic medium has the same properties and behavior no matter the
direction of the light traveling through it because it is characterized by scalar
dielectric permittivity, magnetic permeability, and electrical conductivity. If
these physical quantities have no directional variations across the medium, then
it is said to be homogeneous.
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If, on the contrary, the etalon is coated with a metal that
absorbs light with an absorptivity A, then

R T A 1. 4+ + = ( )

3. The Transmission Profile for an Incident Plane Wave

Each of the transmitted and reflected rays in Figure 1 has a
constant phase difference with its predecessor. Let us focus, for
instance, in the second and third reflected rays. The optical path
difference between them is

s n AB BC n AN . 5D = ¢ + -( ) ( )

Since

AB BC
h

cos
, 6

q
= =

¢
( )

AC

h

1

2
tan , 7q= ¢ ( )

and Snell’s law,

n nsin sin , 8q q= ¢ ¢ ( )

one can finally obtain that

s n h2 cos . 9qD = ¢ ¢ ( )

The corresponding phase difference between the two rays is

n h
4

cos 2 , 10d
p
l

q f= ¢ ¢ + ( )

where f is the eventual phase shift introduced by the internal
reflections. If the internal surfaces are not coated—as in
crystalline etalons—, then f can only be 0 or π. Meanwhile, if
the reflecting surfaces are made of metallic films, then f can
take any value in the range [0, π] depending on the incident
angle. However, if q¢ is close to zero, then f may be considered
to be constant. Furthermore, in general, h is very large
compared to λ. In any case, f can be neglected (Hecht 1998).

According to Born & Wolf (1999) and others, the ratio
between the transmitted, I(t), and the incident, I(i), intensities
can be written as

g
I

I F1 sin 2
, 11

t

i 2

t
d

= =
+ ( )

( )
( )

( )

where τ is the transmission (intensity) factor for normal
incidence as given by

A

R
1

1
12

2

t = -
-

⎜ ⎟⎛
⎝

⎞
⎠ ( )

and parameter F is defined by

F
R

R

4

1
. 13

2
º

-( )
( )

One can now easily realize that Equation (11) provides a
periodic function of δ, whose maxima are produced when
δ0=2mπ, with m Î or, equivalently, when

n h m2 cos . 140q l¢ ¢ = ( )

m can be called the interferential order. A graphical
representation of g as a function of wavelength can be seen in
Figure 2. We have used n′=1,3 h=250μm, A=0, R=0.9,
and λ0=617.234 nm. For a given etalon with fixed refractive
index and thickness, a different refraction (incidence) angle
shifts the peaks of the transmission profile. Incident angles of
θ=0° (black line), 1° (blue line), and 2° (red line) have been
used. A simple differentiation of Equation (14) readily shows
that the peak shift is to the blue if θ′ is increased and to the red
if θ′ is decreased.

3.1. Properties of the Transmission Profile

3.1.1. Transmission Peak Width and Order Separation

If we call w the (angular) FWHM of the peaks, then it is easy
to see that half the maximum is reached at

m
w

2
2

, 15wd p=  ( )

or, according to Equation (11), when

F

w1
sin

4
, 162= ( )

Figure 1. Transmission and reflection of a plane wave through an isotropic
etalon.

Figure 2. Transmission profile of an isotropic etalon as a function of
wavelength distance to λ0. An incident plane wave is assumed. Black, blue,
and red lines correspond to θ=0°, 1°, and 2°, respectively.

3 As for air at room temperature.
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that is, when

w
F

4
, 17= ( )

where we have assumed that w wsin 4 4=( ) . The FWHM in
Equation (17) is in radians. If we want it in wavelength units,
then it is easy to get

w

n h m F4 cos

2
, 18w

0
2

0l
l

p q
l

p
D =

¢ ¢
= ( )

by differentiating Equation (10) and using Equation (14).
Note that F in Equation (13) is an increasingly monotonic

function of the reflectivity R. Therefore, Equation (18) tells us
that the width of the transmission peaks basically depends on
the reflectivity of the etalon. Note that Δλw can slightly vary
with the refraction angle (the bigger the angle, the broader the
peak). This variation has small effects in solar applications
because an angle of 1° represents a 2% modification of Δλw.

The free spectral range or separation between two
successive peaks is equal to a shift

2 . 19freed pD = ( )

In wavelength units, analogously to Equation (18),

n h m2 cos
. 20free

0
2

0l
l

q
l

D =
¢ ¢

= ( )

Therefore, the free spectral range only depends on the optical
thickness and on the refraction angle. The order separation
without contamination of contiguous ones (a kind of cleanli-
ness of the etalon transmission profile) is then given by the so-
called finesse,

w

F

2
, 21r

free
d p

º
D

= ( )

which is larger when the internal reflectivity on the etalon is
larger. With this definition, the FWHM of the transmission
peak can be rewritten as

m
, 22w

0

r
l

l
D = ( )

or, equivalently,

m . 23
w

0
r

l
lD

= ( )

The finesse is then inversely proportional to the FWHM of
the transmission peaks: the larger the finesse, the thinner the
peaks. The Fabry–Pérot resolving power is directly given by
the product of the interferential order and the finesse. Since the
width of real etalons can change due to other factors (see
Section 4.1.1) and the concept of finesse remains useful, r in
Equation (21) can be called the reflectivity finesse.

3.1.2. Tunability of the Etalon

The wavelength tuning procedure in real etalons implies a
change in n′, in h, or in θ. Equation (14) provides the necessary
relationship between the three parameters and the wavelength
of the transmission peak. If the selected tuning procedure is a
tilt of the incidence angle, then one can approximately calculate

that an angle

n

h
240q

l
D

¢ ( )

is necessary to tune the etalon from one transmission peak to
the next (a whole free spectral range);4 for example, with the
values used for plotting Figure 2, Δθ;2°.85.
Since Equations (14), (18), and (20) depend on cos q¢, the

transmission function is not the same across the FOV when
illumination is out from normal incidence. Consequently, it is
highly advisable to work with etalons that are as close as
possible to normal incidence.
If we now keep fixed the incident angle, then a tuning

equation can be derived from Equation (14) by taking
logarithmic derivatives:

V n V

n

h V

h
, 250

0

l
l

D
=

D ¢
¢

+
D( ) ( ) ( ) ( )

where we have assumed that the tuning agent, the driver for
changing the thickness or the refractive index of the etalon is a
voltage. This is the case for piezoelectric or electro-optic
etalons that can change either n′, h or both by changing the
feeding high voltage signal.
According to Álvarez-Herrero et al. (2006), the converse

piezoelectric effect in Z-cut crystals5 can be described by the
linear relationship

h V d V 2633D =( ) ( )

and the electro-optic change in the refractive index is given by
(the unclamped Pockel’s effect formula)

n V
n r V

h2
. 27

3
13D ¢ = - ¢( ) ( )

By combining Equations (25), (26), and (27), we get the final
tuning relationship6

d
n r V

h2
. 280 33

3
13 0l

l
D = - ¢⎛

⎝⎜
⎞
⎠⎟ ( )

3.1.3. Sensitivity to Variations in the Refractive Index and Etalon
Thickness

There are three key parameters describing the etalon
transmission profile, namely: the central wavelength, the peak
FWHM, and the free spectral range. If the incident angle of the
light beam is kept constant, then according to Equations (14),
(18), (20), and (28), these three parameters depend on the
refractive index n′ and the thickness h. Impurities in the
material or defects in polishing the surfaces can induce
irregularities in any of them (or both) across the etalon clear
aperture. These changes in the optical thickness can induce
modifications in λ0, Δλw, and Δλfree. Consequently, an
assessment of these possible changes is required.

4 This equation can be obtained by using Equation (14) for m with θ=0 and
for m+1. For typical values of real etalons of interest in solar physics, (1/m)2

turns out to be negligible (hence the approximation).
5 Uniaxial crystals are certainly anisotropic and hence birefringent materials.
We mention them here to illustrate a way of changing its (ordinary) refractive
index.
6 The actual values of the d33 and r13 coefficients depend on the specific
sample device.
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Error propagation in Equation (14) provides

n

n

h

h
. 290

0

dl
l

d d
=

¢
¢
+ ( )

Error propagation in Equation (18) provides

n

n

h

h
. 30w

w

d l
l

d dD
D

= -
¢
¢
-

( ) ( )

A similar equation can be found for perturbations in the free
spectral range:

n

n

h

h
. 31free

free

d l
l

d dD
D

= -
¢
¢
-

( ) ( )

Therefore, a given percent error in h or n′ is transmitted
directly to λ0, Δλw, and Δλfree. Since typical thickness
inhomogeneities in etalons are of the order of 1 nm, they
amount a factor 4·10−6 for thicknesses of 250 μm, approxi-
mately. This is perfectly negligible for Δλw and Δλfree.
However, significant shifts of the order of the FWHM can be
produced for the wavelength transmission peak. Perturbations
in the refractive index are also much more important for the
peak wavelength than for the peak width and free spectral
range: a small percent or per thousand may be perfectly
negligible for Δλw and Δλfree but not for λ0.

In summary, the expected impurities or inhomogeneities in
our etalons have less of an effect on the shape of the
transmission profile than on the peak wavelength. See Section 4
for a discussion on these defects for the two typical optical
configurations in which etalons are mounted in astronomical
instruments.

3.1.4. Transmission Peak as a Function of the Incident Angle

Let us consider a variation in δ due to a modification in the
refraction angle (or the incidence angle, of course) for a given
wavelength. In such a case, Equations (10) and (11) predict a
maximum of the transmission profile for normal incidence. At
given wavelengths, the transmitted intensity decreases with an
increasing incidence angle. This is the cause of the so-called
pupil apodization, which is discussed later in Section 4.2.

The monochromatic decrease in intensity is indeed induced
by a shift in wavelength of the transmission peaks. Error
propagation can now be written as

n

cos

cos
1

sin
1, 320

0

2

2

dl
l

d q
q

q
=

¢
¢

= -
¢

- ( )

where we have assumed shifts with respect to the peak (at
θ=θ′=0). If the incidence angle is small, then we can write
the last equation in a more simple way:

n2
. 330

0

2

2

dl
l

q
-

¢
 ( )

For our sample etalon in Figure 2, a maximum incidence angle
of 0°.4 translates to a maximum wavelength shift of,
approximately, 15 pm, which is larger than the typical peak
FWHM. Notice that the shift can be reduced by increasing the
refraction index. For example, for Lithium Niobate, n;2.3
and δλ0;2.8 pm. Again, the effect of non-normal incident
angle is negligible for the width of the transmission peaks and
the free spectral range. Note that the right-hand side term of
Equation (32) is 2.4·10−6 and when multiplied by Δλw∼10

pm, it gives δΔλw∼2.4·10−4 pm. It is important to remark
that, no matter the incidence angle, the right-hand sides in
Equations (32) and (33) are always non-positive. This means
that transmission peak shifts are always to the blue.

4. Two Optical Configurations

Fabry–Pérot etalons are used in solar physics in two typical
optical configurations, namely: collimated and telecentric. In
the first configuration, the etalon is located at (or very close to)
a pupil plane. In the second configuration, the etalon is put very
close to a focal plane. The properties and performance of the
etalon are naturally different and are discussed in this section.

4.1. Collimated Configuration

Let us consider an optical configuration like the one sketched
in Figure 3. The etalon is located on a pupil plane. In this
location, the etalon is illuminated with parallel rays (plane
waves) from each point in the object (assumed at infinity). The
transmitted intensity at each image point is then given by
Equation (11) multiplied by the surface of the pupil. This
happens because all of the rays added at a given image point go
through the etalon with the same incidence angle. As
commented on in Section 3.1.4, we can deduce that in case
of a uniform object field, images A′ and C′ will show a smaller
peak intensity than B′ at a monochromatic wavelength simply
because the incidence angle (hence the refraction angle) is
larger. This is an effect that could easily be corrected through a
standard flat-field procedure. However, the sensors detect the
flux of energy that passes through the entire transmission peak
instead of the monochromatic intensity. Because the spectral
width of the profile is almost insensitive to variations in the
incidence angle (Section 3.1.4), there is no effect in the total
flux of photons detected on the sensor over the FOV. The
wavelength shift induced by the different incidence angle is of
greater importance. The transmission functions at points A′ and
C′ are blueshifted with respect to that at B′.
The results in Section 3.1.4 account for the effects of a non-

zero angle between the etalon normal and the instrument
optical axis. The sensitivity of the final image to inhomogene-
ities of the collimated etalon can be studied with the results
from Section 3.1.3. Locally larger optical thicknesses imply
redshifts and locally smaller optical thicknesses produce
blueshifts. In this collimated configuration, the inhomogene-
ities are integrated and, hence, are spectrally blurred on the
final image. These inhomogeneities broaden the effective
transmission profile as a consequence of having different
profiles shifted with respect to each other. This is discussed in

Figure 3. Layout of a collimated beam etalon configuration.
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the following Section 4.1.1. The consequences on the spatial
point-spread function of the instrument are considered in
Section 5.1.

4.1.1. Effective Finesse

Regardless of quantitative effects, it is obvious that the
highest quality etalons should be pursued. In other words, we
typically aim at using the smoothest, flattest, and more
accurately parallel etalons. However, the perfect etalon does
not exist. Defects appear in real etalons that locally change the
optical path through it. Most papers and books refer to air-
gapped (or other fluid) etalons and they only discuss on
inhomogeneities in the etalon width, h. However, crystalline
etalons may also present irregularities in the refractive index,
n′.7 Since both h and n′ always appear multiplied together, the
relevant physical quantity is indeed the optical path
s n h cos qº ¢ ¢, which accounts for all possible incidence
angles. The classical approach to these non-uniform etalons
is to treat them as a set of individual etalons, each with a given
optical thickness (e.g., Chabbal 1953). Although incoherent
summation of the various etalon intensity distributions is not
rigorously correct, diferences with the accurate coherent
summation are not very large, according to Vaughan (1989).
These differences were studied by Hernandez (1988), who
showed that they are negligible for high-quality (highly
reflective) etalons. The common approach (e.g., Atherton
et al. 1981) is to ascribe different finesses to the various plate
defects under consideration and add their inverses quadrati-
cally. This was first proposed by Meaburn (1976) under the
assumption that all of the functions involved in the degradation
of the intensity profile were Gaussian.

The most commonly employed expressions for the spherical,
Gaussian, and departure from parallelism finesse defects
(Figure 4) are probably those presented by Chabbal (1953).
Analytical expressions for the sinusoidal defect (Figure 4(d))
have not been presented in the literature up to our knowledge,
although this defect has already been studied by Sloggett
(1984) and Hill (1963). The defect finesse formulas presented
by Chabbal (1953) are restricted to the limit when the defect
distribution is very broad compared to the original transmission
profile (i.e., without including irregularities). This happens
either when defects are very large or when the reflectivity is
high and, therefore, the original spectral profile is very narrow.
The latter case is of interest because achieving high finesses is
usually intended and small variations in the optical path can
degrade the profile severely. In this paper, we refer to
Chabbal’s (1953) expressions as limiting finesses because they
restrict the maximum possible finesse of the etalon. However,
these limiting expressions are usually employed as generic
expressions (e.g., Atherton et al. 1981; Gary et al. 2006); i.e., as
if they were valid for any magnitude of the defect.

The most complete approach to describe the etalon plate
defects is in our opinion the one by Sloggett (1984), who
presented a general treatment applicable to any defect form or
magnitude useful for etalons whose surface reflectivity is
moderate to high. In particular, he heuristically suggested that
the FWHM of a defect-broadened transmission profile, w, is
approximately given by

w w , 34d
2

0
2 2 2a s= + ( )

where w0 is the width of the profile corresponding to an etalon
without defects (as given by Equation (17)), σd is the standard
deviation of the probability density function associated to the
perturbation or error in the phase δ introduced by the defects,
and α is a coefficient that can be derived from numerical
convolution of the transmission profile of a perfect etalon with
the probability density function of the errors. This coefficient
depends on the type and magnitude of the defect. Sloggett
(1984) obtained by numerical methods that α converges to
2 3 3.46 for all defects in the small magnitude regime
(σd/w0<0.1). This value of α agrees with the results found
analytically by Steel (1986), who considered small perturba-
tions of the incident wavefront caused by etalon defects. Note
that for large defects compared to the original spectral profile
( wd 0s  ), the width of the degraded profile is equivalent to
that of the defect distribution, wd, and the value of α coincides
with the factor that relates the FWHM of the distribution with
its standard deviation (wd das= ). The value of α in this limit
must be consistent with the results of Chabbal (1953).
With this broadened profile, the reflective finesse no longer

represents a spectral cleanliness of the etalon transmission
profile. However, we can identify

2
35d

d


p
a s

º ( )

as a defect finesse and speak of an effective finesse given by

1 1
. 36

r d
eff 2 2

1 2


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º +
-⎛

⎝⎜
⎞
⎠⎟ ( )

With this definition, we can continue using the finesse concept
as an useful parameter for characterizing the etalon spectral
cleanliness. Hence, by using this effective finesse in
Equation (22) instead of the reflectivity finesse, the actual
width of the etalon transmission peak becomes

m
. 37w

0

eff
l

l
D = ( )

Sloggett (1984) pointed out that defect finesse expressions
obtained through Equation (35) could differ from the limiting
finesses of Chabbal (1953) depending on the magnitude of the
defect. Although he did not explicitly obtained finesse
expressions for the different defects, we believe that they need
to be presented to allow a comparison to be made with those of
Chabbal (1953) and others. Here, we present compact
expressions for four examples of the defect finesse assuming
that defects are small ( 2 3a = ). A complete discussion on
the derivation of the defect finesses is carried out in
Appendix A.
Consider a dish-like defect with a spherical or parabolic

shape, such as the one shown in Figure 4(a), characterized by a

Figure 4. Typical defects of Fabry–Pérot etalons: (a) spherically shaped with a
peak-to-peak excursion Δss; (b) irregularities following a Gaussian distribution
with a variance s ;g

2D (c) linear wedge with a peak-to-peak deviation Δsp; and
(d) sinusoidal defect of peak-to-peak amplitude Δsa.

7 We restrict our analysis here to effects in one of the indices. Possible
birefringence effects are deferred to a subsequent paper.
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peak-to-peak excursion Δss in the optical path.8 The defect
finesse can be shown to be given by,

s2
. 38d

s
s

l
=

D
( )

If we now focus on Figure 4(b), we have a microrough
surface with deviations from s that follow a normalized
Gaussian distribution with variance sg

2D . In this case, the defect
finesse is

s s4 3 6.9
. 39d

g g
g

l l
=

D D
 ( )

If the departure from parallelism is linear as in Figure 4(c),
with a peak-to-peak excursion of spD , then the defect finesse
can be written as

s s3 1.7
. 40d

p p
p

l l
=

D D
 ( )

Finally, consider an etalon with an optical path roughness
given by a sinusoid of amplitude Δsa and zero offset. The
corresponding defect finesse is

s s6 2.5
. 41d

a a
a

l l
=

D D
 ( )

Should the defects of a given etalon be described by the
superposition of two or more of these distributions, then it is
naturally understood that its inverse square finesse would result
from summing up the square inverse finesses of each
distribution.

As indicated previously, for wd 0s  , the value of α should
give rise to consistent finesse expressions compared to the ones
found by Chabbal (1953). Furthermore, these are (in principle)
different from Equations (38)–(41). Figure 5 shows the value of
α in the range 0.01<σd/w0<30 obtained after numerical
convolution of the four defect distributions that are considered
here (see Appendix A) with the transmission profile g of an

etalon with reflectivity R=0.95 and unity transmission
factor.9 We observe that α tends in all cases to 2 3 3.46 for
σd/w0<0.1, as already shown by Sloggett (1984). In the limit

wd 0s  , α tends to 2 3 for the spherical and parallelism
distributions, to 2 2 ln 2 2.35 for the Gaussian distribution
and to 2 2 2.83 for the sinusoidal one. The limiting finesse

d
lim coincides then with Equations (38) and (40) for the

spherical and the parallelism defects as the limiting value of α
coincides with that of the small-defect regime. In contrast, for
the Gaussian and sinusoidal distribution, the limiting finesse
formulas differ from Equations (39) and (41). Their expressions
are given by

s4.7
, 42d

lim

g
g


l
D

 ( )

and

s2
. 43d

lim

a
a


l
D

 ( )

The limiting value of α coincides in each case with the factor
that relates the FWHM with the standard deviation of the defect
distributions (Appendix A) and as expected agrees with the
limiting finesse expression of of Chabbal (1953).
The defect finesse expressions that are presented here have

only been restricted to two limits: small defects and large
defects. In general, Equation (35) must be applied with the
value of α that corresponds to the magnitude of the particular
defect (Figure 5).

4.1.2. Transmission Profile Widths Across the Image

A further effect can produce a differential broadening of the
transmission peaks of the etalon across the focal plane in a
collimated configuration. Since any point in the final image is
formed with rays that went through the etalon at higher
incidence angle for greater radial distances from image center,
the transmission peak broadening is dependent on this radial
distance.
By differentiating Equation (18), one easily gets that the

relative variation in the FWHM of the peak is

tan . 44w

w

d l
l

q dq
D
D

= ¢ ¢ ( )

With a typical value less than 0°.5 for the maximum incidence
angle in solar telescopes, the ratio is 8·10−5. Therefore, we
can safely disregard this effect for our very slow instruments.

4.1.3. Deviations from Perfect Collimation

Deviations from perfect collimation can be viewed as
illuminating the etalon with a spherical wavefront of a finite
numerical aperture. The consequence would be a broadening
and a displacement of the profiles with respect to that of
parallel illumination. Although aberrations may also be present
in the incident wavefront, they will not be considered here.
Following Sloggett’s (1984) method, the broadening of the

Figure 5. Value of the coefficient α for the Gaussian (black), spherical (red),
parallelism (blue), and sinusoidal (green) defects against the standard deviation
of probability density function associated to each defect normalized by the
width of the profile of an etalon without defects, σd/w0.

8 Sloggett (1984) refers to the peak-to-peak excursions as 2Δs instead of Δs.

9 Note that Sloggett (1984) presented the value of α up to 5σd/w0 in his paper
employing a Lorentzian function as transmission profile instead of g. We
believe that this upper limit of σd/w0 is insufficient to evaluate the tendency of
α in the regime wd 0s  . Consequently, we have extended by a factor of six.
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transmission profile due to the angular spread illumination of
each point of the etalon can be managed with an aperture
finesse (Appendix A) given by

m

n

n m

n

n

2 2

tan
, 45d

2

2 2
m

2

2f
p

q
º

W
¢

=
¢ ( )

where Ω stands for the solid angle of the cone of rays traversing
the etalon, and θm is the maximum incidence angle in the cone.
This expression is compatible with that presented by Atherton
et al. (1981), except for the factor n n2 2¢ . This disagreement is
probably due to the fact that Atherton et al. (1981) considered
an air-gapped etalon in their derivation and not the general
(crystalline) case.

4.2. Telecentric Configuration

An alternative configuration can be used to keep the same
passband across the FOV. In a (image-space) telecentric
configuration (Figure 6) the etalon is located (almost) at the
focal plane and the exit pupil is located at infinity (or,
equivalently, the entrance pupil is at the front focal point of the
system).

Each point of the etalon sees the same cone of rays coming
from the pupil. Unlike the collimated case, all three points (i.e.
A′, B′, and C′) are evenly illuminated if the object field is flat
and no wavelength shifts in the transmission peaks are
expected from one point to another. However, the transmitted
intensity is no longer g. Since these rays are coherent because
they come from the same object point, the addition of
intensities does not provide a solution and we should instead
deal with electric field amplitudes.

4.2.1. Transmission Profile

The vector electric field of the ray transmitted by the etalon
in Figure 1 is given by

E E
Te

1 Re
, 46

i

i
t

2
i=

-

d

d
( )( ) ( )

/

where (t) and (i) refer again to the transmitted and incident
quantities and R and T are given by Equations (1) and (3). This
expression differs from that presented in most text books (e.g.,
Born & Wolf 1999) by the general phase factor eiδ/2, which is

irrelevant in their discussion. However, it is at first important in
our current analysis because it depends on the incidence
angle.10 The origin of the global phase is discussed in
Appendix B.
With some simple algebra, Equation (46) can be cast as

R F
E E

1

e R e

1 sin 2
, 47t

i 2 i 2

2
it

d
=

-
-

+

d d-

( )
( )( ) ( )

/

/ /

where τ is defined in Equation (12) and F in Equation (13).
Consider now the geometry sketched in Figure 7. For a general
optical system, the electric field at any point P′=(ξ, η) is
given by the sum of all electric fields across the pupil surface:

R
x y x yE E,

1
, e d d , 48k x yt

pup
2 pupil

t iò òx h
p

=
~ a b- +( ) ( ) ( )( ) ( ) ( )

where fa xº and fb hº are the cosine directors of OP′
(notice that we restrict ourselves to small angles).11 Therefore,
the electric field in the image plane is proportional to the
Fourier transform of that in the pupil plane. For our discussion
about the telecentric configuration, we should concentrate in
the electric field at point O′: all the points in the focal plane
receive the same cone of light.12

The axial symmetry of Figure 7 indicates that the pupil
electric field only depends on r and we can thus write

R
r r drE E0, 0

2
. 49

R
t

pup
2 0

t
pup

ò=˜ ( ) ( ) ( )( ) ( )

All points in the pupil at a distance r from its center have an
associated incidence angle θ to the etalon. Therefore, each
monochromatic ray out of the optical axis contributes less and
less energy (Section 3.1.4) as θ increases. The bigger the
distance to the pupil center, the smaller the energy. Hence, the
pupil is seen from the etalon as if it were not evenly
illuminated. This is the so-called pupil apodization effect,
which was first discovered by Beckers (1998) and later
discussed and elaborated by von der Lühe & Kentischer
(2000) and Scharmer (2006). Moreover, the transmission peaks

Figure 6. Layout of a telecentric beam etalon configuration where the entrance
pupil is located at the focus of the lens (and the exit pupil is therefore at
infinity). In this case, points A′ and C′ receive the same cone of rays as for
point B′.

Figure 7. Rays coming from the pupil to the image plane. They go from the
lens in Figure 6 to the etalon.

10 Neither von der Lühe & Kentischer (2000) nor Scharmer (2006) take this
phase factor into account.
11 We have normalized by the pupil surface to obtain quantities that can later
be compared with the results for the collimated configuration.
12 It is interesting to remark that there is no general convention on the
(arbitrary) positiveness or negativeness of δ and, consequently, on the sign of
the exponent of the direct Fourier transform. Other authors, such as Hecht
(1998), use an opposite sign to the one used here.
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of the rays coming from the external parts of the pupil are
shifted to the blue (Section 3.1.4) with respect to the central
ray. Therefore, the integration of all of the rays should translate
into a blueshifted and a broadened transmission peak, with a
subsequent loss of spectral resolution as compared to the
collimated case.

The average ratio between the transmitted and incident
intensities in the telecentric configuration is then given by

g
E E
E E

, 50
t t

i i

*

*
=˜

˜ ˜
( )

( ) ( )

( ) ( )

where the asterisk indicates the complex conjugate. Figure 8
shows a plot of the average transmission peak in a telecentric
configuration with f/40, f/60 and f/80. As a reference, the
same etalon but in a collimated configuration is used. A
refractive index of n′=2.3 has been used along with
λ0=617.28 nm, h=250 μm, A=0, and R=0.92. We will
employ these parameters, corresponding to a commercial
etalon, throughout the rest of this work. Table 1 gives the
remaining key parameters for evaluating g and g̃ after
Equations (11) and (50), respectively. As expected, the
transmission profiles reduce their peak intensity and broaden
when changing from the collimated configuration to telecentric
configuration. The transmission profiles are also shifted
bluewards with respect to the reference wavelength. These
effects are more prominent for smaller f-numbers due to the
increasing aperture of the incident cone of rays.

4.2.2. Effects on the Effective Finesse and on the Peak Wavelength

To circumvent the tedious (rigorous) calculation of
Equation (49) after having substituted the electric field
of Equation (47) into it, we can use the aperture finesse of
Section 4.1.3 as an approximate measure of the transmission
profile broadening. However, one should only include df in
the effective finesse expression of Equation (36). To assess the
validity of this approximation, we rewrite df in terms of the

image-space f-number, f#, as

f

m

n

n

8
, 51d

2 2

2f =
# ¢( ) ( )

which gives eff =36.5, 34.2, 26.2 for f/80, f/60, f/40,
respectively. These values are to be compared with the exact
ones given in Table 1. As expected, the larger the f#, the better
the approximation.
We have seen that another consequence of receiving a cone

of rays instead of a collimated beam is a blueshift of the
spectral profile (Section 4.2). From the average change of phase
compared to the collimated case, it can be shown (Appendix A)
that the spectral shift of the profile, Δλ0, depends on both the
refraction index and the f-number through

f

n

n16
. 520

0
2

2

2
l

l
D -

# ¢


( )
( )

That is, the spectral shift decreases for larger f-numbers and
refraction indices. For a collimated beam, f#  ¥, we have

00lD  and a  ¥, as expected. Using this equation, the
expected blueshifts are about −4.55 pm, −2.02 pm, and −1.14
for f/40, f/60, and f/80. These values fit extraordinarily well
with those presented in Table 1.13

4.2.3. Plate-defect-induced Effects

Making an assessment of how sensitive the final image is to
etalon inhomogeneities and to a non-zero angle between the
instrument optical axis and the etalon optical axis is as easy as
in Sections 3.1.3 and 3.1.4. Equations (30) and (31) are the
same for all rays in the incoming cone of light because they are
independent of the incident angle in a telecentric configuration.
Then, the average transmitted intensity in Equation (50) will
suffer exactly the same effect across the image; namely, that
defects or errors in the optical thickness are only important for
the wavelength tuning of the transmission peak. Modifications
in the FWHM of peaks and the free spectral range can be
neglected. Equation (32) is also valid for all of the rays in the
cone. Hence, we should only take care of changes in the peak
wavelength.
Since the defects of the etalon are directly mapped to the

image in this telecentric configuration, the wavelength shifts
have a direct influence in the derived LOS velocities with the
instrument. To correct at first order for these LOS velocity
shifts, one can measure them while taking flat-field exposures:
if we determine the line position for every pixel with a flat

Figure 8. Transmission profiles as functions of the wavelength distance to
617.28 nm. A collimated configuration of the etalon is represented in black
line. A telecentric configuration with f/40 (blue), f/60 (green) and f/80 (red) is
also shown.

Table 1
Etalon Parameters in Four Configurations, Namely: Collimated, and

Telecentric, with f/80, f/60, and f/40

Parameters Collimated f/80 f/60 f/40

τ 1 0.96 0.88 0.60
Δλ0 (pm) 0 −1.13 −2.02 −4.55
Δλw (pm) 8.80 9.18 9.97 13.9
Δλfree (nm) 0.33 0.33 0.33 0.33

eff 37.7 36.1 33.2 23.8

13 Title (1970) found the same analytical expression for the blueshift of the
spectral profile. However, the derivation that he followed is not rigorous
because it is based on an analytical expression for the transmitted profile
obtained by averaging Equation (11) over the cone of rays instead of adding
electric field amplitudes.
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illumination, then we should only subtract the so-derived
velocities from those evaluated independently. However, it is
important to remark that the induced artificial LOS velocities
cannot be corrected completely in telecentric mounts unless the
PSF is fully characterized, both spatially and spectrally. This is
probably one of the most important disadvantages of this
configuration.

5. The PSF in the Two Configurations

In this section, we study the spectral and spatial PSF of the
telecentric configuration compared to the collimated case.

Equations (47) and (48) are fully general for both
configurations because they hold for monochromatic plane
waves impinging the etalon. The electric field on the image
plane is the Fourier transform of that illuminating the pupil.
The difference between the two systems is whether or not E(t)

and the phase difference δ are constant across the pupil. That is,
they are independent of the spatial coordinates (x, y) of the
pupil plane in the collimated configuration whereas they are not
in the telecentric configuration: E(t) and δ do depend on x and y.

5.1. PSF in Collimated Configuration

Figure 9 displays the 2D layout of a collimated etalon
configuration where two rays of incidence angle θ reach the
etalon and later reach the image plane. Since the etalon is
placed on the pupil, all rays striking on it with an angle θ will
be projected on the same point P ,x h¢( ) of the image plane, no
matter their incidence positions at the etalon. A relationship
between P′ and the incidence angle θ can easily be found if we
assume that the stop is placed at the object nodal plane of the
system (in a single lens paraxial system, this means that the
stop is placed at the lens and the central ray is not deviated). If f
stands for the focal length,

f

f
cos . 53

2 2 2
q

x h
=

+ +
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The phase difference δ at P′ can then be written as
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It is important to remark that δ does not depend on the pupil
plane coordinates (x, y). Therefore, for a perfect etalon with no

defects, Equation (48) simply turns into
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where E ,0
t x h( )( ) is the electric field transmitted by the etalon

that approaches P′. It should be noted that Equation (55) is
proportional to the Fraunhofer integral of a circular aperture
(Hecht 1998). Hence,14
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where J1(z) is the first order Bessel function and the variable z
is given by
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Unlike the case of a clear circular aperture, space invariance
has been lost with the collimated etalon and the response of the
system depends on the position across the image. Thus, the PSF
cannot be interpreted as a regular PSF because it varies from
point to point. The instrument does not respond with the
convolution of the object intensity distribution with the PSF.
Rather, one has to multiply the object surface brightness with
the local PSF and integrate. This local PSF can be expressed as

z z g z
J z z

z z
;

2
, 580 0

1 0

0

2

 =
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-

⎡
⎣⎢

⎤
⎦⎥( ) ( ) ( ) ( )

where g(z0) is given by Equation (11) with the dependence on
z0 given through Equation (54). Then, the monochromatic,
local PSF turns out to be the same as the PSF produced by a
circular aperture except for a transmission factor. This result
enables us to interpret the response of the etalon as that of a
clear circular aperture (hence, through convolution with

J z z20 1
2 º [ ( ) ] ) but multiplied with the local transmission

profile value. In other words, we have an apodization of the
image. This implies that an etalon without defects in collimated
configuration only affects the image quality by reducing the
monochromatic intensity. As soon as we go radially out from
the optical axis, g(z0) is shifted in wavelength (see Section 4.1)
and, hence, it is reduced compared to the transmission factor
(τ) at the given wavelength. Therefore, the most significant
consequence that we can expect of image apodization is a radial
decrease of the monochromatic signal-to-noise ratio (S/N) of
the observations because the largest noise source is typically
photon noise, which is proportional to the square root of the
signal. Since g is a monotonically decreasing function of z,
longer focal lengths can be beneficial for given etalons at the
expenses of either reducing the FOV or increasing the size of
the detector.
So far, we have discussed the monochromatic behavior of

the etalons. The polychromatic response has to be addressed
because our instruments always integrate a finite passband per
each wavelength sample, which is done in Section 5.3.
For a real etalon with defects, Equation (55) is no longer

valid. Either h, n′, or both depend on the pupil plane
coordinates because the defects are located at specific points

Figure 9. 2D layout of a collimated beam etalon configuration for two rays that
impact on the etalon with an angle θ.

14 Here we use z0 as a parameter, which is denoted by the semicolon in front
of it.
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(x, y). This dependence must be incorporated into
Equation (54) and the PSF should be evaluated numerically.
An approximation of the real PSF can be obtained through the
convolution of  with a defect density distribution, in much the
same way as we do to get the results of Section 4.1.1. Because

0 does not depend on δ, this convolution can only affect g(z0).
We can then safely expect that the net effect of inhomogene-
ities are mostly seen in the spectral transmission but are not
seen in the spatial shape of the PSF.15

The (unavoidable) presence of microroughness errors in
the reflecting surfaces should translate into an increase of
the energy contained in the wings of the PSF because they are
high-frequency errors. This undesired excess of energy in the
lobes of the PSF is commonly referred to as stray light and its
consequence is a loss of contrast. In spectropolarimetry, stray
light is a particularly delicate issue because it represents a
contamination of the magnetic signal at a given feature by the
signal originated in other structures located all around the
feature.

Consider now an imperfectly collimated input beam. The
phase shift depends in this case on the pupil coordinates as the
incidence angle changes across the etalon. The net effect is
essentially the same as locating the etalon in an imperfect
telecentric configuration (Section 6). This is obvious because
we only care about the irradiance distribution across the detector
and thus the integrals that must be performed are the same as in
the telecentric case, except for an irrelevant scale factor that
accounts for the projection of the pupil on the etalon. The only
difference is that etalon defects are still averaged out over the
illuminated area, whereas in the telecentric mount the defects
are directly mapped into the detector.

5.2. PSF in Telecentric Configuration

In the telecentric configuration, any point P′(ξ, η) of the
etalon sees a cone of rays, each coming from different parts of
the pupil. Therefore, the phase shift δ now also depends on the

pupil plane coordinates. From Figure 10,

f

x y f
cos . 59

2 2 2
q

x h
=

- + - +( ) ( )
( )

Hence, the explicit dependence on both the pupil and image
plane coordinates is
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Likewise in the collimated etalon with defects case, E(t) does
depend here on the pupil plane coordinates and cannot be taken
out from the integral in Equation (55). Therefore, the PSF must
be calculated numerically.
Figure 11 shows the monochromatic PSFs as functions of the

radial distance from the optical axis, 2 2 1 2r x hº +( ) ,
normalized by the Airy disk radius of a clear, circular aperture,

f R1.22 2Airy 0 pup
1r l= -( ) . Solid lines represent the monochro-

matic PSFs as evaluated at their respective peak wavelengths,
t 0 0l l lº + D , where Δλ0 is given in Table 1. Dashed lines

represent the quasi-monochromatic PSFs after integrating the
finite etalon passband (see Section 5.3). Blue and red
correspond to the f/40 and f/80 telecentric cases, respectively.
For the sake of comparison, the PSFs are normalized to their
maximum transmissions, which are also given in Table 1.
The differences between both collimated and telecentric

configurations become more evident from the vicinity of the
first minimum of the Airy pattern and are more prominent for
the shorter f# beams.
Following Section 4.2, one could expect that the telecentric

PSF becomes broadened when compared to the collimated
case, whose width coincides with that for a clear, circular
aperture: f R1.029 2Airy 0 pup

1r lD = -( ) . However, this is actually
only true at certain wavelengths. Figure 12 shows in solid lines
the FWHM of the monochromatic PSF, Δρ, normalized to
ΔρAiry, against the wavelength shift from λ0 for both f/40
(blue) and f/80 (red). We can observe that the PSF broadening
is a wavelength-dependent effect, which was evaluated for the
first time by Beckers (1998). The PSF narrows toward the blue

Figure 10. 2D Layout of a telecentric beam etalon configuration for a ray that
comes from the pupil at P(x, y) and is projected to the etalon at P′(ξ, η).

Figure 11. Normalized PSFs calculated in the telecentric configuration at f/40
and f/80 (blue and red lines, respectively) and in the collimated configuration
(black) line for normal illumination of the pupil. The quasi-monochromatic
PSFs of both f-numbers have also been represented (blue- and red-dashed lines,
respectively).

15 Attention must be paid if the Strehl’s ratio is used for evaluating the
wavefront degradation in etalons because small variations in the optical path
can lead to large variations in the transmission in g(zo). Thus, a decay in the
monochromatic Strehl’s ratio may come from a decay in the monochromatic
transmission and not from degradation of the PSF. In our opinion, the Strehl’s
ratio should be employed only with the quasi-monochromatic PSF
(Section 5.3). In any case, the PSFs normalization factors need to be chosen
taking into account that the energy enclosed by the degraded and unaberrated
PSFs must be the same.
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with respect to the FWHM at λt, while the opposite is the case
for red wavelength displacements. This happens because pupil
apodization (and phase errors) is a wavelength-dependent effect
(Figure 13). Toward the red of λt, the center of the pupil is
brighter than the edges. The effect is very similar to a Gaussian
apodization of the pupil, which translates to a broadening of the
central disk of the PSF. The effective size of the pupil
decreases and also reduces the energy in the secondary rings
(Mahajan 1991). Toward the blue of λt, a central obscuration
appears and the brightness shifts with annular shape toward the
edges. The practical effect of obscuring an optical system is to
decrease the central disk of the PSF at the expenses of
expanding the wings of the PSF (Mahajan 1991), thus
contributing to stray-light effects. This argumentation is
consistent with the results found by von der Lühe & Kentischer
(2000).

The maximum and minimum FWHM of the PSFs differ in
less than a 10% and 3% from ΔρAiry for the f/40 and f/80
beams, respectively. Also notice that the separation between

the minimum and the maximum is of the order of the FWHM
of the spectral profile (Table 1). For larger shifts, the pupil
tends to be evenly illuminated and the PSF of a diffraction-
limited system with the same pupil size is recovered. As

remarked by Beckers (1998), the wavelength dependence of
the FWHM introduces artificial velocity signals in solar
images with velocity structure. An evaluation of this effect in
real instrumentation is presented in the third part of this series
of papers, where we show that errors in the magnetic field can
also appear.
In an ideal telecentric configuration, where all chief rays

across the FOV are parallel to the optical axis, each point of the
etalon receives the same cone of rays. Thus, all results obtained
for normal illumination are also valid for any direction of the
incident illumination of the pupil.

5.3. Quasi-monochromatic PSF

Real observations are polychromatic. Therefore, we should
be interested in the quasi-monochromatic response of the
system. Typically, in front of the quasi-monochromatic Fabry–
Pérot etalon, instruments have an order-sorting pre-filter. Let
T(λ) be the transmission profile of the pre-filter (typically a
window-shape function). If O(ξ, η; λ) denotes the monochro-
matic brightness distribution of the object, then the image
quasi-monochromatic intensity distribution centered at λ0 can
be expressed as

in the collimated configuration and

in the telecentric configuration, where the symbol ∗ stands for
convolution. Convolution in Equation (62) is carried out in the
space domain. Therefore, only if the object brightness distribution
is independent of wavelength (von der Lühe & Kentischer 2000),

Figure 12. FWHM of the PSF in a perfect telecentric configuration normalized
to the Airy disk FWHM as a function of the wavelength shift. f-numbers f/40
(blue line) and f/80 (red line) have been employed. The FWHM of the quasi-
monochromatic PSFs for f/40 and f/80 (blue and red-dashed lines respectively)
have also been included. Vertical, dashed–dotted lines mark the position of the
maximum transmission wavelengths. In black, that of the collimated
configuration.

Figure 13. Pupil apodization in a telecentric mount illuminated with a f/40
beam for different shifts with respect to λ0. From the upper left to the lower
right: Δλ=−10,−6,−2, 2, 6 and 10 pm.

I T O S, ; , ; , , d d d , 610 0 0 0 0 0 0òx h l l x h l l x x h h l l l x h= - - - -
-¥

+¥
∬( ) ( ) ( ) · ( ) ( )

I T O S, ; , ; , ; d , 620 0 0òx h l l x h l l x h l l l= - * -
-¥

+¥( ) ( )[ ( ) ( )] ( )
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as in the case of the continuum, then O can go out from the
integral and write

63I O T S, ; , ; , ; d ,0 0òx h l x h l x h l l l= * -
-¥

+¥
( )( ) ( ) ( ) ( )

in the telecentric configuration. Hence, the right-hand side of
the convolution can be identified as a quasi-monochromatic
PSF, quasi , which coincides with the integral in wavelength of
the monochromatic S multiplied by T(λ).

The quasi-monochromatic PSF is strictly valid only for the
continuum wavelengths. Within the spectral lines, the spatial and
spectral properties of light can be highly correlated and thus
space invariance no longer holds. The response of the instrument
depends on the object itself. However, one can reasonably expect
that the integration in wavelength somehow reduces the purely
monochromatic effects in the final images at other wavelength
samples. This can only be checked numerically.16

Along with the monochromatic PSFs, Figure 11 also shows
quasi for the two telecentric cases in dashed lines. (The

collimated quasi exactly coincides with the monochromatic one
after normalization.) It can be seen that the quasi-monochromatic
PSF performance is better than that of the monochromatic one, as
best witnessed close to the minima. The reason for this is that the
the position of the monochromatic PSF minima are very sensitive
to wavelength variations in the vicinities of λ0. The net effect is
an improvement of the PSF when averaging spectrally the
monochromatic PSFs (von der Lühe & Kentischer 2000).

Figure 12 also shows the quasi-monochromatic cases in
dashed lines. The quasi-monochromatic PSF widths are larger
than in the collimated configuration, although it can be seen
that the effect of integrating the monochromatic PSFs virtually
balances out their spectral variations.

6. Deviations from Perfect Telecentrism

Real instruments cannot strictly follow the requirements for a
perfect telecentric system. In an imperfect telecentric instrument,
the entrance pupil is not exactly located at the focal plane of the
instrument and the exit pupil is at an intermediate position
between the lens and infinity. This situation is exemplified in
Figure 14 where, without loss of generality, the pupil is assumed
to be at the same location as the lens. The main consequence of
this is that the chief ray cannot be normal to the etalon but is at an

incidence angle Θ, which varies across the image. Real
instruments always have tolerances for such an incidence angle,
which cannot be exactly zero as in the ideal case. With an oblique
chief ray, the pupil apodization becomes asymmetric. Figure 15
displays the pupil illumination as seen from the etalon as a
function of the chief ray angle of incidence. While the radial
decrease in brightness is symmetric at Θ=0, it becomes more
asymmetric as soon as Θ increases. This result certainly has an
influence in the PSF that varies across the FOV.

6.1. PSF Shape over the FOV

Figure 16 shows the monochromatic PSF at the peak
wavelength at normal incidence, λt, corresponding to a beam
with f/80 for different angles of incidence of the chief ray
against the radial coordinate of the image plane, ρ, centered at
ρ0=f sinΘ (corresponding to the maximum of the PSF of a
collimated beam in a circular aperture with incident angle Θ)
and normalized by the width of the Airy pattern, ρAiry. We can
observe: (1) a spatial shift of the maximum with respect to the

Figure 14. 2D Layout of a non-telecentric beam configuration (the lens and the
pupil are located at the same position) for a collimated beam that illuminates
the pupil with an incident angle Θ. The chief ray does not deviate, whereas the
other rays reach the etalon with different angles θ.

Figure 15. Apodization of pupil as seen from the etalon for a telecentric beam
with f/60 and at different angles of incidence of the chief ray in the vertical
direction: Θ=0°, 0°. 1, 0°. 2, 0°. 3, 0°. 4 and 0°. 5 from the upper left to the lower
right. Coordinates have been normalized to the pupil radius.

Figure 16. PSF profiles of the a telecentric etalon with f/80 at λt and at
different angles of incidence of the chief ray: Θ=0° (black), 0°. 125 (blue),
0°. 25 (red), 0°. 375 (green) and 0°. 5 (magenta). Each profile is centered
at f sin0r = Q.

16 We refer the reader to the third paper of this series for a quantitative
evaluation of this phenomenon.
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collimated case, (2) a broadening of the PSF, and (3) a decrease
of the peak transmitted intensity across the FOV. It is also
important to remark that perfect telecentrism is recovered at
Θ=0 because Θ defines (in a certain sense) the degree of
telecentrism. The fact that the PSF is not centered readily
implies stray light from the surroundings. Note that ∼0.2ρAiry
(the approximate peak of the PSF for Θ=0°.5) is a third of a
pixel in a critically sampled instrument. The broadening of the
PSF drives the results in the same direction.

The change of the (normalized) FWHM against Θ is shown in
Figure 17 for the monochromatic (λt) and quasi-monochromatic
PSFs of an imperfect telecentric configuration illuminated with an
f/80 beam. It is to be noticed that the PSF width grows
monotonically with the chief ray incidence angle. The variation of
width at 0°.5 is about 7% and 8% for the monochromatic and quasi-
monochromatic curves, respectively. Figure 18 shows the spatial
shift of the PSF peak, ρp, with respect to ρ0 against Θ for λt,
λt+δλ (δλ=5 pm) and for the quasi-monochromatic PSF. The
etalon is illuminated with a f/80 beam in all cases. The spatial
displacement is about 18% and 15% at 0°.5 for the monochromatic
PSF at λt and for the quasi-monochromatic PSF, respectively.
Interestingly, the dependence at λt+δλ is different from that at λt,
which indicates that the shift is wavelength dependent and that the
PSFs overlap not only spatially but also spectrally over the image
plane.

6.2. Behavior of the Spectral Profile over the FOV

The loss of symmetry in the cone of rays is also mapped into
the transmission profiles of the etalon. These profiles will be
shifted and deformed, as happens with the PSFs. Figure 19 shows
the transmission profile as a function of the wavelength distance
to λ0 forΘ=0°, 0°.125, 0°.25, 0°.375 and 0°.5. A beam with f/60
has been employed to clearly visualize the asymmetrization and
loss of illumination with Θ. We can appreciate the blueshift
across the FOV, as well as a decrease of the symmetry, a
broadening of the profiles and a decrease of the peak transmitted
intensity as Θ grows. Also note that at Θ=0 we recover the
transmission profile for f/60 as presented in Figure 8.

Figure 20 shows the transmitted intensity with Θ evaluated at
the wavelength of the peak transmission for normal illumination,
λt. A beam with f/80 has been employed. The decay of

transmission at λ0 with the incident angle of the collimated case
is also represented. The peak intensity goes from 0.96 and 1 at 0°
to 0.52 and 0.49 at 0°.5 for the telecentric and collimated beams,
respectively. It should be noticed that in the collimated case, the
intensity decays faster with the incidence angle. We also show
the total energy contained in the transmission profiles for both the
telecentric and collimated beams with the chief ray incidence
angle. We have normalized both to the total energy contained in
the transmission profile of the collimated configuration (which
remains constant over Θ). The total energy of the profile is
calculated by integrating the spectral transmission factor, g̃. We
can observe that the flux of the telecentric configuration is
reduced by about 9% from the center of the image to its edges.
Although the telecentric configuration was devised to avoid the

wavelength shift, Δλ, across the FOV (which is characteristic to
the collimated configuration), a wavelength shift will appear in
real instruments; as can be seen in Figure 19. Figure 21 shows the
spectral displacement of the wavelength peak with Θ for the
nominal wavelength, λ0, for different f-numbers. It can be noted
that the shift goes toward the blue for all angles and has a weaker
dependence on Θ as the f-number decreases from infinity

Figure 17. FWHM of the PSF at λt normalized by the FWHM of the Airy disk
across Θ for a f/80 beam (red-solid line). The FWHM of the quasi-
monochromatic PSF (red-dashed line) and the FWHM of the PSF for a
collimated beam have also been plotted (black-solid line).

Figure 18. Spatial shift of the peak of the PSF at λt with respect to ρ0 across Θ
for a telecentric configuration with f/80 (red-solid line). The shift for the quasi-
monochromatic PSF (red-dashed line), as well as at λ+δλ (green-solid line)
are also represented.

Figure 19. Spectral transmission function at f/60 for chief ray angles of
incidence Θ=0° (black), 0°. 125 (blue), 0°. 25 (red), 0°. 375 (green), and 0°. 5
(magenta).
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(collimated case) to ;60. For f#<60, the shift is reduced as Θ
increases until it reaches a minimum at a certain value (larger for
smaller f-numbers) and then grows monotonically toward the
blue. The weaker dependence with smaller f-numbers contrasts
with other effects, such as the broadening and the asymmetriza-
tion of the PSF and of the spectral profile, where the effect is
more prominent for smaller f-numbers. This indicates that, in
general, a compromise must be reached between the spectral shift
and the degradation of the PSF and of the spectral transmission
with the f-number in our instruments.

To qualitatively understand why the wavelength shift
decreases or increases over the FOV depending on both the
f-number and the chief ray angle, let us take a look at Figure 14.
If we set Θ=0 (normal illumination of the pupil), then the
cone of rays becomes symmetric and the maximum incidence
angle is the same at both sides of the optical axis. This effect is
a wavelength displacement of the peak wavelength toward the
blue of the nominal wavelength, λ0. As Θ increases, the

maximum incidence angle decreases at one side of the optical
axis and increases at the other side. This causes a sort of trade-
off to increase or to decrease the shift with respect to normal
illumination when averaging the electric field transmitted by
the etalon over the pupil. This is of course f# dependent
because the cone of rays reaching the etalon narrows when the
f-number increases, and vice-versa.

7. Summary and Conclusions

We have discussed the properties of Fabry–Pérot etalons in the
two optical configurations commonly employed in solar instru-
ments, namely: collimated and telecentric. We have focused on
their use as both tunable spectral filters and as imaging elements.
First, we have overviewed the general properties of Fabry–Pérot

etalons, their tunability and their sensitivity to variations in the
optical thickness. We have remarked that changes in the optical
thickness particularly affect the peak wavelength but do not have
as much of an effect on the shape of the transmission profile.
We have studied the degradation of the spectral profiles

originated by both etalon defects and illumination with a beam of a
certain aperture. We have followed the general treatment given by
Sloggett (1984) and we have extended their results by presenting
explicit formulas for the finesse defects of typical inhomogeneities
(i.e., spherical, Gaussian, parallelism and sinusoidal). The
expressions that we have found are valid for irregularities having
a small effect in the transmission profile. We have also obtained
formulas for the finesse defects in the opposite limit; i.e., when
irregularities dominate. We have shown that these finesses agree
with the limiting formulas of Chabbal (1953), which are
commonly employed in the literature but are only valid for defects
that produce a severe degradation of the profile. As expected, they
differ from the small-defect case for the Gaussian and sinusoidal
defects, whereas they coincide for the spherical and parallelism
error. We have generalized the aperture finesse presented by
Atherton et al. (1981) to the crystalline case and we have deduced
an analytical expression for the blueshift of a telecentric etalon.
The derived expressions show a good agreement with results
obtained from numerical simulations of the spectral profile.
Regarding their imaging performance, we have shown that, in a

collimated mount, the PSF is proportional to that of an ideal
diffraction-limited instrument. The proportionality factor is given
by the spectral profile of the etalon. This implies that convolution
with the object cannot be applied because the PSF is not space
invariant. A monochromatic decrease of the S/N is then expected
from the center to the borders of the image. However, the decay of
monochromatic transmission can be dramatic if variations of the
optical thickness do not preserve the peak shift low compared to
the width of the profile. In a perfect telecentric etalon the PSF
remains the same from point to point but strongly depends on the
wavelength over the transmission profile. This gives rise to
artificial velocities and magnetic fields, which can only be
calibrated in a first approximation.
We have argued that fluctuations of the optical path due to

defects are averaged in collimated setups and only affect at first
order to the transmission as we go off axis. Stray light is also
expected if microroughness errors are present. However, the
PSF shape remains equal and symmetric all over the FOV. In a
telecentric setup, imperfections in the optical path produce a
change on the PSF pixel-to-pixel and further contribute to
artificial velocity and magnetic field signals. In the case that
two or more etalons are combined to increase the effective free
spectral range and/or to improve the resolution, the errors can

Figure 20. Transmitted intensity at λt for a telecentric configuration with f/80
across Θ (red-solid line) and for a collimated configuration (black-solid line).
The total flux of energy transmitted normalized by the flux transmitted in the
collimated configuration (black-dashed line) is also represented (red-
dashed line).

Figure 21. Spectral shift of the peak wavelength across Θ for f-numbers f/50
(blue), f/60 (green), f/80 (red), and f/150 (magenta). As reference, the spectral
shift of the collimated configuration is also plotted (black line).
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be amplified in both mounts and may also produce large local
transmission variations in the telecentric configuration because
of the different shifts of the spectral profiles due to different
local thicknesses.

We have added in our discussion the effect of the quasi-
monochromatic nature of the measurements due to the finite
passband of the etalons. In general, the response of the
instrument are found to depend on the object itself, in both
the collimated and the telecentric configurations. Therefore, the
quasi-monochromatic PSF cannot be employed as a regular
one, except for observations of spectrally flat features (i.e., in
the continuum). Purely monochromatic effects—such as the
decay of intensity in collimated etalons and the artificial signals
originated in telecentric ones—are expected to balance out in
some way, although not entirely. Therefore, quantitative effects
can only be evaluated numerically.

We have finally addressed the consequences of variations on
the chief ray over the FOV in telecentric setups. We have shown
that they can produce a severe asymmetrization, a broadening and
a shift of both the peak transmission and the PSF. These effects
are nonlinear with the angle and with the f-number, and are thus
very sensitive to the optical tolerances of the instrument. A
decrease of the transmitted flux of photons with larger incidence
angles of the chief ray has also been demonstrated, apart from a
reduction the monochromatic intensity. Except for the shift of the
peak, these issues are not present in the collimated configuration
and when combined they lead to artificial signals in the spectrum
of the measured Stokes vector and to a degradation of the image.
In addition, the widening and shift of the spectral profile in
imperfect (real) telecentric mounts contradict the general concep-
tion of employing this configuration to keep the passband constant
over the FOV.

The consequences of imperfect telecentrism can also be
applied to imperfect collimated mounts, where the etalon is
illuminated by a finite f-number beam with different incidence
angles on the etalon. The only difference is that defects still
average over the footprint of the beam on the etalon.

This study was initiated upon some starting notes by our friend
José Antonio Bonet, a colleague for most of the development
phases of the IMaX and SO/PHI instruments. We owe a
considerable debt of gratitude to these notes (including a couple of
figures) and would like to publicly (and warmly) thank his
contribution. This work has been supported by the Spanish
Ministry of Economy and Competitiveness through projects
ESP2014-56169-C6-1-R and ESP-2016-77548-C5-1-R and by
Spanish Science Ministry “Centro de Excelencia Severo Ochoa”
Program under grant SEV-2017-0709. D.O.S. also acknowledges
financial support through the Ramón y Cajal fellowship.

Appendix A
Derivation of the Small-defect Finesse Expressions

To model real etalons with typical defects, we call ò the error
in δ induced by an optical path defect Δs. Thus,

s s

s

4
, 64 p

l
d=

D
=

D ( )

where δ is given by Equation (10), λ is the wavelength of the
incident beam and s n h cos qº ¢ ¢ is the optical path in one pass
of the beam through the etalon. Let D(ò) be the probability
density function for ò, so that D d0 ( ) is the surface fraction of
the etalon aperture, dS, for which the error in δ is in the range

(ò0, ò0+dò). That is:

S Dd d , 65 = ( ) ( )

where
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4

d . 66 p
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By definition, the error distribution function is just given then
by

D
Sd

d
, 67


k=( ) ( )

where κ is a normalization factor introduced for D(ò) to
represent a probability density function in a strict sense, that is,
to fulfill the property

D d 1. 68 ò =
-¥

¥
( ) ( )

Let us call μd and d
2s the mean and variance of the

distribution respectively. Assuming that the defects are small
( 2 3a = ), Equation (35) can then be expressed as (Sloggett
1984)

3
. 69d

d


p

s
= ( )

By relating the variance of the defect distribution with
measurable parameters of the defect, such as departure from an
ideal flat surface, we can obtain useful expressions for the
defect finesse.

A.1. Spherical Defect

We will focus first on the spherical-shape defect shown in
Figure 4(a). If we consider an etalon with circular or parabolic
symmetry and define r as the radial coordinate (Figure 22(a)),
then the optical path across the etalon surface is given by

s ar s , 702
0= + ( )

with a peak-to-peak excursion s aRs
2D = , where a is a

proportionality factor, R is the radius of the etalon, and s0 is
the optical path at r=0. The differential of the optical path can
be expressed just as

s ar rd 2 d . 71= ( )

Therefore, Equation (66), can be cast as

ar rd
8

d . 72 p
l

= ( )

On the other hand, taking advantage of the symmetry of the
problem,

S r rd 2 d . 73p= ( )

Substituting this expression in Equation (67) we have that Ds is
a rectangular distribution that, after normalization
( a4 1

max
1k l= - - ), can be written as

D if 0
0 otherwise

, 74s
max

1
max   = <-⎧⎨⎩( ) ( )

where òmax=(4π/λ)Δss. This distribution is also useful for
uniformly distributed random defects and for aperture defects
(Sloggett 1984). Its mean is just 2d maxs

m = and its variance
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is given then by

1

12
. 75d

2
max
2

s
s = ( )

Consequently, substituting dss in Equation (69), we get that

s2
. 76d

s
s

l
=

D
( )

Note that òmax also coincides with the FWHM of the defect
distribution in this particular case. Therefore, the relation
between dss and the FWHM is given by w 2 3d ds ss= and the
limiting finesse is expected to coincide with that here deduced
for small defects.

A.2. Gaussian Random Defect

If we now consider Figure 4(b), then we have a microrough
surface with deviations from s that follow a normalized
Gaussian distribution with variance sg

2D . In this case, the
standard deviation of the distribution is obviously dgs =

s4 gp lD . Substituting this value in Equation (69),

s4 3
. 77d

g
g

l
=

D
( )

Meanwhile, the FWHM of this distribution is related to the
standard deviation as w 2 2 ln 2d dg gs= . Therefore, the value

of α will tend to 2 2 ln 2 dgs when defects dominate and the
limiting finesse will differ from the finesse here deduced for
small defects.

A.3. Parallelism Defect

For the parallelism defect shown in Figure 4(c), if we
consider a circular etalon with radius R and define the X
direction to be the direction of departure from parallelism
(Figure 22(b)), the optical path depends on the x coordinate as

s ax s , 780= + ( )

with a peak-to-peak deviation from parallelism s aR2pD = ,
where a is a proportionality factor and s0 is the optical path at
x=0. The differential of the optical path is simply

s a xd d . 79= ( )

Therefore, using Equation (66)

a
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4
d . 80 p

l
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Meanwhile,

S ydx R x xd 2 2 d , 812 2 1 2= = -( ) ( )/

and, substituting in Equation (64) we have that

x
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. 82
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p

= ( )

By replacing x in Equation (67) and restricting to 2max ∣ ∣ ,
where òmax=(4π/λ)Δsp, we can express

D R
a2 4

. 83p
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1 2
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The normalization constant is given in this case by
aR2 1k p= -( ) . We can cast this equation more elegantly as

D 4 1 4 if 2
0 otherwise

,

84

p
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2
max
2 1 2

max     p= -⎧⎨⎩( ) ( )[ ] ∣ ∣

( )

Note that the mean is zero as it is symmetrical about ò=0. The
variance is given by

16
. 85d

2 max
2

p


s = ( )

Figure 22. Coordinates employed for the calculation of the density distribution function of different defects: (a) coordinates used in the spherical defect;
(b) coordinates used in both the parallelism and sinusoidal defect.
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Then, sd pps p l= D and the defect finesse (Equation (69)) can
be written as

s3
. 86d

p
p

l
=

D
( )

The FWHM of this distribution is given by wdp =
2 3 2 3 d

1
max p s=- . As for the spherical defect, the limiting

value of α is expected then to tend to 2 3 for large defects.

A.4. Sinusoidal Defect

Consider finally an etalon with an optical path roughness
given by a sinusoid of peak-to-peak amplitude Δsa, as shown
in Figure 4(d). If we consider a circular etalon with radius R
and define the X direction to be the direction of the sinusoid,
then the optical path has a dependence with the x coordinate

s
s

x s
2

sin , 87a
0w=

D
+ ( )

where Δsa is peak-to-peak deviation amplitude of the sinusoid,
ω is its (spatial) frequency of oscillation, and s0 is the optical
path at x=0. The differential of the optical path is given by

s
s

x xd
2

cos d . 88a w w=
D ( )

Therefore, using Equation (66)
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and, according to Equation (64),
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Meanwhile, for a circular etalon
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where x is related to ò by
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The term 2πn, accounts for the multiplicity of the solutions,
where n=0,±1,±2, K,±N, and
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If we approximate R x2 2 , which is valid for fast spatial
modulations of the sinusoidal defect and for n N
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where the normalization constant can be shown to be given by
R2 1k w p= -( ) , then the probability density function can be

cast as

D 4 if 2
0 otherwise
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Due to the symmetry of the distribution, μa=0 and
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Then, the finesse defect can be expressed as (Equation (69))
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The FWHM of this distribution, wda, is just òmax. Therefore,
w 2 2 2.83d da as s=  . The value of α will tend then to 2 2
when defects dominate and the limiting finesse will differ from
the one here deduced for small defects.

A.5. Aperture Finesse and Spectral Shift in Telecentric
Configuration

Following the arguments of Sloggett (1984), we can also
deduce an expression for the aperture finesse. Let us consider
that the etalon with refraction index n′ is at the focal plane of a
lens of radius R. Each point of the etalon will receive rays
coming from all parts of the lens. In this case, the phase error
corresponding to each ray with incidence angle θ from a
medium with refraction index n, compared to normal incidence
and for 1q  , is given by

n h n m

n

4
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where m n h2 1l= ¢ - is the interferential order for θ;0. First,
we shall calculate the density distribution of the incidence
angle θ in the etalon, D(θ). Similarly to Equation (67)

D
Sd

d
. 100q k

q
=( ) ( )

Here Sd represents the portion of the lens corresponding to the
angles of the rays coming to the etalon with angles between (θ0,
θ0+dθ). Let r be the radial coordinate of the lens, then

S r rd 2 d . 101p= ( )

For small angles, r;θf and dr f d2q q , where f is the focal
length of the system, thus

dS f d2 , 1022p q q= ( )

and, for θ in the range (0, θm), where θm is the maximum
incidence angle, the angular distribution is simply

D f2 , 1032q pk q=( ) ( )

where f 2
m
2 1k p q= -( ) after normalization. To obtain D(ò) we

can use the relation

D Dd d 104 q q =( ) ( ) ( )

and
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Then,

D n n m if 0
0 otherwise

, 106f

2 2
m
2 1

max  pq= ¢ < <-⎧⎨⎩( ) ( ) ( )

where n m nmax
2

m
2 2 pq= - . Notice that the density distribution

is a rectangular function, as for the spherical defect. Actually,
we can rewrite Equation (106) as

D 1 2 3 0 2 3
0 otherwise

, 107d d
f

f f s s= < <⎧⎨⎩( ) ( ) ( )

which only differs from Equation (74) by a constant that is not
relevant because both distributions are normalized. The mean
value of the distribution and its variance turn out to be
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Using Equation (35) and m
2pqW = , the aperture finesse can

be deduced to be (Equation (69))

m

n

n

2
. 110d

2

2f
p
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W

¢ ( )

The FWHM of this distribution is therefore also given by
w 2 3d df fs= . Since α tends for 2 3 for both the small and
large defect regime, the limiting finesse defect will coincide
with this expression.

Since the mean value of this distribution is not zero
(Equation (108)), the profile is expected to shift toward the
blue. Because the density distribution is symmetrical about its
mean, the retardance corresponding to the peak wavelength in
telecentric configuration, λt, will be related to the retardance at
the peak wavelength for collimated illumination by

. 111t d0 0f
d l d l m l= +( ) ( ) ( ) ( )

If we relate the maximum incidence angle with the f-number of
the incident beam through f2m

1q = # -( ) , the transmission
peak then depends on λ0 as

f n

f n n

16

16
, 112t

2 2
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2 2 2
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and the blueshift t0 0l l lD = - is then given by
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For large values of the f-number compared to the refraction
index of the medium in which the etalon is immersed, we can
simplify this expression to
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Appendix B
Transmitted Electric Field

If we denote by subindices 1, 2, K N the first, second and
successive transmitted rays until the Nth ray in Figure 1, then

their electric fields are given, following to the notation
presented in Section 2, by

tt
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tt r
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E E

E E
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/

/

/

/

where a global phase δ/2 has been included to take into
account that the electric field is retarded in the first pass with
respect one to the incident by the amount n h2 cos1pl q¢ ¢- . The
transmitted electric field would be the superposition of each
individual ray. Note that the transmitted rays follow a
geometric sequence of common ratio r e2 id. As r<1, the
sum of all rays can be expressed as

T

R
E E

e

1 e
. 116t

i 2

i
i=

-

d

d
( )( ) ( )

/

The global phase is usually neglected because it disappears
when calculating the transmitted intensity by complex
conjugating the electric field. However, this phase cannot be
neglected for telecentric illumination of the etalon because it
depends on the incidence angle and thus on the pupil
coordinates.
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Erratum

Eq. (61) should read

I(ξ, η;λ0) =

∫ ∞
0

T (λ)g(ξ, η;λ− λ0) [O(ξ, η;λ) ∗ S0(ξ, η)] dλ, (4.1)

where S0 ≡ [2J1(z)/z)2] and ∗ denotes the convolution operator. Mean-
while, the general image formation equation (without assuming spatial in-
variance of the PSF) would be given by

I(ξ, η;λ0) =

∫ ∞
0

T (λ)

∫ ∞
−∞

∫ ∞
−∞

[O(ξ0, η0;λ) · S(ξ0, η0; ξ, η;λ− λ0)] dξ0 dη0 dλ.

(4.2)
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Abstract

Crystalline etalons present several advantages with respect to other types of filtergraphs when employed in
magnetographs, especially that they can be tuned by only applying electric fields. However, anisotropic crystalline
etalons can also introduce undesired birefringent effects that corrupt the polarization of the incoming light. In
particular, uniaxial Fabry–Pérots, such as LiNbO3 etalons, are birefringent when illuminated with an oblique beam.
The farther the incidence from the normal, the larger the induced retardance between the two orthogonal
polarization states. The application of high voltages, as well as fabrication defects, can also change the direction of
the optical axis of the crystal, introducing birefringence even at normal illumination. Here we obtain analytical
expressions for the induced retardance and for the Mueller matrix of uniaxial etalons located in both collimated and
telecentric configurations. We also evaluate the polarimetric behavior of Z-cut crystalline etalons with the incident
angle, with the orientation of the optical axis, and with the f-number of the incident beam for the telecentric case.
We study artificial signals produced in the output Stokes vector in the two configurations. Last, we discuss the
polarimetric dependence of the imaging response of the etalon for both collimated and telecentric setups.

Key words: instrumentation: polarimeters – instrumentation: spectrographs – methods: analytical – polarization –

techniques: polarimetric – techniques: spectroscopic

1. Introduction

Narrowband tunable filters are widely used in solar physics
to carry out high-precision imaging in selected wavelength
samples. In the particular case of Fabry–Pérot etalons, the
sampling can be done by modifying the refraction index of the
material, changing the width of the Fabry–Pérot cavity, or both.
Naturally, temperature fluctuations and variations of the tilt
angle of the etalon plates with respect to the incident light
change their tunability as well.

The more common technology used in Fabry–Pérots in
ground-based instruments is that of piezo-stabilized etalons
(e.g., Kentischer et al. 1998; Puschmann et al. 2006; Scharmer
et al. 2008). For space applications, however, they are very
demanding in terms of total weight or mounting, to name a few.
Solid etalons based on electro-optical and piezo-electric
material crystals are way lighter and do not need the use of
piezo-electric actuators, thus avoiding the introduction of
mechanical vibrations in the system. Examples are LiNbO3- or
MgF2-based etalons and liquid crystal etalons (e.g., Álvarez-
Herrero et al. 2006; Gary et al. 2007), which can be tuned after
modification of a feeding voltage signal. Crystals used in these
Fabry–Pérot etalons are typically birefringent and therefore
able to modify the polarization of light. The risk for
uncertainties in the measured Stokes parameters, hence altering
the polarimetric efficiencies of the system, is not null and
should be assessed.

In liquid crystal etalons, the optical axis direction depends on
the electric field applied, and therefore birefringence will
change not only with the incident direction but also when
tuning the etalon. To avoid this effect, lithium niobate or
magnesium fluoride etalons can be used with given cut
configurations that select their constant optical axis. Etalons
with the optical axis parallel to the reflecting surfaces (Y-cut)
are used sometimes (e.g., Netterfield et al. 1997), but the Z-cut
configuration is often preferred (Martínez Pillet et al. 2011;
Solanki et al. 2015), since the optical axis is perpendicular to

the reflecting surfaces of the etalon and, as a result, no
polarization effects are expected for normal illumination.
Although close to normal, typical instruments receive light
from a finite aperture. Hence, spurious polarization effects
cannot be neglected without an analysis. Moreover, local
inhomogeneities of the crystals and other fabrication defects
can modify the crystalline (birefringent) properties of the
etalons.
Most efforts have been driven, so far, to study the

propagation of the ordinary and extraordinary ray separately
in some particular cases. One example is the work by Doerr
et al. (2008), where spurious polarization effects due to oblique
illumination in Fabry–Pérots have been studied numerically by
considering the influence of thin film multilayer coatings in
isotropic etalons. Another example can be found in Vogel &
Berroth (2003), where experimental results on the polarization-
dependent transmission in liquid (uniaxial) crystals are
presented. On the other hand, Del Toro Iniesta & Martínez
Pillet (2012) modeled the polarimetric response of uniaxial
etalons as retarders to include their effect on the polarimetric
efficiency of modern magnetographs, and Lites (1991) obtained
an analytical expression for the Mueller matrix of a linear
retarder (i.e., a crystalline Fabry–Pérot with very low
reflectivity) taking into account multiple reflections on its
surfaces. In Zhang et al. (2017) an accurate and efficient
algorithm describing the electric field propagation in both
isotropic and anisotropic etalons (and crystals in general) is
presented. The study takes into consideration crosstalks
between orthogonally polarized components and the effect of
multilayer coatings, but no analytical expressions are obtained.
A general theory of anisotropic etalons describing its polari-
metric properties has not yet been presented to our knowledge.
This is the second in our series on Fabry–Pérot etalon-based

instruments. After a comprehensive view of isotropic etalons
(interferometers made with isotropic materials) and a discussion
on the two most typical configurations for etalons in astronomical
instruments, here we concentrate on the anisotropic case. We

The Astrophysical Journal Supplement Series, 242:21 (17pp), 2019 June https://doi.org/10.3847/1538-4365/ab1c57
© 2019. The American Astronomical Society. All rights reserved.

1



carry out an analytical and numerical study of the polarimetric
properties of uniaxial crystalline etalons (also applicable to liquid
crystal etalons), to evaluate the effect of the birefringence
introduced when the ray direction and the optical axis of the
crystals are not parallel. We will neglect the effect of multilayer
coatings for the sake of simplicity since their effect is expected to
be many orders of magnitude smaller than that of the results
presented here (Doerr et al. 2008; Zhang et al. 2017).

First, we study the induced birefringence in crystalline
etalons (Section 2); second, we derive the Mueller matrix of the
etalon (Section 3); and third, we focus on its polarimetric
response (Section 4). Special emphasis is put into etalons in a
telecentric configuration since misalignments appear in them in
a natural way. We discuss the effects in the point-spread
function (PSF) of the system (Section 5), and we analyze
qualitatively the impact of birefringent etalons on solar
instruments (Section 6). A thorough analysis on the con-
sequences of using a Fabry–Pérot on real instruments is
considered in the next work of this series of papers. Finally, we
draw the main conclusions (Section 7).

2. Birefringence Induced in Crystalline Etalons

Crystalline uniaxial etalons present a given direction called
optical axis, ê3, along which the two orthogonal components of
the electric field stream with the same velocity. If the wavefront
normal, ŝ, is parallel to ê3, then the orthogonal components of
the electric field travel with the same velocity, as it happens for
normal illumination in Z-cut crystalline etalons. In such a
situation, birefringence effects are not present. However, in any
other direction, the propagation of the electric field components
should be studied separately because they travel across a
medium with different refraction indices.

For any given ray direction, t̂ , the plane formed between ê3

and t̂ is called the principal plane of the medium.1 Then, the
electric field vector can be considered as the sum of two
incoherent orthogonally polarized components:

= + ( )E E E , 1o e

where Eo and Ee are the so-called ordinary and extraordinary
electric field components. The propagation of a light beam can
be thought of as that of two linearly polarized beams, one
having a velocity independent of direction, the ordinary beam,
and the other with a velocity depending on direction, the
extraordinary beam. The ordinary beam propagates like any
beam through an isotropic medium. That is not the case for the
extraordinary beam, whose energy does not propagate along
the wavefront normal (but along the ray direction), unless this
is parallel to the optical axis.

Figure 1 shows the splitting of an incoming ray with
incidence angle θ when traveling through an etalon with its
optical axis misaligned with respect to the surface normal. The
ordinary and extraordinary rays propagate along different
directions and, thus, traverse different optical paths at the exit.

The first measurable effect of the different propagations of
both rays is a phase difference between the ordinary and the
extraordinary beams because they split, and behave indepen-
dently, except if ^ ^ =·s e 13 . The difference in phase produced
between every two successive extraordinary and ordinary

beams due to its different geometrical paths through an etalon
(Figure 1) is simply given by

j d d
p
l

q qº - = ¢ - ¢( ) ( )h
n n

4
cos cos , 2e o e e o o

where subindices o and e refer to the ordinary and
extraordinary rays, respectively.2

Within an etalon, the wavefront direction vectors of the
ordinary and extraordinary rays depend on the incident
wavefront direction and on the refraction index for both the
ordinary and extraordinary components. The geometrical paths
along the ray and wavefront directions coincide for the ordinary
ray but not for the extraordinary ray. Furthermore, the
refraction index of the extraordinary beam depends on the
direction ŝ, so the propagation of the extraordinary component
is more complex than that of the ordinary beam (Born &
Wolf 1999):

g
g g= +

( )
( )

n n n

1 1
cos

1
sin , 3

e o
2 2

2

3
2

2

where γ is the angle between ŝ and ê3 and n3 is the refraction
index for an electric field vibrating along the optical axis of the
etalon. Notice that ne=no if g = 0.
The ordinary and extraordinary components propagate such

that their transmitted electric field vectors can be given by
Equation (45) of Paper I, each with their respective retardance:
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where to and te account for possible different values of the
absorptance of the etalon for the ordinary and extraordinary

Figure 1. Layout of a ray with a certain incident angle θ entering an uniaxial
etalon (black) whose optical axis is not parallel to the surface normal. (The
convention for a Z-cut crystal calls Z that normal, but we reserve Z for the axis
along the ray direction; see text for details.) The ray is split into two orthogonal
rays, the ordinary (blue) and the extraordinary (green), each one refracted with
different angles q q¢ ¹ ¢o e and thus having different optical paths and different
phases when either transmitting or reflecting at the etalon surfaces.

1 The principal plane is also defined as that containing the optical axis, ê3, and
the wavefront normal, ŝ. Both definitions are equivalent since t̂ and ŝ are
coplanar with ê3.

2 We shall be using the basic nomenclature of Paper I for the sake of
consistency. Hence, we refer the reader to that paper for the possible missing
definitions.
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rays. Note that even for R=0 a retardance j 2 is induced
between the ordinary and extraordinary rays.

Without loss of generality, to describe the electromagnetic
field components, we can choose a reference frame in which
the Z-axis coincides with the ray direction, the Poynting vector
direction (see Figure 2). This choice is kept for any incident
ray. For the sake of simplicity, let us make the X-axis coincide
with the direction of vibration of the ordinary electric field.
The Y-axis is then parallel to the plane that contains the
extraordinary electric field. In this reference frame, the
transmitted electric field has only two orthogonal components,

( )Ex
t and ( )Ey

t , whose propagation can be expressed in matrix
form as

=
⎛
⎝
⎜⎜

⎞
⎠
⎟⎟

⎛
⎝
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⎠
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( )

( )
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E
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E
, 6x

y

o

e

t

t

i

i

where H is the so-called Jones matrix. Since the ordinary and
extraordinary components are orthogonal and behave indepen-
dently, H is diagonal in the chosen reference frame. Their
components are given by the factor relating ( )E i and ( )E t in
Equations (4) and (5). Usually, an arbitrary choice of the X and
Y directions will not coincide with the plane containing ( )Eo

i and
( )Ee
i , because the principal plane orientation depends on both the

optical axis and ray directions. In that case, a rotation of the
reference frame about Z is needed, as discussed in depth in
Section 3.2.

Equation (6) is valid only for the propagation of ( )Eo
i and ( )Ee

i

in a beam strictly collimated. As pointed out in Paper I, to
obtain an expression valid for converging illumination, we
have to integrate both the ordinary and extraordinary rays all
over the aperture of the beam (the pupil in case of telecentric

illumination) and get
~( )
Eo

t
and

~( )
Ee

t
(see Equation (48) of

Paper I). Then, it is easily seen that an equation like
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can be written, where the linearity of the problem yields the

new Jones matrix elements, ¢~
Hij, as direct integrals of the old

ones. Since the principal plane differs for each particular ray
direction, a rotation of the Jones matrix needs also to be added,
as thoroughly explained in Section 4.3.

3. Mueller Matrix for Crystalline Etalons

3.1. General Expression

Due to the birefringence induced by anisotropic crystalline
etalons, uniaxial Fabry–Pérot filters show different responses for
each of the incoming Stokes vector components. The more
general way to study the polarization response of these etalons is
by using the Mueller matrix formulation. According to Jefferies
et al. (1989), the elements of the Mueller matrix, Mij, are given by

s s= [ ] ( )†H HM
1

2
Tr , 8ij i j

where si ( =i 0, 1, 2, 3) are the identity and Pauli matrices
with the sorting convention employed in Del Toro Iniesta
(2003). In case ( )Ex

t and ( )Ey
t are parallel to ( )Eo

i and ( )Ee
i , as

described in the previous section, H is diagonal and the
Mueller matrix can be expressed in the form
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whose coefficients are given by
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where ∗ refers to the complex conjugate. Using basic
trigonometric equivalences and defining
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t
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it can be deduced (Appendix B) that
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Figure 2. General reference frame XYZ, where the ray direction t̂ of the etalon
coincides with Z. The ordinary electric field component, Eo, is contained on a
plane perpendicular to the principal plane and forms an angle α with X that
depends on the ê3 direction. Spherical coordinates to describe the wavefront
direction unitary vector ŝ are also included: β is the polar angle (measured from
Z), and f is the azimuthal angle (measured from X).
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⎛
⎝

⎞
⎠

⎤
⎦⎥ ( )F

R
4

cos
2

2 cos
2

, 20o

j
W = - ⎜ ⎟⎛

⎝
⎞
⎠ ( )F

R
4

sin
2

. 21

Notably,
t

d
+ =

+ ( )
( )a b

F1 sin 2
22o

o
2

and
t

d
- =

+ ( )
( )a b

F1 sin 2
. 23e

e
2

That is, the transmission profiles (Equation (11) in Paper I) for
the ordinary and extraordinary rays are recovered from the sum
and subtraction of the two first elements of the Mueller matrix.

The Mueller matrix of a birefringent etalon is expressed as a
function of the etalon parameters and the retardance induced
between the ordinary and extraordinary rays. We can separate it
into two matrices, one similar to that describing an ideal
retarder, Mr , and another one as a mirror due to the fringing
effects, Mm:

= + ( )M M M . 24r m

If we define t t¢ º - -( )R1eff eff
2, we find that

t
z

tt

tt
j j
j j

=
¢

¢

¢

-

-

-

⎛

⎝

⎜⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟⎟( ) ( )
( ) ( )

( )
/ /

/ /

M

0 0 0

0 0 0
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0 0 sin 2 cos 2

25r
eff

eff
1

eff
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t
z

=

G L
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Y -W
W Y

⎛

⎝

⎜⎜⎜

⎞

⎠

⎟⎟⎟
( )M

0 0
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The extraordinary direction in our numerical examples
coincides with the fast axis, Y, since we set <n ne o.

It is also worth noticing that both matrices are multiplied
by z-1, which depends on both d0 and j. Since these
two quantities are wavelength and direction dependent,
Equation (24) does not strictly correspond to the sum of a
retarder and a mirror, except in the collimated, monochromatic
case. In the limit when R=0, since º - -( )F R R4 1 2

(Equation (13) of Paper I), the mirror matrix vanishes and
the etalon Mueller matrix turns into that of an ideal retarder. On

the other hand, in the limit when j = 0, i.e., in the limit of an
isotropic etalon, it can be shown that M is reduced to the
identity matrix except for a proportionality factor that
corresponds to the transmission factor of an isotropic etalon
(Equation (11) in Paper I).
Lites (1991) obtained a similar expression to Equation (24)

but restricted to R 1 and assuming both normal incidence on
the etalon and that the optical axis is perpendicular to the
surface normal. In that case the dependence on the wavelength
and direction disappears and matrices in Equation (24) describe
an ideal retarder and an ideal mirror. Our result is completely
general since it is valid for any value of R and for any incident
angle of the wavefront. Also notice that in Lites (1991) the plus
and minus signs of d are interchanged due to the sign
convention in the definition of the harmonic plane waves and,
therefore, in s3.
Whenever j ¹ 0, the Mueller matrix becomes nondiagonal

and spurious signals in the measured Stokes vector, known as
polarization crosstalk in the solar physics jargon, are
introduced. This is so because b and d introduce in
Equation (9) crosstalk signals between I and Q and between
U and V, respectively, if the Stokes parameters are measured
after passing the light through the etalon. There are, however,
some cases where these crosstalks are not relevant. For
example, for totally polarized light in the Q direction,

=( ) ( )I Qi i and = =( ) ( )U V 0i i , and therefore

= = + = +( ) ( ) ( )( ) ( ) ( ) ( )I Q a b I a b Q . 27t t i i

Hence, the transmission equation of an (ideal) isotropic etalon
with the ordinary refractive index is recovered. This happens,
for example, if the etalon is located after a linear polarizer with
its optical axis parallel to the +Q direction. In this case,
artificial polarization signals do not appear.
So far, we have restricted to collimated illumination of

the etalon with a convenient reference frame for expressing the
Stokes vector. In telecentric configuration, the shape of the
Mueller matrix,

~
M, is the same in practice. The matrix

elements, however, have a much more involved expression
than in Equations (10) and (24) because they are now
calculated from the integrated Jones matrix,

~
H, across the

pupil. This will be discussed in detail in Section 4.3.

3.2. Rotations of the Mueller Matrix

Since we here restrict to Z-cut crystals, propagation through
the normal to the etalon reflecting surfaces does not produce
any birefringence effect if the optical axis is perfectly aligned.
For normal illumination, the choice of the +Q direction is,
then, irrelevant, since both the ordinary and extraordinary rays
travel with the same velocity. For any other incident angle, a
careful choice of the+Q direction must be made, though. From
Equation (6) it is natural to take the ordinary electric field
direction (+Q direction) as the X-axis. The geometry of the
problem is depicted in Figure 2, where Z represents the ray
direction. This direction does not necessarily coincide with the
optical axis, ê3. Then, Eo vibrates in a plane perpendicular to
the principal plane (see, e.g., Del Toro Iniesta 2003). A rotation
of an angle α about Z is then mandatory for the Mueller matrix
of the etalon to give proper account of birefringence. No further
rotations are needed, though, since our reference frame is
chosen such that Z coincides with the direction of observation.
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The rotation angle α is given by

a = ¢· ( )u ucos , 28x x

where = ( )u 1, 0, 0x is the unitary direction vector of X and ¢ux
is the unitary direction vector of ¢X , which may be calculated
from the normalized vectorial product of ^= ( )t 0, 0, 1 and
^ = ( )( ) ( ) ( )e e ee , ,x y z

3 3 3 3 :

¢ = -( ) ( )( ) ( )e eu , , 0 . 29y x
x 3 3

If we use polar, β, and azimuthal, f, angles to describe ê3

(Figure 2), it is easy to find that

a f= ( )cos sin . 30

Thus,

a f p=  -( ) ( )2 . 31

This equation is valid whenever the angle between the ray
direction and the optical axis, β, is different from zero. If
b = 0, the wavefront normal and the optical axis are parallel,
and we can set arbitrarily a = 0 because of the rotational
symmetry of the etalon about Z. It is important to remark that
the polar and azimuthal angles are uncoupled in our
description. That is, the retardance j between the ordinary
and extraordinary rays only depends on the angle β, whereas
the rotation angle, α, only depends on f.

The dual solution for α in Equation (31) reflects the intrinsic
180 ambiguity in polarimetry, as the situation described so far

would be exactly the same for an ordinary electric field -Eo.
The usual convention is to employ positive signs for counter-
clockwise rotations (right-handed) and negative signs for
clockwise rotations. Consequently, if we set the XYZ directions
as our reference frame, we should rotate the Mueller matrix of
the etalon an angle a f p= - 2 and vice versa. The Mueller
matrix can then be cast as

=
+ -

- + -
-

a

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟
( )

( )
( )

a bC bS

bC aC cS a c S C dS

bS a c S C aS cC dC
dS dC c

M

0

0

, 32

2 2

2 2
2

2
2

2 2 2

2 2 2 2
2

2
2

2

2 2

where the coefficients C2 and S2 are given by a=C cos 2 ,2

a=S sin 22 . This matrix gathers all the necessary information
to describe the propagation of the Stokes components of any
incident ray in the etalon.

4. Polarimetric Response of Birefringent Etalons

In any linear system, the polarimetric response is determined
by its Mueller matrix coefficients, which are independent from
the incident Stokes vector. We have shown that the Mueller
matrix of crystalline etalons only depends on four independent
coefficients and on the azimuthal orientation of the principal
plane. The coefficients are related to optical parameters of the
etalon (e.g., refraction indices and geometrical thickness), to
the wavelength, and to the phase difference between the
extraordinary and ordinary beams. The phase difference
depends, at the same time, on the relative direction of the ray
direction with respect to the optical axis. In this section we
study the spectral behavior of these parameters in three
different cases: (1) when collimated light illuminates the etalon
with a certain angle with respect to the normal, (2) when the

illumination is normal to the etalon but the optical axis is
misaligned, and (3) when the etalon is illuminated in telecentric
configuration. We use the parameters of the SO/PHI Z-cut
LiNbO3 etalon: = =n n2.29, 2.20o 3 , m= =h A251.63 m,

=R0, 0.92, and l = 617.3356 nm0 . We also assume that the
etalon is immersed in air and that t t= = 1o e for simplicity.
The results can easily be extended to any etalon based on
uniaxial crystals.
In LiNbO3, the birefringence is typically smaller than 0.1

(e.g., Nikogosyan 2005) and can be neglected compared to no
and ne. Hence, a compact analytical expression for j as a
function of the incident angle and of the angle formed by the
optical axis with Z can be found. Specifically, it can be shown
(Born & Wolf 1999) that

q q
q

q q¢ - ¢
¢

- ¢ - ( ) ( ) ( )n n n ncos cos
1

cos
sin , 33e e o o o3

2
3

where q3 is the angle between the optical axis and the surface
normal and q¢ is an arbitrary fictitious refracted angle that is
given by

q
q

¢ =
¢

- ⎜ ⎟⎛
⎝

⎞
⎠ ( )n

n
sin

sin
, 341

where n is the refraction index of the medium in which the
etalon is immersed and ¢n can be taken as the average between
n3 and no:

¢ º
+ ( )n

n n

2
. 35o3

Thus, we can rewrite Equation (2) as

j
p

l q
q q

¢
- ¢ - ( ) ( ) ( )h

n n
4

cos
sin , 36o3

2
3

which directly depends on q3 and q¢. In the case q¢ and q3 are
close to zero, we can further approximate this expression as

j
p

l q
q q

¢ -
- - ¢

( )
( )( ) ( )h

n n
n n n n

8

2
, 37o2 2 2 3 3

2

which is expressed as a function of the incident angle instead of
the fictitious refracted angle. It is important to notice that when
θ and q3 are zero, j = 0 as predicted for normal illumination.
Whenever either θ or q3 is different from zero, birefringent
effects appear on the etalon. On the other hand, retardance
increases with the width of the etalon, with the birefringence of
the crystal, and with the inverse of the wavelength (it is
therefore larger in the ultraviolet than in the infrared region). It
is important to remark that Equation (36) is an approximate
expression valid for materials with small birefringence. An
exact formula of the retardance without restrictions in the
magnitude of the birefringence was found by Veiras et al.
(2010). The validity of Equation (36) in our numerical
examples is discussed in Appendix D.

4.1. Effect of Oblique Illumination in Collimated Etalons

Consider a perfectly parallel and flat etalon with its optical
axis aligned with the normal to the reflecting surfaces. Let us
illuminate it with a collimated monochromatic beam with
incidence angle θ. We assume that we have chosen a reference
frame in which a = 0, so the etalon Mueller matrix is given by
Equation (9). Then, the etalon will behave as a wavelength-
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dependent retarder plus a mirror as described in Equation (24),
modifying the polarization properties of the incoming Stokes
vector. To see the effects, we represent the variation of the
Mueller matrix coefficients as a function of the incident angle
in Figure 3. We have restricted θ to vary from 0° to 1 , and
we have limited the spectral range to the region l dl0 ,
where dl = 0.05 nm, to cover the whole transmission profile
centered at l0 (the location of the maximum transmission for
normal incident illumination).

Notice that, at normal incidence, coefficients a and c are
strictly the same and represent the monochromatic transmission
profile of a perfect etalon, while b and d are just zero. That is,
no crosstalks between Stokes parameters appear. As soon as b
and d differ from zero, hence as soon as the incidence angle is
larger than zero, crosstalks from I to Q, from Q to I, from U to
V, and from V to U appear. In typical solar observations, the
second and third contaminations are less important because
the orders of magnitude of the Stokes profile signals usually
are >( ) ( )I Q U V, , . To get a better insight on the relative
effects of birefringence, we have plotted cuts of the images in
Figure 4 at incidence angles of  0 , 0 .5, and 1 . Already
apparent in Figure 3, there is a clear, nonlinear wavelength shift
of the four parameters with increasing θ, as well as a decrease
in the peaks of a and c. This is due to the wavelength splitting
of the ordinary and extraordinary rays that can hardly be seen
in these plots but will become apparent in the next section.

Parameters b and d are different from zero only when q ¹ 0,
as expected. Since they correspond to the off-diagonal elements
of the etalon Mueller matrix, they introduce crosstalk signals in
the transmitted Stokes vector. Remarkably, these spurious
signals may be as much as 10% in Stokes Q (crosstalk from

Stokes I to Stokes Q and vice versa; see Figure 4) and up to
30% between Stokes U and Stokes V. All coefficients are
positive, except for b, whose sign and magnitude depend on the
separation of the ordinary and extraordinary peak wavelengths
(Equation (10)). The exact antisymmetric shape with respect to
the peak wavelength of the b coefficient heralds a wavelength
splitting between the ordinary and extraordinary transmission
profiles. Remember that these profiles coincide with a+b and
a−b, respectively, according to Equations (22) and (23). Both
the sum and the subtraction of these coefficients have also been

Figure 3. Variation of the a b c, , , and d coefficients of the Mueller matrix of the etalon as a function of wavelength and incident angle.

Figure 4. a b c, , , and d coefficients of the Mueller matrix of the etalon as a
function of wavelength for incident angles 0 (black solid line), 0 . 5 (blue solid
line), and 1 (red solid line).

6

The Astrophysical Journal Supplement Series, 242:21 (17pp), 2019 June Bailén, Orozco Suárez, & Del Toro Iniesta



plotted in order to check this property in Figure 5, where we
can see that a+b and a−b profiles are symmetric and that
both peak at different wavelengths.

So far, we have examined a flat wavelength spectrum (i.e., a
continuum) of the incident light beam. However, when
variations of the intensity with wavelength exist, as naturally
occurs in solar absorption lines, an explicit dependence on the
etalon Mueller matrix with wavelength appears. As a
consequence, the crosstalk introduced between the Stokes
parameters is wavelength dependent. Indeed, as we will see, the
etalon can introduce asymmetries in the observed Stokes
profiles, even when the input Stokes profiles are symmetric
with respect to the central wavelength of the line. Figure 6
shows an example of what happens when we illuminate the
etalon at different angles with synthetic Stokes I and Q profiles
corresponding to the Fe Iline at 617.3nm. Again, we assume
three different angles of incidence, q q=  = 0 , 0 .5, and
q = 1 . The observed Stokes profiles have been determined
by using the expressions

= * + *( ) ( )( ) ( ) ( )I
N

a I b Q
1

, 38t i i

= * + *( ) ( )( ) ( ) ( )Q
N

a Q b I
1

, 39t i i

where ∗ is the convolution operator and N is a constant
introduced to normalize the observed profile to the continuum
given by

ò l l=
¥

( ) ( )N a d . 40
0

As expected, the observed Stokes I and Q profiles are
broader and shallower in the case of Stokes I and weaker in the
case of Stokes Q than the synthetic ones, due to the limited
spectral bandwidth of the etalon. Moreover, they are both
blueshifted with respect to the l0, as expected (see Paper I).
Remarkably, the crosstalk from Stokes I to Stokes Q, governed
by the b coefficient of the etalon Mueller matrix, introduces a
clear asymmetry in the observed Stokes Q profile. The
asymmetries are evident when the incident angle θ is 1 . These
asymmetries are also present in Stokes I because of the
crosstalk from Stokes Q to Stokes I, although in less amount

due to the larger values of the incident Stokes I component. In
this case we have taken into account only linear polarized light,
but the effects are larger when there is crosstalk between Stokes
U and Stokes V, as one can deduce by just looking at Figure 4.

4.2. Effect of Local Domains in the Etalon

Either during the manufacturing process of etalons or when
applying an intense electric field, local domains where the
optical axis is not perpendicular to the etalon surfaces may
appear. This implies that, even when illuminating the etalon
with a collimated beam normal to the etalon surfaces,
birefringent effects can arise. The magnitudes of these depend
on the angles θ and q3, as well as on the relative orientation α of
the plane containing the ordinary ray electric field with respect
to the chosen X direction.
Let us suppose that we illuminate with a normal incident

beam the etalon and that no other polarizing elements are
present in our system. We can freely choose the X-axis of the
etalon again to coincide with the vibration plane of Eo. In this
case, the Mueller matrix of the system is given again by
Equation (9) and

j
p
l

q= -( ) ( )h
n n

4
sin , 41o3

2
3

which, for small deviations, takes the form

j
p
l

q- ( ) ( )h
n n

4
. 42o3 3

2

The nonzero elements of the Mueller matrix are plotted as a
function of q3 in Figures 7 and 8. We can observe a similar effect
to the one that appears when illuminating a perfect etalon with a
collimated and oblique beam, except for the fact that, in this case,
the spectral profile of the ordinary ray does not deviate and the
splitting of the ordinary and extraordinary rays is more prominent.
The spectral separation of the ordinary and extraordinary rays is
clearly noticed in Figure 7 when approaching 1 . The double peak
in the spectral transmission is also visible in a and c in Figure 8.
Crosstalk parameters b and d have a maximum absolute value of
about 40% and 60%, respectively.
The birefringence is more noticeable when varying the

optical axis angle than when changing the incident angle since
the dependence with q3 is stronger than with θ in Equation (37).
We have also represented the ordinary (a+ b) and extra-
ordinary (a− b) spectral transmission profiles in Figure 9 using
Equations (22) and (23) for q = 03 and 1 to check both that
the ordinary transmission ray does not shift to the blue, in
contrast to the extraordinary ray, and that the ordinary and
extraordinary profiles are symmetric.

4.3. Etalon Response in Telecentric Configuration

In a telecentric configuration, each point of the etalon is
illuminated by an identical cone of rays coming from the pupil.
This means, on the one hand, that each point of the etalon
receives a set of rays, each one with different angles of
incidence. On the other hand, the principal plane orientation
changes with the direction of each particular incident ray. We
must take care of both effects.
Consider an etalon within an optical system in a perfect

telecentric configuration, where the chief ray is parallel to the
optical axis over the whole field of view (FOV). In such an ideal

Figure 5. Spectral dependence of the transmission profile of the ordinary ray
(a + b) and of the extraordinary ray (a − b) for different incidence angles
(q = 03 ): 0 (black solid line), 0 . 5 (blue solid line), and 1 (red solid line). The
vertical solid lines pinpoint the peak location for the 1 case in both panels.
Notice that the peaks are located at different wavelengths, as explained in
the text.
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configuration, the etalon receives the same cone of rays across the
FOV, and the polarization response remains equal over the image.
Without loss of generality, we can calculate the transmitted
electric field at the center of the image and extend this result to all
the points of the FOV. The only dependence of the electric field
with the coordinates of the pupil (r, f) is that of the ordinary and
extraordinary retardances through the incidence angle q ( )r :

q =
+

⎛
⎝
⎜⎜

⎞
⎠
⎟⎟( ) ( )r

r

r f
arcsin . 43

2 2

Equation (6) neglects any corrections in the Mueller matrix
when integrating over the azimuthal direction. Rotations of the
principal plane over the cone of rays must be included, though.
To do so, let us first rotate the Jones matrix an angle f¢. The
components of the rotated Jones matrix, ¢H , will be given by

f f
f f

f f

¢ = ¢ + ¢
¢ = ¢ + ¢
¢ = ¢ = - ¢ ¢( ) ( )

H H cos H sin ,

H H sin H cos ,

H H H H sin cos . 44

11 11
2

22
2

22 11
2

22
2

12 21 11 22

The transmitted electric field shall then be calculated from the
“integrated” Jones matrix ¢~

H , whose elements can be obtained
from the Fraunhofer integral of the coefficients ¢Hij (see
Appendix A for further details). As explained in Paper I, the
resulting integrals have no easy analytical integration and shall
be evaluated numerically.

In an ideal telecentric configuration, the only dependence on
the azimuthal angle is due to the rotation of the principal plane
over the interval of integration. The Jones matrix elements of the
telecentric configuration, ¢~

Hij, can then be cast as (Appendix A)

¢ = ¢ = +

¢ = ¢ =

~ ~ ~ ~

~ ~

( )

( )

H H
1

2
H H ,

H H 0, 45

11 22 11 22

12 21

where

ò

ò

=

=

~

~

( )

( ) ( )

r r r

r r r

H H d ,

H H d , 46

R

R

11
0

11

22
0

22

p

p

and Rp is the radius of the pupil. The diagonal elements of the
rotated Jones matrix are therefore a linear combination of the
elements of the nonrotated Jones matrix. Crosstalks between
the ordinary and extraordinary components of the electric field
are canceled out when integrating f fsin cos over ( p0, 2 ). The
Mueller matrix coefficients are then given by

s s¢ = ¢ ¢
~ ~˜ [ ] ( )†
H HM

1

2
Tr . 47ij i j

Obviously, this matrix has again the form of Equation (9) with
coefficients ¢ ¢ ¢ ¢˜ ˜ ˜ ˜a b c d, , , :

¢ =

¢ ¢
¢ ¢

¢ - ¢
¢ ¢

~

⎛

⎝

⎜⎜⎜⎜

⎞

⎠

⎟⎟⎟⎟

˜ ˜
˜ ˜

˜ ˜
˜ ˜

( )

a b
b a

c d
d c

M

0 0
0 0

0 0
0 0

, 48

where

¢ = ¢ ¢ + ¢ ¢

¢ = ¢ ¢ - ¢ ¢

¢ = ¢ ¢ + ¢ ¢

¢ = ¢ ¢ - ¢ ¢

~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

~ ~ ~ ~

~* *

* *

* *

* *

˜ ( )

˜ ( )

˜ ( )

˜ ( ) ( )

a H

b

c

d
i

1

2
H H H ,

1

2
H H H H ,

1

2
H H H H ,

2
H H H H . 49

11 11 22 22

11 11 22 22

22 11 11 22

22 11 11 22

In this particular case, substituting Equation (45),

¢ = ¢ = + + +

¢ = ¢ =

~ ~ ~ ~ ~ ~ ~ ~* * * *˜ ˜ ( )

˜ ˜ ( )

a c

b d

1

4
H H H H H H H H ,

0. 50

11 11 22 22 11 22 22 11

Therefore, the Mueller matrix is diagonal and no crosstalk
appears between the different spectral profiles of the Stokes
components if telecentricity is exact.
However, perfect telecentricity can only be reached ideally.

In a normal scenario, there is a dependence with the azimuthal
angle on the Jones matrix even if changes of orientation of the
principal plane over the azimuthal angle f were not considered,
since the symmetry of the problem is broken. In an imperfect
telecentric configuration, the chief ray direction deviates from
normal incidence on the etalon over the FOV, and so does the

Figure 6. Reconstructed intensity profile of a synthetic Stokes profile (black dashed line) with the spectral response of the etalon at q = 0 (black solid line), q = 0 . 5
(blue solid line), and q = 1 (red solid line).
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polarimetric response of the etalon, which is now expected to
be spectrally asymmetric. Equations (45) and (48) cannot be
applied. Actually ¢a is no longer equal to ¢c , and ¢b and ¢d
become different from zero. Furthermore, the Jones matrix off-
diagonal elements are, in general, different from zero. The
Mueller matrix elements should be calculated from
Equation (47) with the coefficients ¢Hij obtained following
Appendix A.

Figure 10 represents the spectral response of the Mueller
matrix elements as a function of λ for an optical system with
f 60. Both a perfect telecentric configuration (chief ray at 0 )

and an imperfect telecentrism in which the chief ray is deviated
0 .5 have been considered. We only show the ¢ ¢ ¢˜ ˜ ˜a b c, , , and ¢d̃

components of the Mueller matrix since we have observed in
our numerical experiments that other off-diagonal elements in
the Jones matrix are several orders of magnitude below the
diagonal terms. This implies that, in practice, ¢~

H can be
considered as diagonal and only the coefficients ¢ ¢ ¢˜ ˜ ˜a b c, , , and
¢d̃ need to be calculated.
The first thing to notice is that the profiles are blueshifted, as

in the collimated configuration. We also see how ¢ã and ¢c̃
profiles for imperfect telecentrism are broader. Their peak
values have decreased from about~90% at 0 to~40% at 0 .5
due to the mentioned widening. These two effects are more

Figure 7. Variation of the a b c, , , and d coefficients of the Mueller matrix of the etalon as a function of the wavelength and of q3.

Figure 8. Variation of the a b c, , , and d coefficients of the Mueller matrix of
the etalon as a function of the wavelength for q = 03 (black solid line), 0.7
(blue solid line), and 1° (red solid line).

Figure 9. Spectral dependence of the transmission profile of the ordinary ray
(a + b) and of the extraordinary ray (a − b) for normal illumination and two
different angles of the optical axis: 0 (blue solid line) and 1 (red solid line).
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important for shorter f-numbers because of the larger incidence
angles (Paper I).

Remarkably, the four matrix elements have a clear asym-
metric spectral dependence at 0 .5. The maximum values of ¢b̃
and ¢d̃ are ~1% and ~1.5%, respectively. These terms are
responsible for the crosstalk among the Stokes parameters.
Note that these large asymmetries in the spectral profile are not
exclusive for birefringent etalons, since they also appeared in
Paper I, where the isotropic case was studied. At 0 there is no
crosstalk and l l¢ = ¢˜ ( ) ˜ ( )a c , as expected from Equation (50).
Although not noticeable in this figure, the loss of symmetry in
an imperfect telecentrism implies that l l¢ ¹ ¢˜ ( ) ˜ ( )a c at 0 .5, as
explained before.

Figure 11 shows the observed Stokes I and Q spectral
profiles when illuminating the etalon with the same synthetic
profile as in Section 4.1, and using a telecentric configuration
with f/60 as well. We can see the displacement toward the blue
produced by the effect of the different incidence angles. The
profiles also broaden due to the effect of the convolution with
the Mueller matrix of the etalon (Equations (38) and (39)) and
become asymmetric. Moreover, an artificial continuous signal
in the measured Q at l l- >∣ ∣ 0.03 nm0 appears due to the
crosstalk introduced from the continuous part of I. In order to
estimate the induced artificial signals due to the birefringence
of the etalon, we have also plotted D = -( ) ( )I I It

nb
t and

D = -( ) ( )Q Q Qt
nb

t , where ( )Inb
t and ( )Qnb

t are the transmitted I
and Q components of the Stokes vector for a non-birefringent
etalon with refraction index no. The absolute maximum
crosstalk goes from ~0.2% and ~0.05% at 0 to ~0.65%
and ~1.75% at 0 .5 in I and Q, respectively.

5. Imaging Response to Monochromatic Plane Waves

As discussed in Paper I, space invariance is not preserved in
either the collimated or the (imperfect) telecentric case. We cannot
speak, then, of a PSF that can be convolved with the object
brightness distribution when studying the response of the etalon.
Instead, we have to integrate the object with a local PSF. On the

other hand, since the object brightness usually varies with
wavelength, the response of the Fabry–Pérot depends on the
object itself. We need then to integrate spectrally the monochro-
matic response of the instrument (Equations (61) and (62) of
Paper I). Moreover, orthogonal components of the electric field
are, in general, modified in a different way when traversing
through the etalon. We therefore expect the response to vary with
the incident polarization as well.
The local PSF,  , is defined as the ratio

 =
~ ~*

*
( )

( ) ( )

( ) ( )
E E
E E

, 51
t t

i i

where ( )E i is the electric field of the incident plane wave and
~( )
E

t
is the image plane electric field, related to the incident

ordinary and extraordinary rays by

= ¢ + ¢

= ¢ + ¢

~

~

~ ~

~ ~ ( )
( ) ( ) ( )

( ) ( ) ( )

E E E

E E E

H H ,

H H .
52x o e

y o e

t
11

i
12

i

t
21

i
22

i

In a similar way to Section 4.3, coefficients ¢~
Hij are calculated

from the Fraunhofer integrals (Appendix A) of the elements of
the “rotated” Jones matrix, ¢Hij, and depend on the image plane
coordinates x h( ), , on the chief ray coordinate in the image
plane x h( ),0 0 , and on the wavelength. We do not make these
dependences explicit in the equations that follow for simplicity.
Note that we do not restrict ourselves now to the center of the
image, unlike in Section 4.3, since we are interested in not only
the transmission profiles of the Stokes vector but also in the
consequences of diffraction effects due to the limited aperture
of the system.
Even if we neglect crossed terms in the Jones matrix, the

response of the etalon is determined by the polarization of the
incident light, since the diagonal terms of the Jones matrix
are different. This statement is valid for both collimated and
telecentric mounts. For isotropic media, since ¢ = ¢ =

~ ~
H H 012 21

and ¢ ¢ = ¢ ¢~ ~ ~ ~* *
H H H H11 11 22 22, we recover the result for  presented in

Paper I.
Equation (52) is written in terms of the ordinary and

extraordinary electric field components. It may be more useful
to find the relation of  with the incident Stokes parameters,
though. This is as easy as obtaining the Mueller matrix through
Equation (47) and noticing that

~ ~*( ) ( )
E E

t t
represents the first

component of the transmitted Stokes vector. Consequently,
substituting in Equation (51),

 = ¢ + ¢ + ¢ + ¢˜ ˜ ˜ ˜ ( )
( )

( )

( )

( )

( )

( )
Q

I

U

I

V

I
M M M M . 5311 12

i

i 13

i

i 14

i

i

Again, we can see that  depends in general on the polarization
of the incident light. Although the expressions presented in this
section are valid for both collimated and telecentric illumination,
differences between both cases are obviously expected to arise,
hence the need to study them separately.

5.1. Collimated Configuration

In the collimated configuration, there is a one-to-one
mapping between the incidence angle of the rays on the etalon
and their position on the image plane. As only the incidence
angles are of interest, the location of the rays on the pupil is
irrelevant, and the Fraunhofer integrals are proportional to that

Figure 10. Variation of the ¢ ¢ ¢˜ ˜ ˜a b c, , , and ¢d̃ coefficients of the Mueller matrix
of the etalon as a function of the wavelength for both perfect telecentrism (blue
solid line) and imperfect telecentrism with a deviation of the chief ray of 0 . 5
(red solid line). A beam f-number of 60 has been employed.
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of a circular aperture with the same radius, similarly to the
isotropic case. According to Appendix A, the Jones matrix
terms are actually given by

f f

f f

f f

¢ = +

¢ = +

¢ = ¢ = -

˜ ( ) ( )

˜ ( ) ( )

˜ ˜ ( ) ( ) ( )

J z

z
J z

z
J z

z

H H cos H sin
2

,

H H sin H cos
2

,

H H H H sin cos
2

, 54

11 11
2

0 22
2

0
1

22 11
2

0 22
2

0
1

12 21 11 22 0 0
1

where the variables z and J1 are defined in Paper I and f0 is the
azimuthal orientation of the principal plane of the etalon with
respect to the +Q direction of the reference frame chosen to
describe the Stokes vector (i.e., the azimuthal angle in
Figure 2). Note that off-diagonal terms cannot be neglected
unless f = 00 . Thus,  depends on the four Stokes parameters
and varies over the image plane due to both the birefringence of
the etalon and the reorientation of the principal plane with the
incident ray direction. In fact, for the same radial position on
the image plane,  changes because of the different orienta-
tions of the principal plane. A decrease of the intensity is also
expected toward the edges of the image, as explained in
Paper I.

We can only set f = 00 for ray directions parallel to the
optical axis. Assuming that the optical axis is perpendicular to
the surfaces of the etalon, this occurs at normal illumination of
the pupil. For this particular case, the Mueller matrix has the
form of Equation (48), and, using Equations (53) and (54), an
analytical expression for  can be found:

 = + + -
⎛
⎝⎜

⎞
⎠⎟

⎡
⎣⎢

⎤
⎦⎥

( ) ( ) ( )
( )

( )
J z

z
g g g g

Q

I

1

2

2
, 55o e o e

1
2 i

i

where º *g H Ho 11 11 and º *g H He 22 22 are the transmission
profiles of the ordinary and extraordinary rays for normal
illumination of the etalon. This expression illustrates the
polarimetric dependence of  for the collimated configuration
and its proportionality to that of an ideal circular aperture.
Notice that, since crossed terms in the Jones matrix are zero in

this case, ¢~
M13 and ¢~

M14 are also null, and the dependence with
Stokes components U and V disappears. For pupil incidence
angles different from zero, expressions are much more involved
and an analytical expression for S cannot easily be obtained.

5.2. Telecentric Configuration

For telecentric illumination of the etalon, the retardance is
related to the pupil coordinates of the incident rays, unlike for
the collimated case. The proportionality with the response of a

Figure 11. Observed Stokes I and Q profiles (left and right panels, respectively) when illuminating the etalon in telecentric configuration with f/60 with the orientation
of the chief ray at 0 (blue solid line) and at 0 . 5 (red solid line). The black dashed line stands for the synthetic input Stokes I and Q profiles. The crosstalks induced in
Stokes I and Stokes Q are shown in the bottom panels.
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circular aperture disappears then, as occurred in the isotropic
case, and the Jones matrix elements of Equation (52) must be
evaluated numerically.

The response  , as for the collimated case, depends on the
polarization state of the incident light even for perfect
telecentrism. This is because ¢ ¹ ¢~ ~

H H11 22 and ¢ = ¢ ¹˜ ˜H H 012 21
in general, as explained in Appendix A. Let us consider two
simple cases, namely, =( )E 0e

i and =( )E 0o
i . For the case

=( )E 0e
i , according to Equation (52), the PSF follows the

expression

* * = ¢ ¢ + ¢ ¢˜ ˜ ˜ ˜ ( )H H H H . 5611 11 21 21

For the case =( )E 0o
i , the PSF is described by

* * = ¢ ¢ + ¢ ¢˜ ˜ ˜ ˜ ( )H H H H , 5722 22 12 12

which is different from Equation (56) even if we ignore the
crosstalk term (second term of the equations). Crosstalks can be
neglected in practice for the telecentric configuration, as
discussed in Section 4.3. Therefore, the third and fourth
Mueller matrix terms of Equation (53) vanish, as for normal
illumination in collimated etalons, and the response depends
only on I and Q Stokes components (as well as on the
birefringence of the etalon). Interestingly, the peak of  is just
the transmission profile, ¢ã (Equation (50)), which is not
affected by the incident polarization state of light.

Obviously, if the chief ray is not perpendicular to the etalon
surfaces (imperfect telecentrism), the same arguments can be
applied. Moreover, other effects explained in Paper I will
appear. Essentially,  becomes asymmetric and varies from
point to point. If telecentrism is perfect, although polarization
dependent,  remains the same all over the FOV by definition.

To evaluate how  varies with the polarization of the
incident light beam, we have calculated its width and its peak
position for = Q 1 states of polarization. We study their
behavior with the degree of telecentrism by varying the chief
ray angle, Θ, from 0 (ideal telecentrism) to 0 .5. Figure 12
shows the results obtained for an f 60 beam. The X-axis of
both top and bottom figures indicates the angle that the chief
ray forms with the optical axis.

The top panel represents the shift of the PSF peak with
respect to the position of the peak for the ideal diffraction-
limited case (Airy disk) with Θ and for the two orthogonal
polarizations. The results have been normalized by the radius
of the collimated case. It can be seen clearly that the shift is
different for orthogonal polarizations, meaning that  depends
on the input beam polarization state. Deviations between
orthogonal states would be larger for smaller f ratios.

The bottom panel shows the width of  normalized to that
corresponding for the ideal diffraction-limited case. Notice that
apart from an offset between the two curves, they depend
slightly differently on Θ. The offset indicates that  is
polarization dependent even for perfect telecentrism (i.e., when
Q = 0), as explained before in the text.

6. Comments on the Birefringent Effects in Solar
Instrumentation

The polarimetric effects described in earlier sections have
an impact on the incident Stokes vector. Indeed, off-diagonal

terms in the etalon Mueller matrix introduce crosstalks
between the Stokes parameters that could deteriorate the
measurements carried out by solar magnetographs. However,
there are other factors that should also be considered for a
proper evaluation of the spurious signals emerging in such
instruments.
First, we need to take into account the combined response of

the polarimeter and the etalon because both modify the
polarization state of light. The final Mueller matrix of the
instrument depends, then, on the relative position of the etalon
with respect to the polarimeter. Usually, the Fabry–Pérot is
located either between the modulator and the analyzer or
behind it. When it is located after the analyzer, further
crosstalks induced by the etalon are prevented. The reason
for this is that the etalon is illuminated with linearly polarized
light. If placed between the modulator and the analyzer, then
the effect on the final Mueller matrix changes for each
particular modulation of the signal.
Second, observations are not strictly monochromatic but

quasi-monochromatic. Spectral integration of the Mueller
coefficients decreases the magnitude of crosstalk terms,
especially for b and ¢b̃ since they change their sign along the
spectral profile (Figures 4 and 3).
Modulation of the signal and the quasi-monochromatic

nature of the observations reduce the crosstalk induced by the

Figure 12. Spatial shift (top) of the peak of the PSF with respect to the Airy
disk and FWHM of the PSF normalized to that of the Airy disk (bottom) as we
move across the FOV in the image plane (X-axis). The plot includes the result
for orthogonal polarization beams Q=1 (blue) and = -Q 1 (red). A
telecentric beam with f 60 has been employed.
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etalon Mueller matrix. These aspects will be addressed in the
next work of this series of papers.

The calculations presented in previous sections represent a
worst-case scenario. Let us consider two examples of
instruments based on birefringent etalons: SO/PHI (Solanki
et al. 2015) and IMaX (Martínez Pillet et al. 2011). The former
is illuminated with a telecentric beam, whereas the second is
mounted on a collimated configuration. For SO/PHI, the
degree of telecentrism is kept below 0 .23 in a~f 60 mount. In
addition, its etalon is located after the analyzer. In the IMaX
instrument, incidence angles are below 0 .44, and the Fabry–
Pérot is placed between the modulator and the analyzer.
Deviations from normal illumination in SO/PHI and IMaX are
lower than half the maximum angle employed in Figures 10
and 4. Moreover, deviations of the optical axis from the
nominal one have only been observed to appear after the
application in the laboratory of very intense electric fields and
disappear after a certain interval of time. These deviations are
distributed in small compact regions or local domains that
cover a small fraction of the clear aperture. If these electric
fields are not reached during operation, the harming effects can
be considered negligible.

7. Summary and Conclusions

A general theory that considers the polarimetric response of
anisotropic (uniaxial) crystalline etalons has been presented in
this work. We have obtained an expression of the Mueller
matrix that describes the polarimetric behavior of uniaxial
crystalline etalons, and we have concluded that they can be
described as a combination of an ideal mirror and a retarder,
both strongly spectrally modulated. We have shown that the
Mueller matrix of the etalon in a collimated configuration
depends only on four elements that vary spectrally, with the
direction of the incident rays and on the orientation of the
optical axis. A careful choice of the reference frame depending
on the orientation of the principal plane is also needed.

We have also deduced an analytical expression for the
birefringence induced in uniaxial crystalline Fabry–Pérot
etalons that takes into account both the direction of the incident
rays and the orientation of the optical axis. By numerical
experimentation, we have studied the effect of (1) oblique
illumination in Z-cut etalons, (2) misalignments of the optical
axis at normal illumination, and (3) locating the etalon in a
telecentric configuration. We have considered the influence of
illuminating with different f-numbers in the latter.

For the first case, we have evaluated the spectral dependence
of the coefficients of the Mueller matrix with the angle of the
incident light. We have shown that, with the parameters of a
commercial etalon, the crosstalk between I and Q is about 10%
at 1 and 30% between U and V. For the second case, we have
shown that the same deviations of the optical axis introduce
larger artificial signals between the Stokes parameters (40%
and 60% between I and Q and U and V at 1 ). We have also
evaluated the spectral transmission of a synthetic Stokes profile
when traversing through the etalon for different incident angles.
Asymmetries are induced in this case in the observed profiles
due to the presence of crosstalk terms in the Mueller matrix,
thus introducing spurious signals.

We have shown that in a perfect telecentric configuration the
Mueller matrix is diagonal and no crosstalk appears between
the different Stokes components. For an imperfect telecentric

beam, the Mueller matrix is not diagonal anymore, although it
still keeps the abcd form in practice, and the spectral profiles of
the Mueller matrix elements become asymmetric. We have
studied the spectral profiles of the Mueller matrix coefficients
and the degradation produced on a spectral artificial Stokes
profile, and we have estimated the crosstalks produced in this
configuration. Because of the birefringence of the etalon,
artificial signals appear on the observed profile compared to the
isotropic case, apart from the known broadening and blueshift
effects.
A general method for obtaining the imaging response in

crystalline Fabry–Pérots for both collimated and telecentric
configurations has been developed. It has been shown that the
response of the etalon is related in general to the polarization of
the incident light, as well as to its birefringence. We have
addressed the problem from two different points of view: by
using the Jones formalism and by employing the Mueller
matrix method. Both of them are equivalent. The advantage of
the second is that it let us express the response directly as a
function of the input Stokes parameters.
We have demonstrated that in a collimated setup the local

PSF is modified with respect to the ideal PSF by a transmission
factor that varies across the image plane both radially and
azimuthally due to the correspondent rotations of the principal
plane with the ray direction (Equation (54)). At the origin, the
response is equal to the irradiance distribution of a circular
unaberrated pupil modulated by a transmission factor that
depends on the birefringence of the etalon and on the I and Q
Stokes components that traverse through the etalon. In a perfect
telecentric configuration the PSF also depends on the induced
birefringence of the etalon and on the incident polarization state
of light (namely, on I and Q again), although its peak
transmission is polarization independent and its shape remains
the same across the image plane. In imperfect telecentrism, an
asymmetry and a variation of the response over the detector are
also introduced. We have evaluated the spatial shift of the
response for two orthogonal states of polarization with the
degree of telecentrism, as well as its FWHM. We have shown
that the local PSF peak and FWHM change differently with the
chief ray angle for each polarization. The FWHM depends on
the polarization of the incident light even for perfect
telecentrism. The numerical results obtained are in agreement
with our analytical argumentation.

This work has been supported by Spanish Ministry of
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56169-C6-1-R and ESP-2016-77548-C5-1-R. The authors
acknowledge financial support from the State Agency for
Research of the Spanish MCIU through the “Center of
Excellence Severo Ochoa” award for the Instituto de Astro-
física de Andalucía (SEV-2017-0709). D.O.S. also acknowl-
edges financial support through the Ramón y Cajal fellowship.

Appendix A
Exact Expression of the Electric Field at the Focal Plane

The electric field of an electromagnetic wave at the focal
plane of an optical instrument, x h x h l

~ ( )( )
E , ; , ;

t
0 0 , is given by

the Fraunhofer integral of the incident electric field at the pupil,
( )E i . We have remarked on the dependence of the electric field

with the coordinates of the focal plane (x h, ), the chief ray
position at the focal plane (x h,0 0), and the wavelength, since
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they are variables of interest for the calculation of the spectral
transmission profile and of the monochromatic imaging
response. We omit these explicit dependences from this
point on.

If we choose radial coordinates f( )r, to describe the pupil
coordinates, we can write

ò ò f l f=
~ p

a f b f- +( ) ( )( ) ( ) ( )r r e rE E , , d d , 58
Rt

0 0

2
t ikr cos sin

p

where k is the wavelength vector of the incident wavefront,
a x xº -( ) f0 and b h hº -( ) f0 are the cosine directors
(not to be confused with the angles of Figure 2), and Rp is the
radius of the pupil.

Following the Jones formalism, we can also write

º = ¢~
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⎛
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where the coefficients of ¢~
H can be calculated from

Equation (44) after integration:
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where f¢ is the azimuthal angle of the principal plane with
respect to the +Q direction of the reference frame chosen to
describe the Stokes parameters (Figure 2). The coefficients of
the Jones matrix H are given by Equations (4)–(6). Note that
this expression considers the rotations of the principal plane of
the etalon with the ray direction vector within the etalon. The
dependence of the Jones matrix elements with the pupil
coordinates is entirely given by that of retardances do and de

through the incidence angles and changes with the optical
configuration.

A1. Collimated Configuration

For collimated setups, the incidence angle is given by
Equation (53) from Paper I:

q
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which does not depend on the pupil coordinates. Therefore,
f¹ ( )rH H ,11 11 and f¹ ( )rH H ,22 22 , and we can cast

Equation (60) as
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where we denote f0 instead of f¢ to describe the azimuthal
angle of the principal plane. This is to emphasize that f0 does
not depend on the pupil coordinates and can be taken out of the
integral, since the principal plane only changes in this case with
the orientation of the incident rays, but not with their location
on the pupil. The parameter z is given by

p
l

x h
=

+
( )z R

f

2
, 63pup

2 2

and J1 is the first-order Bessel function. Whenever f = 00 (as
we can set for normal illumination of the pupil if q = 03 ), the
Jones matrix coefficients are greatly simplified:
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A2. Telecentric Configuration

Unlike for the collimated configuration, a relation exists in
telecentric setups between the incidence angle in the etalon and
the coordinates of the pupil of the incident ray. This is
described in Equation (59) of Paper I. Using radial coordinates,
this expression can be rewritten as

q
f x f h

=
- + - +

-
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⎝
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r r f
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, 651
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and no simplification of Equation (60) can be done in general.
Only if we focus on the origin (x h= = 0) does the azimuthal

dependence of ¢~
H disappear, since

q =
+

-
⎛
⎝
⎜⎜

⎞
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r f
cos . 661

2 2
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Note that in telecentric mounts each point of the image is
illuminated by rays that have different orientations within the
etalon. Therefore, appropriate rotations of the principal plane
are needed over the integration domain. Since f¢ is the
azimuthal angle of the principal plane (Figure 2), its relation to
the image plane azimuth f can be found by geometrical
considerations and depends on the ray coordinates on the pupil
and chief ray position on the image plane:

f
h f
x f

¢ =
-
-

-
⎛
⎝⎜

⎞
⎠⎟ ( )

r

r
tan

sin

cos
. 671 0

0

Now, none of the factors in Equation (60) can be taken out of
the integral, and the expressions must be calculated numeri-
cally. We can only find an analytical expression for the Jones
matrix elements at the center of the image plane, assuming that
the optical axis is perpendicular and that x h= = 00 0 . Then,
f f¢ = , and we can simplify Equation (60) as
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where
~
H11 and

~
H22 were defined in Equation (46).

Appendix B
Mueller Matrix Coefficients Calculation

To calculate the coefficients a b c, , , and d of the Mueller
matrix, we follow their definitions and use the nomenclature
defined in Equations (17)–(21). We will employ the following
definition of the Pauli matrices to be consistent with our sign
convention (Del Toro Iniesta 2003):3
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For c and d we shall first calculate *H H22 11 and
*H H11 22:
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Therefore, we can express c and d as

t
z

j
j

d j
t
z

j

=
-

+

- + =
-

+ Y

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )

( ) ( )
( )

( )

c
R

F
R

F

R

cos 2

1 4
cos 2

2
cos 2

cos 2

1
, 74o

eff
2

eff
2

t
z

j
j

t
z

j

=
-

-
-

=
-

-
+ W

⎡
⎣⎢

⎤
⎦⎥

⎡
⎣⎢

⎤
⎦⎥

( )
( )

( )

( )
( )

( )

d
R

F
R

R

sin 2

1 4
sin 2

sin 2

1
. 75

eff
2

eff
2

Appendix C
Electro-optic and Piezo-electric Effects in Z-cut Lithium

Niobate Etalons

In Z-cut lithium niobate etalons, tuning of the transmitted
wavelength is made by applying an electric field along the Z-
cut direction. LiNbO3 is an electro-optical material that
presents changes in the refractive index by application of an
external electric field through the Pockels effect. Changes in the
width of the etalon also occur due to piezo-electric effects. Both
have an influence on the birefringence of the crystal. In this
appendix, we obtain a more general expression than
Equation (36) for the birefringence that also takes into account
the presence of external fields.
The Pockels effect depends not only on the particular optical

axis of the crystal but also on the direction of the incoming
light and on the direction of the electric field. At an atomic
level an electric field applied to certain crystals causes a
redistribution of bond charges and possibly a slight deforma-
tion of the crystal lattice. In general, these alterations are not
isotropic, that is, the changes vary with direction in the crystal
and, therefore, the permeability tensor is no longer diagonal in
the presence of an external electric field (e.g., Kasap et al.
2012).
Consequently, even if the applied external field direction

coincides with the optical axis (Z in this case), there is no
guarantee that for normal illumination no birefringence will

3 Differences in the sign of the Pauli matrices lead to different conventions on
the clockwise or anticlockwise rotation of the electric field polarization. For a
more detailed discussion, please visit Appendix A of Jefferies et al. (1989).
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appear. This will depend on the crystal symmetry class, which
determines the form of the electro-optical tensor and not only
on the direction of the incoming light and on the direction of
the optical axis. For example, an uniaxial Z-cut crystal like
KDP (KH2PO4) or lithium niobate (LiNbO3) might become
biaxial when applying an external field along the Z-axis. In the
case of KDP, the field along Z rotates the principal axes by 45
about Z and changes the principal indices n1 and n2. The
particular effect of applying an electric field for lithium niobate
needs to be studied for our specific application.

C1. Pockels Effect

The Pockels effect consists of a linear change in the
impermeability tensor due to the linear electro-optic effect
when an electric field is applied. The impermeability tensor is
defined as h º -

0
1 , where 0 is the vacuum permittivity and

 is the permittivity tensor. This tensor is diagonal in the
principal coordinates with elements h h= =n n1 , 111 1

2
22 2

2,
and h = n133 3

2. The change in the impermeability tensor can
be expressed as

åhD = ( )r E , 76i
j

ij j

where rij are the components of the electro-optical tensor and Ej

are the components of the electric field. Subindices i and j take
the values = ¼i 1, , 6 and =j 1, 2, 3. The new imperme-
ability tensor, h̄, is no longer diagonal in the principal dielectric
axes system:
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The presence of cross terms indicates that the principal
dielectric axis system is changed. Determining the new
principal axes and the new refraction indices requires that the
impermeability tensor is diagonalized, thus determining its
eigenvalues and eigenvectors. Lithium niobate is a trigonal 3 m
point group crystal (Nikogosyan 2005), and therefore its
electro-optical tensor is given by (Bass et al. 1995)
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where r r r, ,22 13 33, and r51 depend on both the material and the
specific sample. We can take the values  r r6.8, 9.6,22 13

r 30.933 , and r 32.651 (all in pmV−1) at l = 632.8 nm as
reference for LiNbO3 (Nikogosyan 2005). If we apply an
electric field along the optical axis ( j= 3),
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where V is the associated potential difference associated with
the applied electric field. In this case, the impermeability tensor

is symmetric and the new refraction indices, ¯ ¯ ¯n n n, ,1 2 3, are
given by
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Note that Equation (80) coincides with the known unclamped
Pockels effect formula for LiNbO3 (Equation (27) of Paper I).
This leads us to an explicitly modified relation between the ne
and no that takes into account both the incidence angle of the
incoming light and the applied voltage employed to tune the
etalon:

q
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Very interestingly, since the impermeability tensor is diagonal
and = ¢n̄ n1 2 for a Z-cut LiNbO3 when an electric field in the
direction of the optical axis is applied, the crystal remains
uniaxial and there is no birefringence induced at normal
illumination, no matter the intensity of the electric field. For
q ¹ 0 the birefringence is both angle and voltage dependent.

C2. Piezo-electric Effect

There is a second important effect that happens in LiNbO3

when applying an electric field: the piezo-electric effect. It
consists of a change of shape due to the application of an
electric field and can be described by a linear relationship
between the acting voltage and the change of width of the
etalon. If the electric field is applied along the optical axis
direction, the change of width is described (Weis &
Gaylord 1985) by

D = ( )h d V , 8333

where d 2633 pmV−1 (Nikogosyan 2005). We can check
whether the piezo-electric and electro-optical coefficients
obtained from Nikogosyan (2005) agree with the measured
voltage tuning sensitivity found in Martínez Pillet et al. (2011):
0.0335 pmV−1 for the IMaX instrument aboard Sunrise. The
estimated value is given by

l lD
= - - -

⎛
⎝⎜

⎞
⎠⎟ ( )

V
d

n r

h2
0.078 pm V , 84o

33

3
13 0 1

which is twice as large as the experimental value. This
departure from the measured value can be due to the fact that
the electro-optical coefficients depend on the specific sample of
lithium niobate material and on the wavelength. However,
although these results differ considerably, we can use these
piezo-electric and electro-optical coefficients to get a quanti-
tative estimation of the order of magnitude of the birefringence
j. Using Equations (36), (80), (81), and (83), it is
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straightforward to show that
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Notice that q¢ will also depend on V as n depends on the ordinary
and extraordinary indices (Equation (35)). The maximum relative
variation of j ( )V with respect to j =( )V 0 happens at the limits
of the recommended range of voltages,±3000 V, of a commercial
CSIRO etalon (Martínez Pillet et al. 2011) and turns out to be
1.4% if we use the above experimental electro-optical and
piezo-electric coefficients (Nikogosyan 2005) and =n 2.29,o

l= = = =n R A2.20, 0.92, 0, 617.3 nme . This variation is
very small compared to the birefringence produced by other
effects and has been neglected in this work.

Appendix D
Exact Expressions for the Retardance in Uniaxial Media

A completely general calculation of phase shifts between
orthogonal components of the electric field in uniaxial media
was found by Veiras et al. (2010) taking into account the
orientation of the optical axis for any plane wave with an
arbitrary incident direction. Their results are not restricted to
small birefringence media, in contrast to Equation (36). They
also consider the orientation of the plane of incidence. The
expressions of Veiras et al. (2010) and ours should be
completely equivalent in the small birefringence regime.
Figure 13 shows a comparison between the Veiras et al.
(2010) expressions and Equation (36) in two particular cases,
namely, for normal illumination with a variable polar angle of
the optical axis and for an optical axis perfectly perpendicular
to the interphase with a variable incidence angle. We have
employed the same parameters of the lithium niobate etalon
used throughout this work. We can observe that differences
between the exact and approximated expressions are almost
negligible with q3 for normal illumination (left) and can only be

appreciated well for incidence angles higher than 50 and for
q = 03 (right).
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Abstract

The spectral, imaging, and polarimetric behavior of Fabry–Pérot etalons have an influence on imaging vector
magnetograph instruments based on these devices. The impact depends on the optical configuration (collimated or
telecentric), on the relative position of the etalon with respect to the polarimeter, on the type of etalon (air-gapped
or crystalline), and even on the polarimetric technique to be used (single-beam or dual-beam). In this paper, we
evaluate the artificial line-of-sight velocities and magnetic field strengths that arise in etalon-based instruments,
attending to the factors mentioned. We differentiate between signals that are implicit to telecentric mounts due to
the wavelength dependence of the point-spread function and those emerging in both collimated and telecentric
setups from the polarimetric response of birefringent etalons. For the anisotropic case, we consider two possible
locations of the etalon—between the modulator and the analyzer or after it—and we include the effect on different
channels when dual-beam polarimetry is employed. We also evaluate the impact of the loss of symmetry produced
in telecentric mounts due to imperfections in the illumination and/or to a tilt of the etalon relative to the
incident beam.

Unified Astronomy Thesaurus concepts: Polarimeters (1277); Spectrometers (1554); Spectropolarimetry (1973);
Polarimetry (1278); Spectroscopy (1558); Solar instruments (1499)

1. Introduction

Some solar magnetographs are based on the combination of a
polarimeter with a tunable bidimensional filter, typically a Fabry–
Pérot etalon. The final goal of these instruments is to precisely infer
the solar magnetic field and plasma velocities from the spectrum
and state of polarization of light. Hence, it is mandatory to have
control over the polarimetric influence of all optical elements on
the polarization measurement process. Usually, the whole system
is calibrated in such a way that the Mueller matrix of the
instrument contains information on the modulator, the analyzer,
and the remaining elements in the optical setup. This way, it is not
necessary to pay much attention to the polarimetric behavior of the
particular optical elements. However, etalons used as monochro-
mators have an impact on the measurement of the Stokes vector
even if they are perfectly isotropic. Their influence into real
observations is such that it cannot be calibrated using standard
techniques (i.e., with flat illumination) and depends on the manner
they are illuminated: collimated or telecentric. For a detailed
discussion on the imaging performance of etalons in collimated
and telecentric configurations, we refer the reader to the following
works: Beckers (1998), von der Lühe & Kentischer (2000),
Scharmer (2006), Righini et al. (2010) and Bailén et al. (2019a),
the first in our series of papers.

In particular, etalons mounted in a telecentric configuration
(ideally) keep the same transmission profile across the field of
view (FoV), at the expense of leading to artificial signals in the
measured Stokes vector, due to asymmetries induced in the point-
spread function (PSF) over the spectral profile (Beckers 1998).
Moreover, irregularities on the etalon and deviations from perfect
telecentric illumination further degrade the measurements.1 For

example, strictly speaking, no PSF can be defined for the
system since translational invariance is lost and the spatial
response of the etalon is different for each point over the FoV
(see Bailén et al. 2019a, hereafter Paper I). Instead, we can only
speak of a local PSF to stick to known and simple concepts.
Departures of the chief ray from normal incidence produce

an asymmetrization of the spectral transmission profile and of
the spatial shape of the local PSF of the instrument. It also
introduces a widening of the transmission profile and of the
local PSF, as well as a shift of their peaks (Paper I). Defects
associated with deviations of the flatness of the reflecting
surfaces can also modify the local PSF and the spectral
transmission pixel to pixel.
In collimated setups, the effects associated with fluctuations

of the optical path due to roughness errors average over the
area of the etalon that is illuminated. In addition, the PSF
dependence on wavelength over the passband is nonexistent,
but other problems can arise. For instance, we can no longer
speak of PSF, much like in the imperfect telecentric case,
because of the loss of space invariance associated with a
transmission factor that appears in the PSF and which depends
on the image plane coordinates (Paper I). Moreover, the
monochromatic transmission can be reduced drastically if
defects on the etalon are not kept low enough.
In both collimated and telecentric configurations, the

response of the instrument depends on the object itself. Hence,
the inferred Stokes vector can be altered simply because of the
polychromatic nature of the observations, no matter which
configuration is employed. This is of special importance for
telecentric mounts, because of the strong spectral dependence
their PSFs suffer from. Naturally, changes of the cavity errors
during the spectral scan can also have an impact on the
measurement of the Stokes vector for both mounts. Such a
change on the defects distribution has been confirmed recently
in piezo-stabilized etalons (Greco et al. 2019).
Examples of instruments based on etalons illuminated with a

telecentric beam include the Italian Panoramic Monochromator
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1 We use the term “perfect telecentrism” when referring to telecentric
illumination in which the chief ray impinges the etalon perpendicularly to its
reflecting surfaces. We consider that any deviation from such a situation is an
imperfection because it degrades the spectral transmission and the PSF of the
instrument. Thus, we refer to those cases as “imperfect telecentrism,” even if
the deviation is only caused by a tilt of the etalon while keeping the
telecentrism over the FoV.
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at THEMIS (Bonaccini et al. 1989, and references therein), the
TESOS spectrometer at the VTT (Kentischer et al. 1998), the
CRisp Imaging SpectroPolarimeter instrument at the Swedish
1 m Solar Telescope (Scharmer et al. 2008; van Noort &
Rouppe van der Voort 2008), the PHI instrument on board the
Solar Orbiter mission (Solanki et al. 2015), and the Visible
Tunable Filter at the upcoming DKIST (Schmidt et al. 2016).
Solar instruments equipped with etalons mounted in a
collimated setup include the Interferometric Bidimensional
Spectrometer at the Dunn Solar Telescope of the Sacramento
Peak Observatory (Cavallini 1998), the GFPI at GREGOR
(Puschmann et al. 2013), and the IMaX instrument aboard
SUNRISE (Martínez Pillet et al. 2011).

Among the instruments mentioned, IMaX and PHI use
Fabry–Pérots based on lithium niobate crystals to allow for
spectral scanning without the need to use piezo-actuators. The
birefringent properties of this crystal also contribute to modify
the incident Stokes vector. In particular, the polarimetric
behavior depends on the etalon geometry, wavelength, angle of
the incident wavefront, birefringence of the crystal, and on the
orientation of the optical axis angle of the crystal with respect
to the wavefront normal in the way described by Bailén et al.
(2019b; hereafter Paper II). Of course, birefringence can also
appear locally within the etalon due to local surface defects
created during the polishing and to the polarization-dependent
response of the coating of the etalon (Doerr et al. 2008).

Fortunately, the etalon is never positioned at the beginning
of the optical setup when doing full polarimetric measurements.
Rather, it is usually illuminated by a polarimetric modulated
intensity signal if the etalon is located before the analyzer or
just with linearly polarized light when it is at the very end of
the optical path, following the analyzer. The influence of the
etalon in the polarimetric behavior of polarimeters has been
addressed already (Del Toro Iniesta & Martínez Pillet 2012).
These authors considered the effect of typical optical elements
and included a birefringent Fabry–Pérot, concluding that the
optimum polarimetric efficiencies can still be reached no matter
the retardance introduced by the etalon. However, they did not
take into account either the real Mueller matrix of the etalon
nor the influence of the optical configuration; rather, they just
represented the etalon as an additional retarder plus a mirror
within the optical path.

In a more realistic situation, the birefringent effects brought
about by the etalon depend on the optical setup, i.e., on how the
etalon is illuminated within the optical path. In collimated
setups, the coefficients of the Mueller matrix of the etalon are
reduced to four independent terms that vary with the
parameters mentioned above (Paper II). The spectral depend-
ence of the coefficients is particularly strong and plays an
important role in quasi-monochromatic observations. More-
over, the Mueller matrix shape changes with the principal plane
orientation, which is determined by the plane formed by the
wavefront vector and the optical axis of the crystal. This
implies that the impact of the birefringence of the etalon is
different for each direction of the wavefront—and thus for each
pixel. In perfect telecentric mounts, off-diagonal terms on the
Mueller matrix are null and the effect of the birefringence is
translated only into the transmission profile (Paper II). In real
instruments in which illumination differs from perfect tele-
centrism and/or local deviations of the optical axis appear
during the process of manufacturing (local domains), the
Mueller matrix no longer remains diagonal and the effect on the

polarimetric measurements is more pronounced since cross-
talks between different Stokes components can appear, just like
in the collimated case.
This paper is a continuation of the work presented in Bailén

et al. (2019a, 2019b), where we reviewed the spectral, imaging,
and birefringent properties of Fabry–Pérot etalons when
located in solar magnetographs. Here we evaluate the influence
of etalons in the process of measuring physical solar quantities
from the observations, i.e., we assess their imprints in the
inferred line-of-sight (LoS) velocities and the magnetic field
strengths from solar vector magnetographs. We begin with an
evaluation of artificial signals in isotropic telecentric mounts
for both perfect and imperfect illumination of the etalon
(Section 2). Next, we study the effects of birefringence on the
measurements (Section 3). We consider two possible locations
of the etalon: after the polarimeter and between the modulator
and the analyzer. We also differentiate between collimated and
telecentric setups and we include the effects of imperfect
illumination of the etalon.

2. Artificial Signals in Isotropic Telecentric Mounts

Beckers (1998) was the first to predict that the spectral
dependence of the PSF implicit to etalons in telecentric
configuration gives rise to artificial signals in the LoS
velocities. He also warned that these signals are expected to
arise in images with velocity structure. The origin of the
spurious LoS velocities comes from the fact that observations
are not purely monochromatic, but rather quasi-monochromatic
(Equation (61) of Paper I). The wavelength dependence
induces asymmetries in the observed profile even if the original
is completely symmetric. Obviously, magnetic field measure-
ments are also influenced by these asymmetries, although they
are not mentioned by Beckers (1998); what is more important,
the induced signals cannot be mitigated unless the PSF is
completely characterized. The latter is almost impossible in
practice.
A proper evaluation of these false signals requires a careful

comparison between a reference case where the spectral PSF is
assumed to be invariant in wavelength and a real observation in
which the PSF varies over the spectral bandwidth. Of course,
the modulation scheme of the instrument and the position of the
etalon in the optical train must be considered as well, especially
for etalons that are anisotropic. In this section we will address
only the case of etalons that are isotropic (see Section 3 for a
discussion on the impact of birefringent etalons). To evaluate
the spurious signals, we have compared the expected LoS
velocities and magnetic field strength when taking into account
the spectral dependence originated in the telecentric case
(Paper I) with the results obtained with an ideal wavelength-
independent reference PSF. The ideal PSF we have chosen
is simply the monochromatic telecentric PSF at its peak
transmission wavelength, modulated spectrally by the transmis-
sion profile that corresponds to the same telecentric configura-
tion. This PSF of reference does not show any spatial variation
across the passband of the etalon. Rather, it shows only a
modulation of intensity, like in a collimated case, and, hence, it
does not introduce spurious signals when measuring the Stokes
vector.
For the test, we assume a polarimeter consisting of a pair of

liquid crystal variable retarders (LCVRs) as modulator and a
linear polarizer as analyzer, similarly to the PHI and IMaX
instruments. Application of different voltages to each of the
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LCVRs translates into different retardances—and conse-
quently, in a modulation of the signal recorded by the
instrument cameras. A linear combination of four different
modulations is enough to obtain the four Stokes parameters.
Furthermore, a proper choice of the retardances optimizes the
polarimetric efficiencies in the sense of minimizing error
propagation in the measurement of the Stokes vector (Del Toro
Iniesta & Collados 2000). Table 1 shows the retardances for
both LCVRs, δ1 and δ2, and for the four modulations in
sequential order (from PM1 to PM4) employed to obtain an
optimum modulation scheme in the mentioned instruments. In
imaging instruments, this process is done at each of the
wavelengths of interest. Once the Stokes parameters have been
determined, it is possible, using different diagnostic techniques,
to infer the LoS velocity and the vector magnetic field of the
plasma.

We have simulated the effect of a telecentric etalon in the
inferred LoS velocities and magnetic field strength on a set of
synthetic spectral images of the four Stokes parameters obtained
through magnetohydrodynamical (MHD) simulations (Vögler
et al. 2005). The spatial sampling of the synthetic data is 0″0287
and the size of our image is 256×256 pixels2. The spectral range
goes from −40 to 40 pm in steps of 1 pm and is centered about
the 525.02 nm FeI line observed by IMaX.2 We have modulated
the Stokes vector monochromatically with the set of retar-
dances presented in Table 1 assuming the etalon is placed after
the analyzer. This choice of the etalon position is irrelevant,
however, because it is considered to be isotropic. Figure 1(a)
shows the simulated Stokes I parameter at the continuum (top),
as well as the LoS velocity structure (middle) and the magnetic
field strength (bottom) corresponding to the input data. A solar
pore with an intense magnetic field can be appreciated,
covering an area of approximately 100×100 pixels2.

The different observed intensity maps at each wavelength of
the spectral range are obtained over the range ±20 pm with
respect to the center of the line by tuning the transmission
profile of the etalon over the target spectral line and applying
Equation(62) of Paper I. The PSF considered corresponds to a
perfect telecentric f/40 isotropic etalon with n=2.3,
h=250 μm, R=0.92, and A=0.3 Next, we have obtained
the Stokes parameters at each wavelength with the proper
demodulation matrix (Del Toro Iniesta & Martínez Pillet 2012).
Finally, we have compared the corresponding LoS velocities
and magnetic field strengths with the ones obtained with the
reference PSF mentioned above.

For the sake of simplicity, the LoS velocities and magnetic
field strength signals have been calculated using the center of
gravity (CoG) method (Semel 1967). Figure 1(b) shows the
spurious signals obtained for the LoS velocities (left) and
magnetic fields strength (right) in the telecentric case when
compared to the reference case, labeled as ideal, defined above.

We have focused on “perfect telecentrism,” that is, to normal
incidence of the chief ray on the etalon surfaces for the whole
FoV. It can be seen that the difference between signals reach
values up to ∼110m s−1 for the LoS velocity, δvLOS, and as
much as ∼50 Gauss for the field strength, δBLOS, both in
absolute value. The artificial LoS velocity map shows consider-
able small-scale fluctuations associated with the presence of
granules, intergranular lanes, and a pore. Of course, this is
because the Stokes parameters have changed after passing
through the etalon. Although not shown, it is pertinent to
observe that the artificial signals obtained for Stokes V are
always below ∼5% in the wing of the 525.02 nm FeI line,
where the Stokes V reaches a maximum. The rms and maximum
values of the spurious signals can be found in Table 2.
In the case that the cone of rays is inclined at a small angle with

respect to the normal of the etalon, the loss of symmetry with
respect to the normal causes both the spectral transmission of the
etalon and the spatial PSF to become asymmetric (Paper I). Such
an effect happens locally in imperfect telecentric mounts, where
the chief ray deviates gradually from the center of the image plane
to its borders. It also occurs when the etalon is tilted to suppress
ghost images on the focal plane originated by multiple reflections.
Since the effects are equivalent, we will refer hereafter to these
two cases indistinctly as “imperfect telecentrism.” The induced
asymmetries are expected to further introduce false LoS velocities
and magnetic field signals. Naturally, asymmetries in the
instrumental profile can also arise from an unsymmetrical spatial
distribution of cavity errors (e.g., Reardon & Cavallini 2008).
Figure 1(c) shows the map of artificial LoS velocities (left)
and magnetic signals (right) that appear in an imperfect
isotropic telecentric configuration with a chief ray angle of 0°.5.
As reference, a perfect isotropic telecentric etalon has been
considered. Differences between the perfect and imperfect
telecentric mounts are as large as ∼140 G in δBLOS,
∼280m s−1 in δvLOS and ∼18% in V (Table 2). Such high
signals are caused by a large shift and a significant asymmetriza-
tion of the observed spectral profile. The PSF is shifted and loses
its spatial symmetry (see Paper I), thus displacing the profiles and
introducing an offset in the velocities (∼80m s−1). The rms value
of the artificial velocities is probably better suited for comparison
purposes with perfect telecentrism. In this case, the rms velocity is
∼37.5m s−1, whereas for the velocities in Figure 1(b) it is
approximately half this value, ∼18m s−1. Note that typical
tolerances in real instruments usually keep deviations below 0°.5.
Moreover, this value corresponds to a maximum deviation and
mostly effects to the borders of the image while here we have
assumed that the whole image suffers from such a deviation.
So far, we have focused on a telecentric configuration with

an f/40 aperture. Such wide apertures are not common in solar
instruments. Rather, the f-numbers are typically larger than
f/100, especially for ground-based telescopes. Examples
include the beams illuminating the etalons of THEMIS
( f/192), TESOS ( f/125 and f/265), and of the Visible Tunable
Filter ( f/200). In addition, deviations from perfect telecentrism
in these instruments are not as large as the one assumed here.
However, tilt of the etalon to suppress ghost images is common
and it affects the relative inclination of the cone of rays over the
whole FoV. Fortunately, tilts applied are typically far below
0°.5. PHI is an exception since its etalon is illuminated by an
f/56 or by an f/63 beam depending on the configuration. In
addition, tolerances in this instrument allow for a maximum
deviation of the chief ray over the FoV of 0°.23. Nonetheless,

Table 1
Optimum Retardances Used for the LCVRs in the IMaX and PHI Instruments

PM1 PM2 PM3 PM4

[ ]d 1 225 225 315 315

[ ]d 2 234.736 125.264 54.736 305.264

2 Although we will concentrate our tests in this spectral line, the results are of
the same order for other lines, such as the FeI 617.3 nm observed by PHI.
3 The reader is referred to Paper I for the missing definitions.
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the impact on the measurements is more benign than those
shown in Sections 2, 3.1.2, and 3.2.2, because of the larger
aperture and the better telecentrism.

Figure 2 shows the maximum and rms values of the spurious
signals obtained for a perfect telecentric configuration with
f-numbers 40, 60, 80, 100, and 120. Fitting of the data to a
curve of the type ( ) ( )+ # + #- -a a f a f0 1

1
2

2 is also displayed
for each subfigure, where a0, a1, and a2 are the adjusted
coefficients. We observe that artificial signals decay roughly in
a quadratic way with the inverse of the #f . Consequently, we
can safely disregard the mentioned effects in etalons illumi-
nated by the slow beams associated with ground-based
instruments. For PHI, undesired signals are still expected to
be seen, although less than half the values presented here for an
f/40 telecentric configuration. The use of such a “fast” beam
and such a large deviation of the chief ray in our simulations
simply serves to illustrate more clearly the possible artificial
signals that can appear in telecentric mounts. In any case, a
careful assessment is required for the future generation of space
instruments, which will probably require “small” f-numbers
(<f/60) for compactness purposes.

3. Effects of Etalon Birefringence on the Polarimetric
Modulation

In Paper II, we showed that the Mueller matrix of a
birefringent etalon is a combination of both a retarder and a
mirror modulated by a wavelength-dependent gain factor.

Thus, any deviation from normal illumination has an impact on
the optimum polarimetric efficiencies and on the measured
Stokes parameters. The presence of the etalon can be evaluated
easily if the polarimetric response of the etalon is included in
the Mueller matrix of the polarimeter. A distinction between
the next two cases is mandatory: either (1) the etalon is located
after the analyzer (Figure 3(a)) or (2) the etalon is placed at an
intermediate position between the modulator and the analyzer
(Figure 3(b)). The second configuration is common in dual-
beam polarimeters, such as IMaX, whereas the first is used in
single-beam instruments, like PHI. Both use also a birefringent
etalon made of lithium niobate.
The illumination of the etalon (collimated or telecentric) is

also important in the analysis since it changes the functional
shape of the Mueller matrix coefficients. We will consider each
case separately in the next sections assuming the same
polarimeter as in the previous section.

3.1. Etalon Located after the Analyzer

3.1.1. Collimated Configuration

The Mueller matrix of a polarimeter formed by a pair of
LCVRs and an analyzer is given by =M LR Rpol 2 1, where
L,R2, andR1 correspond to the Mueller matrices of a linear
polarizer with its transmission axis at 0°, a retarder with fast
axis at 45°, and a retarder with fast axis at 0° (all angles
measured with respect to the +Q direction). The Mueller

Figure 1. (a) Synthetic input maps from MHD simulations: Stokes I (top), LOS velocities (middle), and LOS magnetic field (bottom). Panels (b) to (e) present a
comparison of observed LOS velocities (left) and magnetic fields (right) by a telecentric etalon for different situations, considering both the isotropic ((b) and (c)) and
the birefringent cases ((d) and (e)). Panel (b) shows the residual signal after subtracting the one obtained when employing the reference wavelength independent PSF,
labeled as ideal, and the signals that appear using the isotropic PSF that considers the wavelength dependence. Panel (c) illustrates the difference between the “perfect”
isotropic telecentric configuration, where the chief ray is perpendicular to the etalon surfaces, with respect to an “imperfect” isotropic telecentric configuration in which
the chief ray has an incidence angle on the etalon of 0 . 5. Panel (d) shows the difference between the signals arising for a perfect birefringent and an isotropic mount.
Panel (e) is the same as (c), but considering a birefringent etalon.
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matrix of the polarimeter can be cast in such a case as

⎛
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d d d d d
d d d d d=
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where δ1 and δ2 are the retardances associated to the LCVRs at
0° and 45°, respectively. If we assume that the etalon is in a
collimated configuration and is placed after the analyzer
(Figure 3(a)), then the Mueller matrix of the system is given
byMtot=MetMpol, whereMet is the Mueller matrix of the
etalon. The Mueller matrixMet can be cast as (Equation(32) in
Paper II)
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where a, b, c, and d are defined in Equation(10) from Paper II
and depend on the etalon geometry, wavelength, angle of the
incident wavefront, birefringence of the crystal, and on the
orientation of the optical axis angle of the crystal. Coefficients

aºC cos 22 and aºS sin 22 arise from a rotation of an angle
α about Z that is introduced to take into account the orientation

of the etalon principal plane.4 The multiplication of Met by
Mpol yields
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The instrument modulation matrix is then given by
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The superscript in d1 and d2 enumerates the sequential order of the
modulation, i.e., ( )d 1 corresponds to the retardance for modulation
PM1 in Table 1, ( )d1

2 refers to modulation PM2, etc. The
superscript ( )+ has been introduced to emphasize that the etalon
is illuminated with linear polarization along the +Q direction.
The modulation scheme is the same as that of a polarimeter

in which the presence of the etalon is neglected, except for a
gain factor that depends on both the wavelength and on the
direction of the wavefront normal. This factor also varies across
the etalon whether the illumination is not homogeneous or the
optical axis is deviated from the Z direction, which occurs in
local domains, i.e., in regions that suffer from local imperfec-
tions that change the crystal optical axis. In any case, the gain
factor is absorbed in what is known as “flat fielding” of the
instrument, a correction factor that takes into account
inhomogeneities in the distribution of intensity on the detector
because of local changes in the transmission. Therefore, the

Table 2
Summary of Results of the Artificial Signals Found in Telecentric ( f/40) and Collimated Configuration

Configuration δvrms (m s−1) δvmax (m s−1) δBrms (G) δBmax (G) δVrms (%) δVmax (%)

Isotropic perfect telecentric vs. isotropic monochromatic telecentric 18.3 110 5.0 50 0.4 4.9
Isotropic imperfect telecentric vs. isotropic perfect telecentric 37.6 278 22.9 139 2.2 18
Birefringent perfect telecentric vs. isotropic perfect telecentric 4.1 36 1.4 11 0.09 0.8
Birefringent perfect telecentric (channel 1 vs. channel 2) L L L L L 0.006
Birefringent imperfect telecentric vs. birefringent perfect telecentric 29.0 263 17.0 121 2.3 20
Birefringent collimated before analyzer (channel 1 vs. channel 2) L L L L L 0.3
Birefringent collimated before analyzer vs. birefringent collimated after

analyzer
3 15 0.07 0.7 0.03 0.45

Figure 2. Maximum and rms value calculated from the maps of artificial LoS
velocities ((a) and (b), respectively) and magnetic field ((c) and (d),
respectively) arising in a telecentric setup vs. the f-number of the beam.
Values obtained directly from simulations are displayed as dots, whereas the
corresponding fitting is shown as a dashed line.

4 The principal plane is the one formed by the wavefront vector with the
optical axis. Its orientation must be taken into account in the analysis because it
determines the propagation properties of orthogonal electric fields.
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modulation scheme of Table 1 remains optimal at each
particular monochromatic wavelength even when considering
the birefringence of the etalon. Also note that the PSF in this
configuration is the same as that of an ideal circular aperture
modulated by the transmission factor ( )( ) l+g . Hence, the
measured Stokes parameters are expected to be insensitive to
birefringence whenever the etalon is positioned after the
polarimeter and illuminated by a collimated beam.

3.1.2. Telecentric Configuration

Let us assume now that the etalon is illuminated, not with
collimated light, but with a telecentric beam. In this config-
uration, Equation (2) does not hold and we need to use
Equation (48) from Paper II. Therefore, the Mueller matrix of
the etalon, M̃et, is now given by

⎛
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where coefficients ˜¢a , ˜¢b , ˜¢c , and ˜¢d are defined in Equation (49)
of Paper II.5 These coefficients vary in a different manner when
compared to the collimated case with the wavelength, etalon
geometry, birefringence, etc. The modulation matrix remains
the same as in Equation (5), except for the gain factor, which is
given in this case by

˜ ( ) ˜ ( ) ˜ ( ) ( )( ) l
l l

=
¢ + ¢

+g
a b

2
. 8

Hence, the modulation scheme of Table 1 remains optimal
monochromatically in a telecentric birefringent configuration,

as for collimated setups. However, the PSF is different compared
to that of the isotropic telecentric configuration. In particular, an
asymmetry on the spatial shape of the “birefringent” PSF is
induced along two perpendicular directions even for perfect
telecentrism, i.e., it becomes elliptic. This is shown in the
Appendix. Differences between the isotropic and the birefringent
PSFs can be interpreted as spurious signals in the measured
Stokes parameters that must be added to those presented in
previous sections. Figure 1(d) shows the artificial LoS velocities
(left) and magnetic field strength (right) when comparing the
telecentric isotropic case against the telecentric birefringent case.
Note that the maps have been multiplied by a factor ´10 to
maintain the same color scale in all subfigures from (b) to (e). This
means that signals are about an order of magnitude lower than the
ones obtained in the other cases. In particular, the maximum
difference at the wing of the line in V is ∼0.8%, and about 10 G
and 35m s−1 in the LoS magnetic field and velocities (Table 2).6

Obviously, deviations of the chief ray angle from normal
illumination can also contribute to the emergence of artificial
signals, as in the isotropic case. Figure 1(e) shows the
difference between the observed LoS velocities and magnetic
field strength compared to the perfect birefringent telecentric
case. Differences in the magnetic field are as much as 120 G
and 260 m s−1 for the LOS velocities (Table 2). The maximum
value of the artificial V at the wing of the line is about 20%.
Note that the results are comparable to those obtained for the
isotropic case in Figure 1(c), which indicates that the impact on
the measurements due to the anisotropy of the etalon is small
compared to the effect of the wavelength dependence of the

Figure 3. Layout of the transmission of the electric field components of the incident light: (a) when the etalon is located after the analyzer (left), and (b) when the
etalon is located between the LCVRs and the analyzer (right).

5 Note that tildes are employed to allude to the telecentric configuration. This
notation is consistent with that of Paper II.

6 We have employed ordinary and extraordinary refraction indices no=2.3
and ne=2.2, corresponding to lithium niobate, for the simulations of the
birefringent Fabry–Pérot. The remaining parameters of the etalon are the same
as in previous sections, and are consistent with the simulations presented in
Paper II.
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PSF intrinsic to these mounts, whether the Fabry–Pérot is
birefringent or not.

3.2. Etalon Located between the Modulator and the Analyzer

3.2.1. Collimated Configuration

In dual-beam instruments, the etalon is never placed after the
polarimeter. Instead, it is located between the modulator and the
analyzer (Figure 3(b)) in order to avoid the use of two etalons,
i.e., one for each orthogonal beam in which light is split. A good
example of a dual-beam instrument is IMaX, which employs a
beam splitter as an analyzer to record orthogonal polarizations,
Q, in two different cameras. In this type of configuration,
etalon anisotropies are expected to have a stronger impact on the
measured Stokes vector than when located after the polarizer—
and thus illuminated with linear polarization. In particular, the
optimum modulation scheme presented in Table 1 can no longer
be optimal (Del Toro Iniesta & Martínez Pillet 2012), and the
measured Stokes vector can differ for orthogonal channels only
because of the birefringence of the etalon.

Assuming that the etalon is in a collimated configuration and
following the notation of Section 3.1, the Mueller matrix is
given by =M LFpol , where we have definedF as M R Ret 2 1.
Given that only the coefficients of the first two rows and
columns ofL are different from zero, we only need to calculate
the coefficients of the first two rows ofF in order to derive the
modulation matrix of the instrument:
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When dual-beam techniques are employed, we must differ-
entiate between the Mueller matrices corresponding to the Q
channels. For the +Q channel:
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For the -Q channel, the Mueller matrix is just
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Each row of the modulation matrix (O) corresponds to the
first row of Equations (10) or (11) evaluated for the particular
retardances of the LCVRs of the modulation scheme. Note that,

in this case, the optimum modulation scheme depends on
coefficients a, b, c, and d; on the channel (Q), and on the
orientation of the principal plane of light. Hence, it differs in
general from the one showed in Table 1 and varies over the
FoV for each monochromatic wavelength.
Figure 4 shows the dependence of the efficiency vector

(Collados 1999) for the +Q channel as a function of the
orientation of the principal plane, α, when using the
modulation scheme of Table 1. Results are shown for incident
angles θ=0°, 0°.25, and 0°.5 at the corresponding peak
wavelengths of the transmission profile λp=λ0+Δλ1,
λ0+Δλ2, and λ0+Δλ3, where Δλ1=0 pm, Δλ2=
−1.18 pm, and Δλ3=−4.54 pm. It can be observed that
the efficiency decreases from the optimum value whenever
a ¹  0 , 180 . The maximum variation is ∼0.6% for the first
component of the efficiency vector and ∼0.4% for the other
components.
Demodulation with such a nonoptimum scheme in a

collimated etalon can introduce further artificial signals in the
measured Stokes parameters than just those presented above.
Moreover, the spurious signals are different for the two
orthogonal beams. Figure 5 shows the map with the difference
between the measured Stokes V at its wing on the ±, Q
channels for a collimated etalon with maximum incidence
angle 0°.5 (which corresponds to the outermost parts of the
FoV). In IMaX, the maximum incidence angle is 0°.44.
Differences are below ∼0.3% in our simulations, so we can
safely disregard this effect in that instrument.
We have also compared the measured LoS velocities and

magnetic field strengths for a collimated configuration that uses
a dual beam with respect to another where the etalon is placed
after the analyzer. For the dual-beam configuration, the Stokes
parameters have been obtained by averaging the signals
recorded at each channel. The rms difference in magnetic field
strength is below 0.7 Gauss. Velocities differ less than
15 m s−1, and the maximum artificial signal in V is ∼0.45%.

Figure 4. Components of the efficiency vector as a function of the orientation
of principal plane of the etalon, using the modulation scheme of Table 1 for
illumination of the etalon with incident angles θi=0° (red solid line),
θi=0°. 25 (blue solid line), and θi=0°. 5 (green solid line). The wavelengths at
which the transmission profile peaks, λp, have been employed at each incident
angle. The etalon is located between the modulators and the analyzer in this
configuration.
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3.2.2. Telecentric Configuration

When the etalon is mounted on a telecentric configuration,
its Mueller matrix becomes particularly symmetric, as shown in
Equation (7). In fact, the Mueller matrix of the etalon
commutes with that of the analyzer due to their symmetry. It
is equivalent, then, to place the Fabry–Pérot either before or
after the analyzer; the only difference being that dual-beam
techniques can be used only if placed before the analyzer. In
that case, the modulation matrix for the +Q channel is given by
Equation (5), except for the gain factor, which is determined by
Equation (8), as explained in Section 3.1.2. The gain factor
corresponding to the modulation matrix of the -Q channel is
the same except for a minus sign that changes ˜ ˜¢ + ¢a b
by ˜ ˜¢ - ¢a b .

Although monochromatic polarimetric efficiencies remain
optimal, the measured Stokes parameters in each channel are
expected to be somewhat different because the PSFs change
slightly for orthogonal polarizations (Paper II). This effect
induces cross-talk signals in the measured Stokes parameters.
We have obtained that the maximum difference between both
channels is ∼0.006% in V at the wing of the line. This
additional contribution to the spurious signals is insignificant
compared to the previous ones and it naturally disappears in
isotropic etalons.

4. Summary and Conclusions

An evaluation of the artificial LoS velocities and magnetic
field strength signals that arise in magnetographs based on
Fabry–Pérot etalons has been performed. We have distin-
guished between telecentric and collimated illumination of both
crystalline and isotropic etalons. We have also considered
different locations of the etalon within the optical path, in
particular, instruments where the etalon is placed after the
polarimeter and those in which it is positioned in an
intermediate location between the modulator and the analyzer
to allow for dual-beam polarimetry. Our analysis has consisted
in simulating the impact of an etalon-based instrument similar

to IMaX and PHI on the maps of the Stokes components along
the 525.02 nm FeI Zeeman sensitive line.
Regarding isotropic etalons, collimated setups are (ideally)

exempt from the emergence of spurious signal since no spectral
variation of the PSF appears in this configuration. However, in
telecentric mounts, such signals are originated by a severe
dependence of the PSF shape with the wavelength across the
transmission profile. For the particular case of a telecentric f/40
isotropic etalon, spurious velocities obtained through the CoG
method are as large as 110 m s−1, whereas the magnetic field
and Stokes V reach values up to 50 G and 5%, respectively. In
telecentric mounts affected by a departure of the chief ray of
0°.5, signals can be as high as 280 m s−1 for the LoS velocities
and 140 G for the magnetic field strength when compared to the
perfect telecentric configuration. A shift in the map of
velocities also arises in this case because of an asymmetrization
of the transmission profile and of the PSF. Apart from the shift,
the map of artificial velocities shows structures with a
corresponding rms value twice as large as for the perfect
configuration (∼37.5 m s−1).
In relation to birefringent etalons, we have showed that the

ideal modulation scheme derived by Del Toro Iniesta &
Martínez Pillet (2012) still remains optimal for both telecentric
and collimated setups regardless of the birefringence exhibited
by the Fabry–Pérot, as long as the etalon is placed after the
polarimeter. Significant differences arise when comparing the
telecentric and collimated setups, though. In particular, for
the telecentric birefringent configuration, we have shown that:

1. Placing the etalon between the modulator and the
analyzer has the same impact as locating it after the
polarimeter since its Mueller matrix commutes with that
of the analyzer.

2. The PSF differs from the isotropic case and becomes
elliptic. Compared to the nonbirefringent telecentric case,
artificial signals in the velocities and magnetic field for an
f/40 beam show values up to 40 m s−1 and 9.5 G,
respectively. The Stokes V is 0.8%, at most, in the wings
of the profile. These artificial signals are an order of
magnitude smaller than the ones simply caused by the
wavelength dependence of the PSF.

3. Cross-talks between orthogonal channels appear when
using dual-beam techniques, but are negligible (∼0.006%
in the wing of V ).

On the other hand, for collimated anisotropic mounts, we
have proved that:

1. The measurement of the Stokes parameters is insensitive
to birefringence whenever the etalon is positioned after
the analyzer.

2. The Mueller matrix of the polarimeter is modified when
the etalon is situated before the analyzer. Hence, the
optimum efficiencies and the measurement of the Stokes
vector are affected. In particular:
(a) The efficiencies depend on the incident wavefront

direction and on the wavelength. When the optimum
modulation scheme is employed, monochromatic
efficiencies decrease, although the reduction is only
0.6% at most for a 0°.5 incidence.

(b) The measured Stokes vector is different from the one
corresponding to an etalon located after the polari-
meter. Again, the differences are not dramatic; they
remain under 15 m s−1 for the velocity, 0.7 G for the

Figure 5. Difference between the measured circular polarization in each
channel at the wing of the Fe I 525 line for an anisotropic (uniaxial) collimated
etalon placed between the LCVRs and the analyzer.
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magnetic field and 0.45% for Stokes V compared to a
collimated setup in which the etalon is placed after the
analyzer.

(c) Signals recorded by orthogonal channels in dual-beam
instruments are also different due to the presence of
the etalon, but these are kept below 0.3% at V
Stokes wing.

We have also shown that the expected spurious signals in
telecentric configurations mounted in ground-based instru-
ments are virtually insignificant because of the very slow
apertures employed in such telescopes (?f/40). In particular,
we expect a decrease of the spurious signals with ( )~ # -f 2.
Attention must be paid to etalons aboard space instruments,
though, because size constraints usually lead to apertures much
faster than the ones typical of ground-based instruments.

A careful assessment on the spatial distribution and
magnitude of defects in the optical thickness of the etalon is
also mandatory to evaluate possible additional spurious signals
regardless of the configuration employed. As explained in
Paper I, microroughness errors increase the energy contained in
the wings of the PSF (stray light) with the subsequent loss of
contrast. This is particularly true in collimated mounts and
translates into further contamination of the magnetic field
signals. In telecentric setups, such errors modify the PSF pixel-
to-pixel, which also cause additional artificial signals. Cavity
errors are of special relevance when two or more etalons are
employed to improve either the spectral resolution or the free
spectral range (or both) since defects are amplified in both
collimated and telecentric mounts—and, hence, the corresp-
onding artificial signals. In addition, the Mueller matrix of the
polarimeter is also modified with respect to the one presented
here for each configuration when several birefringent etalons
are used. Therefore, instruments using more than one Fabry–
Pérot require a detailed analysis to take into account the
possible sources of contamination addressed in this paper and
the ones emerging from the magnification of cavity errors.

This work has been supported by the Spanish Ministry of
Economy and Competitiveness through projects ESP2014-
56169-C6-1-R and ESP-2016-77548-C5-1-R, and by the
Spanish Science Ministry “Centro de Excelencia Severo
Ochoa” Program under grant SEV-2017-0709 and project
RTI2018-096886-B-C51. D.O.S. also acknowledges financial
support through the Ramón y Cajal fellowship.

Appendix
PSF in Orthogonal Directions: Birefringent Case

Anisotropies in the etalon cause an asymmetry of the PSF on
orthogonal directions even if telecentrism is perfect (and,
hence, the Jones matrix terms only depend on the radial
coordinates of the pupil). Let us consider that the etalon is
illuminated with Stokes components I=Q and U=V=0.
According to Paper II, the PSF is then given by

˜ ˜ ˜ ˜= ¢ + ¢ = ¢ ¢ a b H H11 11
*. For a perfect telecentric configuration,

it was shown in Paper II that the first Jones coefficient is given
by
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Since H11 and H22 only depend on the radial coordinate of the
pupil, we can cast this integral as
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Let us take into account two orthogonal directions in the
image plane. For example, the direction along ξ and the
direction along η. The Jones term for each case is just
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The two integrals differ from the exponent of the complex
exponential. It turns out that
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Similarly, for the second diagonal element of the Jones matrix
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Using Equations (16) and (17), we can see that

˜ ( ) ˜ ( )
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x h x h
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That is, if ˜ ˜= ¢ + ¢ a b , then ˜ ( ) ˜ ( )x h x h¢ = = ¢ =a a, 0 0, ,
but ˜ ( ) ˜ ( )x h x h¢ = = - ¢ =b b, 0 0, . Therefore, ( )x h = ¹ , 0

( )x h= 0, . In consequence, the PSF varies for orthogonal
directions in birefringent etalons and the symmetry of the PSF
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is no longer preserved. In practice, the loss of spatial symmetry
has a low impact on the measurements because b̃ is much
smaller than ã (Paper II), as shown in Section 3.1.2.
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Abstract

Fabry–Pérot etalons illuminated with collimated beams have been analytically characterized in detail since their
invention. Meanwhile, most of the features of etalons located in telecentric planes have been studied only
numerically, despite the wide use of this configuration in astrophysical instrumentation for decades. In this work
we present analytical expressions for the transmitted electric field and its derivatives that are valid for etalons
placed in slow telecentric beams, like the ones commonly employed in solar instruments. We use the derivatives to
infer the sensitivity of the electric field to variations in the optical thickness for different reflectivities and apertures
of the incident beam, and we compare them to the collimated case. This allows us to estimate the wavefront
degradation produced by roughness errors on the surfaces of the Fabry–Pérot etalons and to establish the maximum
allowed rms value of the cavity irregularities across the footprint of the incident beam on the etalons that ensures
diffraction-limited performance. We also evaluate the wavefront degradation intrinsic to these mounts, which is
produced only by the finite aperture of the beam and that must be added to the one produced by defects. Finally, we
discuss the differences in performance of telecentric and collimated etalon-based instruments and we generalize our
formulation to anisotropic etalons.

Unified Astronomy Thesaurus concepts: Spectropolarimetry (1973); Solar instruments (1499); Fabry-Perot
interferometers (524); Astronomical instrumentation (799)

1. Introduction

Fabry–Pérot interferometers (etalons) are frequently included
in solar magnetographs to carry out the wavelength scanning of
spectral lines that are sensitive to magnetic fields. Despite the
common use of this technology, there is no consensus among
the solar community on their optimum configuration within
the instrument in terms of both image quality and spectral
performance. So far, two setups have been employed: collimated
and telecentric. In a collimated mount, the etalon is located on a
pupil plane, thus receiving a collimated beam from each point of
the observed object field (at infinity). This mount offers a better
spectral resolution than the telecentric one at the expense of
shifting the transmission profile across the field of view (FOV).
In addition, incident beams always illuminate the same area of
the etalon no matter their direction. This means that individual
local defects on the etalon are averaged across the illuminated
clear aperture and have a common influence on both the
transmitted wavefront and the transmission profile over the whole
FOV. In telecentric setups the etalon is very close to a focal
plane, whereas the entrance pupil is imaged into infinity. Then,
the footprint of the incident beam is much smaller than in the
collimated case and local defects are directly mapped onto
the final image, thus producing point-to-point variations of both
the transmission profile and the imaging performance.

Defects can be caused by deviations of the homogeneity in the
cavity (in the case of crystalline etalons) and/or geometry of the
etalon plates with respect to the ideal considerations from which
the classical model of a Fabry–Pérot etalon is derived (e.g., Born
& Wolf 1999). Usually, defects originate mainly due to
departures departure of the reflecting plates from flatness and
parallelism, or from imperfections in the coating, which may
result in deviations from flatness or the introduction of
equivalent defects through phase errors. The impact of such
irregularities on the transmission profile has been studied in

numerous works (e.g., Hill 1963; Ramsay 1969; Sloggett 1984;
Hernandez 1988). An extensive discussion on the influence of
defects in the intensity of the transmitted light was carried out by
Bailén et al. (2019a), hereinafter Paper I. Defects produce
variations in the phase of the transmitted electric field as well.
These variations can be understood as errors in the transmitted
wavefront and can cause a degradation of the imaging
performance of the instrument. The first works that addressed
the influence of defects on the imaging performance of an etalon
are the ones of Ramsay (1969) and Steel (1986). The
degradation of the transmitted wavefront was also studied later
by von der Lühe & Kentischer (2000). The results presented in
these works refer to strictly monochromatic wavefronts in
collimated etalons and represent a worst-case scenario, though.
Scharmer (2006) considered a more realistic approach that
included quasi-monochromatic effects that occur because of the
limited resolution of the instruments. von der Lühe & Kentischer
(2000) and Scharmer (2006) suggest a large degradation of the
image quality in collimated etalons and recommend the
telecentric configuration to achieve diffraction-limited perfor-
mance. Their results are restricted, however, to collimated
etalons only. A qualitative discussion on the impact of defects on
image quality for telecentric etalons and a computational method
to evaluate their influence on the point-spread function (PSF)
was presented later in Righini et al. (2010), but an analytical
study similar to the ones presented by von der Lühe &
Kentischer (2000) and Scharmer (2006) for telecentric etalons
has not been published yet, to our knowledge. From our point of
view, such an approach would give a valuable insight on the
imaging performance of this configuration that would allow a
proper comparison with collimated setups, especially when
taking into account high-frequency errors that can affect the
transmitted wavefront even if the footprint of the incident beam
on an etalon is small.
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There are other sources of image degradation apart from
physical defects of the etalon. In particular, imperfections on
the illumination of the Fabry–Pérot etalon can reduce the image
quality of the instrument, as evaluated in Paper I. On the other
hand, telecentric setups always suffer from a characteristic
wavelength-dependent apodization of the pupil as seen from
the etalon. This effect has an impact on the measured maps of
the magnetic field and radial plasma velocities and depends
greatly on the f-number of the incident beam. The influence of
pupil apodization on these mounts was studied for the first time
by Beckers (1998) and recently by Bailén et al. (2020),
hereinafter Paper III. The choice of the optimum setup
(collimated or telecentric) in a given instrument depends, then,
not only on the particular map of defects of the etalon, but also
on the optical parameters, tolerances of the instrument, and
quality of the etalon, as explained by Righini et al. (2010).

This work is the fourth in our series of papers. We derive an
analytical expression for the electric field transmitted in
telecentric etalons and we investigate the sensitivity of the
transmission profile and of the transmitted phase of the electric
field to variations of geometry and illumination by taking
advantage of the analytical derivatives of the electric field. To
our knowledge, this is the first time the electric field equation is
solved analytically for a telecentric configuration. Such a
solution has many practical advantages, apart from wavefront
sensitivity analyses, that are not explored here. One of them
would be its possible application in the calibration procedure of
telecentric instruments, especially for space-borne magneto-
graphs, whose computational capabilities are very limited.

We start with the derivation of the analytical expression of
the transmitted electric field and its derivatives for telecentric
setups (Section 2). We continue with an analysis of the impact
of defects on the transmitted wavefront (Section 3.1), as well as
the one coming from the intrinsic pupil apodization expected in
these mounts (Section 3.2). We discuss the advantages and
drawbacks of each configuration in terms of imaging
performance (Section 3.3) and, finally, we generalize our
formulation to birefringent etalons in Section 4. Section 5
summarizes the main results of the paper and draws some
conclusions.

2. Analytical Expressions

In a telecentric configuration the etalon is located at, or very
close to, an intermediate image plane of the instrument,
whereas the entrance pupil is set to coincide with the object
focal plane (see Figure 6 in Paper I). This allows for a
homogeneous illumination across the etalon, provided that the
observed object is uniform. The spectral transmission in this
setup broadens and differs from the one corresponding to the
collimated case (Equation (11) in Paper I) as a result of the
finite aperture of the incident beams, but the central wavelength
of the passband is kept constant over the FOV (ideally), unlike
in collimated mounts. The transmitted intensity cannot be
approximated in this configuration like the average transmis-
sion corresponding to collimated beams reaching the etalon
with different incidence angles. Instead, coherent superposition
of electric fields must be carried out to account for the phase
mismatches of rays that propagate along different directions.

In Paper I we showed that, for a monochromatic plane wave
that impinges the etalon, the transmitted electric field, E(t), is

related to the incident electric field, E(i), by
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where τ is the (intensity) transmission factor of the etalon at
normal incidence, δ is the phase difference between two
successively transmitted rays, and F is a factor that depends
exclusively on the reflectivity of the Fabry–Pérot surfaces.
These three factors are related to several parameters of the
etalon, like the surface reflectivity, R, absorption, A, refraction
index, ¢n , and thickness, h, but also to the angle of refraction of
the beam, q¢. The dependencies are given through the following
expressions:
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In an ideal telecentric configuration in which the chief ray is
perpendicular to the etalon across the whole FOV, the
transmitted electric field of each individual ray depends only
on the radial coordinates of the pupil, r, whereas the total
transmitted electric field (after integration over the pupil), ˜ ( )E t ,
is given by Equation (49) of Paper I. We can normalize the
radial coordinate to the pupil radius of the instrument, Rpup, and
rewrite this equation simply as
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1 . So far we have presented the electric field of

the individual rays as a function of δ, which changes with the
refraction angle, q¢. The latter depends, in turn, on the incident
angle, θ. It is convenient to start using Snell’s law in order to
change the dependence with δ in Equation (1) to r. Since

⎜ ⎟
⎛
⎝

⎞
⎠

( )q
q

¢ = -
¢n

cos 1
sin

, 6
2

2

and θ is very small for our cases of interest ( f#? 1), its sine
can be approximated by its tangent (see Figure 7 in Paper I) to
give

( ) ( )
( ) q¢ -

¢ #
-

¢ #
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n f n f
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4
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8
, 7

2
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where f# is the f-number of the incident beam on the etalon. If
we now call

( )p
l

º ¢a n h
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, 8

and
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we can write

( ) ( )d
= - a b

2
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Then, Equation (1) can be cast as
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Now we can write Equation (5) as
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This equation has analytical integration. Indeed,
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Equations (13)–(15) are tedious and, unfortunately, there is no
easy way to simplify them further. The reason for this is that they
cannot be either expanded into power series or neglected as a
result of a large sensitivity of the transmitted electric field to small
changes in any of the parameters. Note, however, that apart from a
transmission factor t , the final expression depends only on three
coefficients: R (or, equivalently, F), a, and b. This means that the
electric field transmitted by the etalon is determined uniquely by
the absorptivity and reflectivity of the etalon and by the quantities

l¢ -n h 1 and ¢ #n f . Note that the refraction index acts only as an
amplification factor of both the thickness and the f-number in the
equations. Crystalline etalons can benefit, then, from much faster
apertures (and, hence, from much smaller etalon and instrument

dimensions) while keeping the same spectral and imaging
properties, which makes them appropriate in instruments with
stringent size requirements and, in particular, in balloon- or space-
borne telescopes (e.g., Martínez Pillet et al. 2011; Solanki et al.
2020).
Once we have an analytical solution for the transmitted electric

field, we can calculate other physical quantities of interest, like the
transmission profile of the etalon. Transmission, g̃, is defined as
the average ratio between the transmitted and incident intensities
in the telecentric configuration and is given simply by

˜
˜ ˜ { ˜ } { ˜ } ( )

( ) ( )

( ) ( )

( ) ( )

( ) ( )= =
+

g
E E
E E

E E
E E

Re Im
, 16

t t

i i

t 2 t 2

i i

*

* *

where the asterisk indicates the complex conjugate. Figure 1
shows the transmission profile for three incident telecentric beams
with f/40, f/60, and f/80 on a crystalline etalon with n=2.3,
h= 250 μm, R= 0.92, and A= 0. We will keep the same
parameters for the numerical examples hereinafter. Note that the
transmission is broadened and shifted to the blue with respect
to that of an equivalent collimated configuration tuned at
λ0= 617.3 nm, as described in detail in Paper I. The profiles
have been calculated with Equations (12)–(16). The differences
between these profiles and the ones calculated by numerical
integration of Equation (5) are also shown (in ‰). Numerical
integration has been carried out without expanding q¢cos into a
power series and both the absolute and relative tolerance for the
integration method have been adjusted to be several orders of
magnitude stricter than the maximum difference found for each
profile. Hence, the tiny differences that appear are basically due
to the small angle approximation used to obtain the analytical
solution.
The results shown for a crystalline etalon in Figure 1 and

henceforth also correspond to an air-gapped Fabry–Pérot etalon
with the same reflectivity and absorptivity, but a cavity 2.3
times larger (575 μm) and f-numbers 2.3 times greater. Table 1
shows the equivalence between the f-numbers employed in the
numerical examples presented hereinafter for a crystalline
etalon and those corresponding to an air-gapped etalon with
h= 575 μm. Note that the range of apertures used in our

Figure 1. Top: transmission profiles (expressed in %) of an etalon in telecentric
beams with f-numbers f/40 (blue), f/60 (green), and f/80 (red). Bottom:
difference between the transmission profile calculated numerically and the one
obtained with the analytical expressions (expressed in ‰).
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numerical examples is compatible with the f-numbers com-
monly employed in ground-based instruments that use air-
gapped Fabry–Pérot etalons.

Having access to the analytical expression of the transmitted
electric field has numerous advantages. For instance, we can
calculate the analytical derivatives with respect to a and b to
evaluate the sensitivity to variations of any of the etalon
parameters. We are going to focus here on the derivative with
respect to a, because we are interested on the variations on the
electric field that arise from changes in thickness across the
aperture. The derivative of the transmission profile with respect
to a can be cast simply as

⎛
⎝

⎞
⎠

˜
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i i

t t t t

*

The derivatives of the real and imaginary parts of the electric
field are given by

where the prime denotes the partial derivative with respect to a:
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Figure 2 shows ˜¶ ¶g a over the transmission profile for both
a collimated and three telecentric configurations with different
f-numbers illuminating the crystalline etalon. Apart from the
blueshift that also appears in Figure 1, the amplitudes of the
telecentric profiles decrease with increasing apertures because
the spectral resolution of the etalon worsens with smaller

f-numbers, which translates into a less steep profile. Each
curve is also shifted by the same amount as its transmission
peak does.
The derivatives of Figure 2 have an antisymmetric shape and

change of sign at the peak transmission wavelength. Hence, the
effect of a change in a is mostly seen as a shift in g̃ and has a
negligible impact on its width, as already evaluated in Paper I
for the collimated configuration. Then, inhomogeneities in the
etalon cavity and/or errors on the plates’ flatness across the

footprint of the incident beam produce only different shifts of
the transmission profiles point to point. The average effect of
the local shifts of the transmission across the footprint of the
beam is a broadening of the passband and a reduction of the
transmission peak.
Note that ˜¶ ¶g a encodes the sensitivity of the transmission

profile to variations of wavelength and optical thickness, but
not to changes of the focal length, which are contained in the
partial derivative with respect to b (Equation (9)). Fluctuations
in the refraction index have an impact on both a and b. The
derivatives of g̃ with respect to b can easily be calculated by
substituting the quantities with primes in Equations (18) and
(19) with their corresponding partial derivatives with respect to
b. Figure 3 shows the derivative of the transmission profile with
respect to b for different f-numbers. The profiles exhibit a
similar behavior, except for a change of sign, to those of
Figure 2, but are not completely antisymmetric since increasing
b has the effect of both shifting the profile and broadening it.
The derivatives with respect to b are three orders of magnitude
larger, too. However, l~ ¢ -a n h 1 is typically about 103–104

Table 1
Apertures Employed for the Crystalline Etalon and the Ones Corresponding to

Its Equivalent Air-gapped Etalon

Type of Etalon f-numbers

Crystalline f/40 f/60 f/80 f/100
Air f/92 f/138 f/184 f/230

Figure 2. Spectral dependence of the derivative of the transmission profile with
respect to a corresponding to a telecentric f/60 mount (green) and to a
collimated configuration (red).
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rads in the etalons employed in solar instruments, whereas
( )~ ¢ # -b n f 2 is of the order of 10−4

–10−6 rads. In our
numerical example, a is approximately nine orders of
magnitude larger than b, which means that a small perturbation
of the former has much more importance on δ (Equation (10))
and, hence, on the transmission profile.

3. Phase Error Amplification and Image Quality

3.1. Errors Introduced by Defects

The transmission profile derived in Section 2 corresponds to
an ideal homogeneous and isotropic etalon whose reflecting
surfaces are perfectly parallel to each other. In a real case, the
etalon presents irregularities and/or inhomogeneities that
disturb the transmitted electric field and degrade not only the
spectral resolution, but also the imaging performance of the
instrument. Righini et al. (2010) qualitatively discuss the image
quality degradation produced in telecentric etalons and provide
a method to evaluate the impact when a particular map of the
defects is measured. However, a quantitative evaluation of the
impact produced by defects on the wavefront in telecentric
etalons has not been presented so far, to our knowledge.

Here we will follow Scharmer (2006) to estimate the
wavefront error introduced by defects of the etalon in a
telecentric mount. This is as simple as calculating the
perturbation produced in the optical phase by such irregularities
and/or inhomogeneities. We will consider here the sensitivity
of the phase to variations of the parameter a, Δa. For
simplicity, we neglect any variations on b produced by changes
of the f-number and/or the refraction index, as justified in
Section 2. The distorted phase, f, can be approximated at first
order, then, as

( )f f
f

» +
¶
¶

D
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a, 210
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where f0 is the unperturbed ideal phase given by
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which can be evaluated simply using Equations (12), (13),
and (14). The derivative of the phase can be calculated

analytically through the derivatives of the real and imaginary
parts of the electric field as
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where the derivatives of the electric field are given by
Equations (18) and (19). The final expression is cumbersome
and will not be presented here, but approaches, for very large f-
numbers, to
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which corresponds, as it should be, to the derivative of the
phase of the transmitted electric field in an ideal collimated
configuration. Note that this equation differs from the one
given by Scharmer (2006) in terms of δ because of the
inclusion in our work of a global phase, usually unimportant,
on the transmitted electric field (see Paper I for further details).
Figure 4 shows the dependence of the phase over the

transmission profile for two telecentric beams and for the
collimated configuration (top), as well as the corresponding
derivatives with respect to a (bottom). The shape and
magnitude of the derivatives is quite similar for the collimated
and telecentric cases, and so will be the sensitivity of the phase
to errors in the optical thickness. Note that the peaks of the
derivative in the telecentric cases are shifted to the blue with
respect to λ0, in the same way that their transmission profile
does. Moreover, the derivative reaches higher peaks as the f-
number is increased. The reason for this is that the the spectral
resolution is improved as the f-number increases, which
translates into a sharper profile of the phase around the
transmission peak.
Again, the results for the collimated mount do not coincide

exactly with the phase error amplification function given by

Figure 4. Top: dependence of the phase of the transmitted field with
wavelength across the transmission profile for an f/60 telecentric (green) and a
collimated (red) configuration. Bottom: corresponding derivatives of the phase
with respect to a across the transmission profile.

Figure 3. Spectral dependence of the derivative of the transmission profile with
respect to b corresponding to telecentric beams with f/40 (blue), f/60 (green),
and f/80 (red).
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Scharmer (2006) because of the omission in his work of a
global phase.1 In particular, his expression tends to negative
values at wavelengths far from the maximum transmission,
whereas ours is always positive. The maximum of the
derivative for the collimated configuration is also different:
(1+ R)(1− R)−1 in our case, to be compared with the value of
2R(1− R)−1 found by Scharmer (2006). According to our
results, the degradation of the wavefront for the collimated
mount at the peak transmission is expected to be, then, a bit
more optimistic than the one calculated by Scharmer (2006),
especially for low to moderate reflectivities.

Apart from the aperture of the beam, reflectivity also plays
an important role in the degradation of the wavefront. In
particular, the closer the reflectivity to unity, the sharper the
electric field module and phase profiles. Hence, the derivatives
across the transmission profile also increase with larger
reflectivities. Figure 5 shows the maximum of the derivative
of the phase with respect to a as a function of the reflectivity.
The derivative has been evaluated for different apertures of the
beam. The collimated case is also shown for comparison
purposes. Note that the larger the f-number, the higher the value
of the derivative and the more important the impact of the
reflectivity on the sensitivity to defects. Once again, the reason
for this is that the transmission and phase profiles also get
steeper when approaching collimated illumination.

As expected from Figure 4, the maximum wavefront
degradation is at the peak of the transmission profile. Hence,
the results shown in Figure 5 represent a worst-case scenario if
used to evaluate the optical quality of the etalon. Scharmer
(2006) suggested that the effect of the finite width of the
passband of the etalon can be estimated by multiplying the
monochromatic wavefront error produced at the peak transmis-
sion by a factor 1/2. The choice of this factor is not entirely
justified, though. A more appropriate approach would consist
of calculating the quasi-monochromatic (“effective”) wavefront
degradation after integrating the derivative of the phase with

respect to a across the transmission profile as

⎛
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Of course, we can always relate the quasi-monochromatic
derivative of the phase to the monochromatic derivative at the
maximum of the transmission profile through a factor κ as
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where κ depends, in general, on the parameters of the etalon
and on its illumination. Figure 6 shows the dependence of the
factor κ against the reflectivity for telecentric configurations
with different f-numbers, as well as for the collimated case. Our
results show that κ is very close to 1/2, as estimated
qualitatively by Scharmer (2006). This is particularly true for
collimated mounts and for telecentric setups with “large” f-
numbers ( f#� 80), almost independently of the reflectivity of
the etalon. For mounts illuminated with faster beams, κ shows
a stronger dependence with the reflectivity and amounts to
∼0.60 for an f/60 beam and R= 0.96.
In the light of these results, the derivative of the phase

clearly seems to depend greatly on the spectral resolution of the
Fabry–Pérot etalon, which is given by the combined effect of
the plates’ reflectivity, the f-number of the incident beam, and
the distribution of defects across the footprint of the beam
illuminating the etalon. For a more general comparison among
the two mounts it can be then appropriate to express the
derivative of the phase in terms of the spectral resolution.
According to Steel (1986), the derivative of the phase at the
maximum of the transmission profile in the collimated
configuration, (1+ R)(1− R)−1, can be related to the finesse
of the etalon,  , through the expression

⎛
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Figure 5. Derivative of the phase with respect to parameter a, at the peak
transmission wavelength, as a function of the reflectivity of the etalon surfaces
for an f/60 (green), an f/80 (red), and an f/100 (magenta) telecentric beam, as
well as for the collimated case (black).

Figure 6. Factor κ as a function of the reflectivity for different telecentric
beams: f/60 (green), f/80 (red), and f/100 (magenta). The collimated case is
also shown (black).

1 The phase error amplification function described by Scharmer (2006) is
calculated as the derivative of the phase with respect to δ, instead of to a. It is
necessary, then, to include a factor 2 in his expressions for comparison
purposes.
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Hence, we can write the absolute value of the derivative in
terms of the spectral resolution, δλ, as

⎜ ⎟
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This equation is strictly valid for the collimated configuration.
However, we have found through numerical experimentation
that the expression fits very well for the telecentric configura-
tion as long as we substitute δλ by its corresponding spectral
resolution. This means that the maximum of the derivative
depends only on the spectral resolution, no matter if the etalon
is illuminated with telecentric or collimated light. Since the
value of κ found in Figure 6 is greater for the telecentric
configuration than for the collimated case, the effective quasi-
monochromatic derivative is actually expected to be slightly
larger in a telecentric mount than in a collimated setup
exhibiting the same spectral resolution. This is demonstrated in
Figure 7, which shows the effective wavefront degradation
calculated after integrating the response along the transmission
profile as a function of the spectral resolution for telecentric
setups with different f-numbers and for the collimated
configuration. Note that the smaller the δλ and the f-number,
the larger the derivative of the phase when compared to the
collimated case.

Let us imagine now that the thickness of the etalon varies
across the footprint of the incident beam following a certain
distribution with an rms value 〈Δh〉. Using Equation (21), the
rms of the effective wavefront error induced by the etalon,
〈Δf〉eff, is simply given by
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eff

from which the Strehl ratio, S, can be estimated as (Mahajan
1981)

( ) ( )f= -áD ñS exp . 30eff
2

According to the Maréchal criterion, diffraction-limited
performance of the etalon is achieved when the rms of the

wavefront degradation stays below λ/14 or, equivalently, when
the Strehl ratio is larger than 0.8. Using Equation (26), the
condition for the rms of the error thickness to ensure
diffraction-limited optical quality, 〈Δh〉diff, can be written,
then, simply as
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Expressions for the maximum allowed cavity errors can be
found in an analogous way by setting the peak-to-valley
wavefront degradation below λ/4 (the Rayleigh criterion) or,
equivalently, by multiplying the right side of the equations
presented here by a factor of 3.5. For a value of the reflectivity
of 0.90, the rms of the irregularities on the thickness must be
better than∼ λ/300 or ∼2 nm at λ= 617 nm for both a
collimated and an f/60 configuration. If the reflectivity is
increased up to 0.95, the flatness shall be∼ λ/630 in the
collimated case and∼ λ/550 in the telecentric configuration to
accomplish diffraction-limited performance. The flatness
requirement over the footprint of the telecentric setup
converges with increasing f-number to that of the collimated
mount even for large reflectivities. If we set the spectral
resolution to be the same in the two setups, the collimated
configuration overtakes the telecentric one. For instance, for a
moderate resolution of 10 pm, the requirement on the rms of
the thickness error is∼ λ/350, to be compared with the slightly
stricter∼ λ/375 value for the f/60 case. If δλ= 7 pm, then the
maximum allowed rms decreases to∼ λ/500 and∼ λ/580,
respectively. A similar expression to Equation (31) can be
found for the requirement in homogeneity on the refraction
index. If we ignore perturbations introduced by b, the
maximum allowed rms of the refraction index variations across
the footprint can be shown to be of the order of∼ 5× 10−4% to
fulfill the diffraction limit requirement.
These requirements on the roughness and on the refractive

index homogeneity apply to the area illuminated by the
incident beam on the etalon. In collimated mounts, where the
etalon is at a pupil plane, the whole clear aperture of the etalon
is always illuminated no matter the observed point on the
object field. In telecentric setups, the footprint of the incident
beam is much smaller because of the very close location of the
etalon with respect to the image plane. On the other hand, the
rms value of thickness errors tend to increase with the aperture,
especially if they are caused by one of the large-scale defects
mentioned in Paper I (departure of parallelism, spherical defect,
sinusoidal defect, etc.). The incident wavefront is usually
expected, then, to be much less distorted by defects in
telecentric mounts than in collimated setups even though the
sensitivity to errors in the thickness is very similar in both
configurations. In fact, errors on the wavefront due to cavity
defects have been barely discussed in the literature so far when
studying the telecentric configuration because their scale has
been usually assumed to be large compared to the very small
footprint of the incident beam on such etalons. However,
etalons are affected not only by large-scale defects, but also by
high-frequency microroughness or polishing errors of the
surfaces, which are usually distributed almost uniformly over
the etalon area (e.g., Reardon & Cavallini 2008). If these
defects dominate over other sources of error, the choice of the

Figure 7. Quasi-monochromatic (effective) derivative of the phase with respect
to a against the spectral resolution, δλ, for an f/60 (green), an f/80 (red), and
an f/100 (magenta) telecentric beam, as well as for the collimated case (black)
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optimum configuration will depend on their scale relative to the
footprint. Telecentric setups minimize wavefront errors if the
thickness map varies spatially in a scale larger than (or
comparable to) the size of the footprint on the etalon, but if
these variations are of a very high frequency, then they could
have an important impact on the wavefront. In this case the
superiority of telecentric mounts over the collimated config-
uration in terms of wavefront degradation is not so clear and
could be surpassed by the other drawbacks that are present in
these setups.

3.2. Degradation of Image Quality Intrinsic to Telecentric
Mounts

Telecentric beams introduce wavefront errors through the
mere fact that pupil illumination is no longer homogeneous as
seen from the etalon (pupil apodization, Beckers 1998). In
Paper I we argued that apodization of the pupil is responsible
for a transfer of energy between the central part of the PSF and
its wings, thus degrading the image with respect to a perfect
unaberrated optical system. This is a wavelength-dependent
effect that introduces artificial features in the observed image,
as evaluated in Paper III, and would occur even in a perfect
etalon with no defects.

To estimate the impact of pupil apodization on the
wavefront, we can deal with the integration of rays with
different incidence angles on the etalon as if it were a “defect”
on the illumination compared to a collimated beam. The rms
value of the density distribution of such an error is given by
Equation (109) of Paper I. Then, we can use an approach
similar to the one followed in Section 3.1 to calculate the
perturbation produced by this aperture defect on the transmitted
wavefront. The rms value of the phase error at the maximum of
the transmission profile, 〈Δf〉peak, is then simply given by

( )
( )f

p
l

áD ñ =
+
- ¢ #

R

R

h

n f

1

1 8 3
. 32peak 2

In order to estimate the total (monochromatic) degradation of
the wavefront produced by a telecentric etalon, this expression
should be added quadratically to the perturbation introduced in
Equation (21), which accounts for the impact of irregularities.

Observe also that a careful choice of the reflectivity is
mandatory in telecentric instruments even when defects are
ignored, especially for compact instruments with low f-
numbers. Beams faster than f/60 (or∼ f/140 in an air-gapped
etalon) are almost prohibitive in terms of monochromatic
imaging performance even for moderate reflectivities of the
order of ∼0.9. In particular, the minimum f-number that
achieves a wavefront degradation smaller than λ/14, when no
defects are present, is∼ f/40 for R= 0.90 and∼ f/60
for R= 0.95.

The above results represent a worst-case scenario because
image quality has been evaluated monochromatically at the
peak of the transmission profile. Once again, we can use
Equation (26) to take into account the finite passband of the
etalon. This relaxes the diffraction-limiting requirement on the
incident beam aperture considerably. In fact, the limiting f-
number that keeps the rms error better than λ/14 is∼ f/30
and∼ f/40 for R= 0.90 and R= 0.95, respectively. Moreover,
much of this degradation can be eliminated by a simple refocus
of the etalon (Scharmer 2006). There are compelling reasons to
illuminate the etalon with much slower beams, though. As

already mentioned, pupil apodization introduces other unde-
sired effects, apart from phase errors, which can be greatly
reduced when increasing the f-number (Paper III). Unfortu-
nately, the larger the f-number, the less compact the instrument
and the bigger the etalon. Hence, a compromise must be found
between artificial signals and the aperture of the incident beam
to minimize the effects of pupil apodization while containing
the size of the instrument and etalon within realistic and
affordable limits. To select the optimum aperture of the
incident beam on the etalon, we recommend a careful
assessment on the impact of the finite aperture of the incident
beam taking into account a complete consideration on the
polychromatic nature of the observations in the way described
in Paper III.

3.3. Discussion on the Imaging Performance of the Two
Configurations

The location of the etalon in a telecentric configuration
within the optical path can be chosen carefully to minimize the
footprint of the incident beam (and, hence, the impact of high-
frequency errors in the wavefront). Yet, wavefront errors
produced in this setup are still expected to be smaller than in a
collimated configuration.
Unfortunately, if the telecentric configuration is chosen to

reduce the impact of defects in the wavefront, then there is also
a risk of having different spatial PSFs and transmission profiles
across the FOV due to the local variations of the optical
thickness over the aperture. This is especially true if two or
more etalons are used in tandem to improve the free spectral
range and the resolving power of the instrument, each one with
a different cavity map. In such a case, the transmission profile
is not only shifted, but it becomes asymmetric and its peak is
reduced due to the detuning of the individual transmission
profiles of each etalon that take place point to point. These
effects induce artificial signals in the spectrum of the observed
Stokes vector that can be larger than the required polarimetric
sensitivity of the instrument locally. To reduce the impact on
the Stokes profiles, differential shifts of the spectral profiles
must be kept as low as possible by minimizing cavity errors.
First order corrections of the measured data are also possible if
a careful reduction technique is followed. An example of a flat-
fielding procedure that successfully mitigates the effect of the
loss of invariance on the spectral profile can be found in de la
Cruz Rodríguez et al. (2017).
Telecentric etalons present other problems that must be

considered as well, like artifacts introduced by the strong
spectral dependence of their PSF or by deviations from perfect
telecentrism (Papers I and III). The latter can arise simply when
tilting one of the etalons to move inner etalon ghost images
away from the detector. To reduce both effects, the f-number of
the incident beam should be as large as possible. If two Fabry–
Pérot etalons are employed, it is also highly advisable, first, to
combine low- and high-finesse etalons and, second, to apply
the minimum necessary tilt only (or mostly) to the etalon with
lowest resolution (Scharmer 2006).
The collimated configuration is not immune to problems

either, especially when more than one etalon is employed.
Differential shifts of the individual transmission profiles over
the FOV can also appear in pairs of collimated etalons when
one of them is tilted to avoid ghost images on the detector. The
shifts of the individual transmissions across the FOV causes
field-dependent asymmetries on the total transmission profile
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that have the same impact as the ones described above for the
telecentric configuration. Moreover, although the overamplifi-
cation of errors by the presence of a second etalon exists in
both configurations, collimated dual-etalon setups run a higher
risk of decreasing the optical quality of the instrument below
requirements due to the much larger footprint of their beam,
unless cavity errors are kept small enough (0.5–1 nm rms over
the full clear aperture, typically).

A proper choice on the optimum configuration needs, then,
careful considerations on the impact of cavity defects and of
tilts of the etalon, if any, on the measured signals based on the
expected thickness maps of the etalons to be employed. Also
important are the implications associated with each configura-
tion on the required dimensions, quality, and costs of the
etalons (and of the instrument itself). In particular, the diameter
of the etalon in a collimated configuration, Æcoll, assuming a
square F× F FOV, can be related to the entrance pupil
diameter of the telescope, Æpup, and to the maximum allowed
spectral shift of the transmission profile across the FOV, Δλ,
using the Lagrange invariant and Equation (33) of Paper I, as

( )Æ =
Æ

¢ l
l
D

F

n2
, 33coll

pup

which can be rewritten in terms of the spectral resolving power
of the etalon, , and ò≡Δλ/δλ, with δλ being the spectral
resolution of the Fabry–Pérot etalon at the wavelength of
interest:

( )Æ =
Æ

¢ 
F

n2
. 34coll

pup

For the telecentric configuration, making use of the Lagrange
invariant again, the diameter of the etalon,Ætel, is given simply
as

( )Æ = Æ #F f2 , 35tel pup

where f# is the f-number of the incident beam on the etalon.
The ratio of the sizes corresponding to both configurations
depend therefore only on the resolving power, the f-number,
the refraction index, and ò, like

( )Æ
Æ

=
¢ #



n f

1
. 36coll

tel
8

Figure 8 shows the ratio Æ Æcoll tel, parameterized with the
value of ò, as a function of for the case ¢ #=n f 150. Note that
the ratio is below or only slightly above unity for resolving
powers up to ∼150,000, unless the requirement on the
maximum tolerable shift across the FOV is set as tight as
Δλ= 0.25δλ. The allowed shift on the collimated configura-
tion differs from one instrument to another, but is usually of the
order of ò= 0.75. This choice of ò guarantees that a maximum
of only one wavelength sample is lost at the corner of the FOV
when a critical sampling is assumed (i.e., when the spectral
sampling is 0.5δλ). For this value of ò the ratio is larger than
unity only when resolving powers above 150,000 are required.
It is important to remark that large-scale errors in the telecentric
configuration also cause significant wavelength shifts of the
spectral profile across the FOV. For example, a parabolic 4 nm
peak-to-valley error (∼λ/150) would cause a shift comparable
to the FWHM of the transmission profile (ò= 1) for a resolving
power of 150,000.

The next generation of 4 m ground-based telescopes will
require etalons with diameters of the order of 150–200 mm or
more, no matter the chosen configuration. Such large etalons
need to be carefully designed, exploring the contribution of
cavity errors on different spatial scales to the instrument
performance and to the optical quality achieved by the overall
system. Meanwhile, future space-borne telescopes, with much
smaller apertures and dimensions, can benefit from the use of
collimated mounts for two reasons: first, this setup avoids the
problems related with the use of the fast beams that would be
required if a telecentric configuration were employed in such
compact instruments and, second, the etalons to be employed in
this case are much smaller than those needed in ground-based
instruments due to the reduced telescope aperture, making it
easier to manufacture them with qualities high enough to
ensure diffraction-limited performance.

4. Analytical Expressions for Birefringent Etalons

Electro-optical etalons, like the ones employed in the
Imaging Magnetograph eXperiment (Martínez Pillet et al.
2011) and Polarimetric and Helioseismic Imager (Solanki et al.
2020), are filled with an anisotropic material that shows
birefringent properties. Let us consider a birefringent etalon
within a perfect telecentric configuration, where the chief ray is
parallel to the optical axis over the whole FOV. The
transmission profile is, then, given by Equation (50) of Bailén
et al. (2019b), hereinafter Paper II. This expression depends
on the Jones matrix terms, which, in turn, depend on the
retardances of the ordinary and extraordinary beams, δo and
δe≡ δo+ j, where j is given by Equation (36) of Paper II. For
small incidence angles, we can approximate δo and δe as

( ) ( )d
= - a b

2
1 , 37o

o
2

( ) ( )d
= - a b

2
1 , 38e

e
2

where a coincides with Equation (8), bo is just Equation (9)
with ¢ =n no, and be is given by

( )= -b b c, 39e o

Figure 8. Size ratio of the etalons as a function of the resolving power.
Different lines correspond to various values of ò. From top to bottom, ò = 0.25,
0.5, 0.75, 1, 1.25, 1.5, 1.75.
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where we have defined c as

( ) ( )
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Integration of the electric fields for the ordinary and
extraordinary rays yields Equations (13) and (14) with the
only difference that b must be substituted with bo or be
correspondingly. Then, an analytical expression for the Mueller
matrix of telecentric etalons can be found simply using
Equations (45)–(48) of Paper II. Although the resulting
analytical equations are quite laborious and will not be shown
here, this method offers an efficient way of calculating the
Mueller matrix of etalons in telecentric setups without the need
of performing numerical integration, which facilitates calibra-
tion and postprocessing tasks on space instruments based on
anisotropic etalons, whose computational resources are limited.

5. Summary and Conclusions

We have analytically solved the equation that governs the
transmitted electric field of isotropic telecentric etalons. The
found solution is valid for large f-numbers ( f#? 1) typical of
solar instruments and is determined only by the reflectivity,
absorptivity, and two coefficients that are proportional to l¢ -n h 1

and ( )¢ # -n f 2, respectively, where ¢n is the refraction index of
the etalon, h its thickness, and λ the wavelength of interest. The
fact that ¢n appears only as a proportionality factor of h and of
the f-number shows that there is a unique equivalence between
the solution corresponding to a crystalline etalon and an air-
gapped Fabry–Pérot etalon whose thickness and f-number is ¢n
times larger. Then, our results obtained for a crystalline etalon
with ¢ =n 2.3 and h= 250 μm illuminated with telecentric
beams ranging from f/40 to f/100 are completely general also
for an air-gapped etalon with ¢ =n 1 and h= 575 μm placed in
beams with apertures that go from f/92 to f/230, typical of
ground-based solar instruments. This means that crystalline
etalons can be placed in much faster telecentric instruments
compared to their air-gapped counterparts, with obvious
advantages in the instrument and etalon dimensions.

From the analytical expression of the electric field, we have
obtained its derivatives and we have evaluated the sensitivity of
the transmission profile and of the phase of the electric field to
variations in the etalon parameters. We have shown that the
transmission is barely affected by changes in the incident f-
number, but depends strongly on the thickness, refraction index
and wavelength. Similarly to collimated etalons, the transmis-
sion profile is mostly shifted by disturbances on the optical
cavity, whereas small changes in the f-number produce both a
shift and a change of width on the profile. At the maximum of
the transmission, the phase of the transmitted electric field is
also affected by changes in the optical thickness, but in a lesser
extent than in collimated instruments for etalons with the same
reflectivity. This is due to the lower resolution of the
transmission profile in telecentric setups, which translates into
a smoother spectral dependence of the phase. The lower the
reflectivity and the larger the f-number, the more similar the
impact to the collimated case. We have found also that the
monochromatic response of the phase at the transmission peak
is the same in both configurations as long as they show the
same spectral resolution.

To account for the limited resolution of the etalon, we have
estimated the quasi-monochromatic sensitivity of the phase by

integrating its derivative over the transmission profile. We have
compared it with the sensitivity at the maximum of the
transmission profile through a proportionality factor that
depends slightly on the reflectivity and on the aperture of the
beam. We have shown numerically that this factor approaches
to ∼1/2 for the collimated configuration, as predicted by
Scharmer (2006). For the telecentric case the factor is larger
than 1/2 and increases with decreasing f-number, although it
approaches 1/2 for low to moderate reflectivities. This means
also that, for a given spectral resolution, the effective (quasi-
monochromatic) transmitted phase of the etalon is more
sensitive to cavity errors in a telecentric configuration than in
collimated setups.
A simple expression to evaluate the wavefront degradation

produced by roughness errors on the etalon surfaces has been
presented, too. Such an expression suggests that the choice of
the reflectivity—or, more specifically, of the spectral resolution
—plays a very important role in the magnitude of the distortion
of the wavefront, setting a limit to the maximum allowed rms
value of the irregularities on the optical thickness over the
footprint, as already observed for the collimated configuration
by Scharmer (2006). Cavity errors of etalons mounted in
telecentric setups are expected to produce a smaller wavefront
degradation than when mounted in a collimated configuration,
unless the etalon is mostly affected by thickness errors and/or
inhomogeneities of a very high frequency that vary in spatial
scales smaller than the footprint of the incident beam. We have
derived also an expression to infer the image degradation that
appears in telecentric mounts only because of the finite aperture
of the incident beam. Such a degradation has a strong
dependence with the reflectivity and with the f-number and
appears even if no defects are present in the etalon. This effect
compensates somehow the lower sensitivity of telecentric
etalons to defects, although it can be mostly corrected with a
refocus of the detector, in the same way the parabolic error is
calibrated in collimated mounts.
We have included a discussion on the differences in optical

and spectral performance of the telecentric and collimated
configurations that accounts for other important effects. We
have presented expressions for the required diameter of the
etalon in each configuration, too. Telecentric etalons are safer
in terms of wavefront distortion, but can introduce artificial
signals in the measured magnetic field and line-of-sight plasma
velocities, as well as point-to-point variations (and even
asymmetries) of the PSF and of the spectral transmission,
especially when several etalons are located in tandem. Mean-
while, collimated setups with two or more etalons take the risk
of overamplifying the wavefront errors in excess and also
introducing field-dependent asymmetries in the transmission if
one of the etalons is tilted with respect to the other. The
magnitude of these effects must be assessed together with other
considerations on the dimensions and cost of the instrument
and of the etalon to choose the optimum configuration for each
particular instrument.
Finally, we have extended our formulation to the case in

which the etalon is anisotropic. In particular, we have
introduced a simple modification of the solution valid for the
isotropic case that allows for the direct calculation of a
transmitted electric field corresponding to the ordinary and
extraordinary rays. The electric fields can be employed, then, to
analytically calculate the Mueller matrices of telecentric etalons
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in the way described in Paper II without the need for
integrating the equations numerically.

We found the formulas that relate the size of the etalon with the
optical parameters of the telescope for the first time in a detailed
technical note prepared by Fabio Cavallini in the framework of the
SOLARNET project. Our discussion on the size of the etalons is
clearly influenced by his note and we would like to publicly thank
his contribution. We also owe a debt of gratitude to Gran
Scharmer, Francesco Berrilli, and Luca Giovannelli for the fruitful
debates we have had in recent months on the benefits and
drawbacks of each configuration as part of the tasks of the
working group on tunable-band imagers for the future European
Solar Telescope. Without their contributions, the discussion on the
spectral and imaging performance of the collimated and telecentric
setups presented in this work would not be as detailed as it is
today. This work has been supported by the Spanish Science
Ministry “Centro de Excelencia Severo Ochoa” Program under
grant SEV-2017-0709 and project RTI2018-096886-B-C51. D.O.
S. also acknowledges financial support through the Ramón y
Cajal fellowship.
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8. Conclusions

We have presented an overview on the behavior of collimated and tele-
centric etalon-based instruments from a spectral, imaging, and polarimetric
perspective.

With respect to the spectral characteristics of these instruments, we
have focused on reviewing the deterioration of the transmission profile pro-
duced by cavity errors, by the finite f -number in telecentric etalons and
by imperfections on the illumination in such mounts. We have presented
a general approach that address the impact of the most common defects
on the finesse no matter their magnitude through the method proposed by
Sloggett (1984). We have derived compact analytical expressions for er-
rors that have a small and large impact on the transmission and that are
completely valid for solid etalons.

Concerning the imaging properties, we have studied the spatial shape
of the PSF in collimated and telecentric mounts both at monochromatic
wavelengths and including the finite passband of the etalon. In particular,
we have shown that:

1. In an ideal collimated configuration, the spatial shape of the PSF is
simply that of a circular aperture, whereas the transmission profile
acts only as a proportionality factor that apodizes the image to its
edges. Hence, the monochromatic response is simply given by the
convolution of the object and the diffraction-limited PSF modulated
by the transmission factor. Meanwhile, in a perfect telecentric etalon
the spectral and spatial parts of the PSF are strongly correlated and
cannot te separated.

2. In real collimated setups, (spatial) stray light coming from high fre-
quency defects, and its subsequent decrease on the image contrast,
is the main source of degradation expected, but the response is still
the same across the FoV. In the telecentric configuration the response
varies point to point due to local thickness errors and inhomogeneities.

3. Small misalignments of a few tenths of degree among the incident
cone of rays and the etalon, coming from either departures of perfect
telecentrism over the FoV or by a tilt of the etalon to get rid of
ghost images on the detector, induce a noticeable asymmetrization,
broadening, and shift of both the peak transmission and the PSF in
telecentric mounts. A degradation of the (quasi-monochromatic) SNR
is also expected. These effects depend non linearly with the relative
tilt and with the f-number.
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4. The quasi-monochromatic response of the etalon is correlated with the
observed object in the two setups when considering the small but finite
width of the spectral transmission of the etalon. Therefore, the quasi-
monochromatic PSF cannot be employed as a regular one, except for
observations of spectrally flat features (i.e., in the continuum).

Regarding the polarimetric response, we have derived a general expres-
sion of the Mueller matrix that describes the polarimetric behavior of uniax-
ial crystalline etalons no matter the birefringence induced. We have found
also a compact formula to evaluate the birefringence of solid etalons that
accounts for the orientation of the incident beam and that of the optical
axis. We have demonstrated that:

1. The Mueller matrix of anisotropic uniaxial etalons has two contribu-
tions: one corresponding to a mirror and another one given by the
polarimetric response of a retarder, both strongly modulated across
the transmission profile.

2. In collimated mounts, the Mueller matrix depends only on four ele-
ments. These terms exhibit large variations across the transmission
profile, but also with the incidence angle and the direction of the opti-
cal axis. Different orientations of the principal plane can be addressed
through a proper rotation of the Mueller matrix.

3. In an ideal telecentric configuration, no off-diagonal terms are ex-
pected on the Mueller matrix. Imperfections in the telecentrism in-
duce cross-talk terms on the Mueller matrix, as well as an spectral
asymmetry on the coefficients. Again, the Mueller matrix is com-
pletely characterized by four terms that change along the bandpass.

4. The PSF depends on the state of polarization of the incident Stokes
vector. In particular:

a) In the collimated configuration, the spatial shape PSF coincides
with that of the isotropic case, but the proportionality factor
now changes with the orientation of the principal plane, which
rotates over the image, and is modulated by the incident Stokes
vector.

b) In (perfect) telecentric mounts, the dependence of the PSF with
the Stokes vector is seen directly to its spatial shape, which
changes with the incident polarization. In a real (imperfect)
telecentric configuration, the same applies, but the PSF becomes
asymmetric, too.
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8. Conclusions

We have carried out an assessment of the spurious signals on a simu-
lated instrument taking into account the effects mentioned above. We have
shown that the magnitude of the spurious signals arising from the wave-
length dependence of the PSF in a telecentric configuration goes with the
inverse square of the f -number. Our numerical results suggest that the
corresponding artificial LoS magnetic field and plasma velocities can be
prohibitively large even for instruments with moderate resolving powers,
especially if the f -number is not sufficiently large (& f/40 for a resolving
power of ∼ 60, 000 and an etalon with a large refrative index of 2.3). In
an imperfect telecentric configuration the situation is even more pessimistic
because of the asymmetrization of the transmission profile and of the PSF.
In this case, more pronounced signals are expected accompanied by a shift
of the plasma velocities. In relation to the effects produced by the bire-
fringence of the etalon, the impact depends on the specific location of the
etalon within the optical train:

1. If located after the analyzer of the polarimeter:

a) The optimal efficiencies are reached with the ideal modulation
scheme introduced by Del Toro Iniesta & Mart́ınez Pillet (2012),
no matter the chosen configuration.

b) No artificial signals appear in the collimated configuration, re-
gardless the birefringence of the etalon.

c) The azimuthal symmetry of the telecentric PSF is lost and it
becomes elliptic. Nevertheless, the contamination of the LoS ve-
locities and magnetic field is an order of magnitude below the
one produced by pupil apodization effects in our numerical ex-
periments.

2. If placed between the modulator and the analyzer:

a) In collimated setups, the presence of the etalon changes the
Mueller matrix of the polarimeter and produces an spectral and
field-dependent modulation of polarimetric efficiencies. The max-
imum change on the efficiency is expected to be below 1 % in a
typical instrument, though.

b) In the telecentric configuration, the polarimetric response re-
mains the same as if situated after the analyzer. The reason
for this is that its Mueller matrix commutes with that of the
analyzer.
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c) In dual-beam instruments, the etalon modifies the measured
Stokes vector from one channel to the other, but the changes
in the signal are expected to be completely negligible in tele-
centric mounts and below 1 % at the wing of V in collimated
setups.

Finally, we have found an analytical solution for the transmitted electric
field of isotropic Fabry-Pérots illuminated with a telecentric beam. Our
solution holds for f -numbers much greater than unity, like the ones used
in solar instruments. We have found that the refractive index, n′, simply
amplifies the thickness and the f -number. The main implication of this
result is that the electric field remains exactly the same for a solid etalon
illuminated with an f -number n′ times smaller than the one corresponding
to an air-gapped Fabry-Pérot as long as its thickness is reduced by the same
factor. Therefore, lithium niobate etalons, with a large index of refraction
of ∼ 2.3, benefit from an important reduction on the instrument size and
on its diameter while preserving the same spectral and imaging properties
as air-gapped etalons. We have generalized the analytical solution to the
propagation of the ordinary and extraordinary rays in uniaxial etalons. This
way, the Mueller matrix of the etalon can be evaluated analytically, too.

The analytical solution has given us access to its derivatives, from which
we have inferred the sensitivity of the transmission and of the electric field
phase to changes on the thickness, refractive index and f -number. From
such a study:

1. We have proven that the electric field is very sensitive to small vari-
ations on the two former parameters but is barely affected by errors
on the incident aperture.

2. We have shown that the transmitted phase is less sensitive to errors
in the thickness and refractive index than in collimated instruments.
The differences are emphasized as the reflectivity is increased and the
f -number is reduced.

3. We have derived a formula that translates to wavefront errors the
physical defects of the etalon across the small, but finite, footprint
of the incident beam. Such an expression is consistent with the one
found by Scharmer (2006) for the collimated configuration in the limit
of f/∞ and suggests that:

a) Wavefront degradation is amplified in a non-linear way by the
spectral resolution. Therefore, the larger the resolving power of
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the instrument, the tighter the requirements on the magnitude
of the defects across the footprint to achieve diffraction limited
performance.

b) The transmitted phase shows the same sensitivity to defects at
the maximum of the transmission peak for the two mounts, but
the quasi-monochromatic response is more important for telecen-
tric setups and increases with lower f -numbers, especially when
the resolution approaches to the limit imposed by the aperture
finesse.

c) The deformation of the wavefront is expected to be less pro-
nounced for telecentric etalons simply because errors tend to
scale with the footprint size. However, if the magnitude of micro-
roughness errors is comparable to that of large-scale defects and
they are of higher frequency than the one corresponding to the
footprint size, the induced wavefront degradation must still be
evaluated. This is especially true when “large” footprints of ∼ 1
mm or more, typical of telecentric instruments, illuminate the
etalon.

4. We have dealt with the finite f -number of the incident beam as if
it were a defect and we have obtained the corresponding wavefront
degradation. We have found that the f -number limits the maximum
achievable optical quality of the instrument even for ideal etalons.
The dependence of the expression obtained with the aperture of the
pupil shows a radial trend when evaluated at the wavelength of the
transmission peak consistent with the one found by Scharmer (2006).
This contribution to the wavefront deformation can be partly com-
pensated by a refocus, but it cannot be eliminated completely when
considering the finite pass-band of the etalon.
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