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RESUMEN

Los modelos de pulsación estelar disponibles hasta la fecha no explican en su totalidad

los espectros de potencias observados para las estrellas del tipo δ Scuti. Dichos espectros

presentan una distribución en frecuencias muy diferentes, incluso para estrellas que poseen

parámetros estelares muy similares. Este es el caso, por ejemplo, de las estrellas llamadas

híbridas, que pulsan en un régimen tanto de modos p como de modos g, o la existencia de

estrellas sin oscilaciones dentro de las bandas de inestabilidad de pulsación. Estos hechos

sugieren que se han de revisar los mecanismos de excitación y de amortiguamiento que operan

en estas estrellas, o introducir otros mecanismos causantes de la aparición de frecuencias en

los espectros de potencias que los modelos actuales no son capaces de reproducir.

Uno de los mecanismos físicos que dan origen a máximos en los espectros de potencia y

que los modelos actuales no tienen en cuenta, son los procesos no-lineales. Una respuesta

no-lineal del medio estelar a la oscilación, debido a cambios de grosor de la capa convectiva,

entre otros procesos, pueden causar distorsión en la forma sinusoidal de las curvas de luz.

Como consecuencia, aparecen en los espectros de potencia frecuencias de combinaciones entre

modos de oscilación propios de la estrella, llamadas términos no-lineales o no-linealidades.

En esta tesis, se estudian los términos no-lineales presentes en las estrellas δ Scuti con el

objetivo de identificarlos inequívocamente. La motivación radica tanto en conseguir extraer-

los correctamente de los espectros de potencia (para así explicar la distribución en frecuencia

con los modelos de pulsación lineal disponibles), como en caracterizarlos, para en un futuro

construir modelos no-lineales de pulsación.

Como resultado del trabajo de investigación, en esta memoria se presenta un método

autoconsistente para extraer no-linealidades que garantiza residuos no correlados con dichos

términos. El método permite identificar frecuencias con precisiones muy altas, del orden de

las alcanzadas por el método O-C, en el caso de estrellas mono-periódicas. También permite,



en el caso de estrellas de doble-modo o multi-periódicas, identificar estructuras de frecuencias

ocultas en lo que, antes de la extracción, se consideraba ruido.

Además, se muestran resultados de una posible caracterización de los términos no-lineales

en estrellas High Amplitude δ Scuti. Se presenta un método basado en dicha caracterización

de no-linealidades que permitiría discriminar modos radiales en estrellas Low Amplitude δ

Scuti, proporcionando así una restricción adicional que posibilitaría la identificación modal.

Esta sería la primera vez que los términos no-lineales son útiles, aunque indirectamente,

para llevar a cabo un análisis astrosismológico en estrellas pulsantes de masa intermedia.

Finalmente, se presentan también resultados para algunas estrellas variable del tipo γ Do-

radus, constituyendo el inicio de la caracterización de términos no-lineales producto de la

interacción de modos no-radiales.
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PREFACIO

El presente trabajo forma parte de la actual línea de investigación que persigue el Grupo

de Variabilidad Estelar (GVE) del Instituto de Astrofísica de Andalucía, donde se han estu-

diado las estrellas del tipo δ Sct desde sus inicios, en la década de los 70. Históricamente, el

GVE comenzó sus aportaciones al entendimiento de estas estrellas pulsantes llevando a cabo

observaciones desde tierra, más concretamente, en el Observatorio de Sierra Nevada (OSN),

cuyas instalaciones proporcionan gran precisión en las observaciones posibilitando análisis

astrosismológicos. Dicha precisión permitió al OSN posicionarse como uno de los centros

de observación pertenecientes a la Delta Scuti Network (DSN), que fue una campaña de

observación coordinada por diferentes observatorios en diferentes ubicaciones del mundo con

el objetivo de obtener curvas de luz de mayor duración, traduciéndose en mayor resolución

de las frecuencias correspondientes a las oscilaciones de las estrellas variables.

Pronto, los análisis realizados por el GVE a las curvas de luz proporcionadas por la DSN

mostraron inconsistencias con los modelos disponibles. Con el fin de comprender el origen de

estas discrepancias, se desarrollaron modelos teóricos incluyendo los efectos de la rotación y

la no-adiabaticidad. Estos esfuerzos constituyen los modelos más efectivos disponibles hasta

la fecha. Sin embargo, las discrepancias continuaban sin respuesta, por lo que la idea de

que el origen de estas se debía al análisis de datos dado a las curvas de luz empezó a cobrar

mayor peso en la línea de investigación del GVE.

Con la llegada de las misiones espaciales se obtuvieron por primera vez espectros de

potencias ultraprecisos. La relación señal/ruido era tan superior a las alcanzadas por las ob-

servaciones desde tierra que muchos nuevos máximos fueron detectados. Paradójicamente,

mayor precisión complicó el análisis: Las frecuencias originadas por la ventana espectral
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en observaciones con un duty-cycle del 90% antes hubieran sido consideradas irrelevantes.

Además, otras frecuencias, originadas por el funcionamiento del instrumento (e.g. varia-

ciones térmicas), y que modulan la señal de las pulsaciones, antes eran indetectables. De la

misma manera, aumentó la capacidad de detectar frecuencias correspondientes a la interac-

ción entre modos de pulsación propios de la estrella, llamados términos no-lineales. La línea

de investigación actual del GVE se centra en métodos para atenuar el efecto de las ventanas

de observación sobre los datos y, con este trabajo de investigación, se pretende estudiar los

términos no-lineales presentes en las estrellas del tipo δ Sct.

Dentro de este contexto, la investigación expuesta en esta memoria proporciona la base

empírica necesaria para construir modelos no-lineales, además de la base general para la

construcción del modelo analítico que explique la presencia de los términos no-lineales en

estrellas variables. Asimismo, los métodos que aquí se describen para identificar sin am-

bigüedad estos términos, constituyen una consecución del GVE para estar un paso más

cerca de comprender las, hasta ahora enigmáticas, estrellas δ Sct.
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Chapter One

Introduction

1.1 Asteroseismology

The possibility of physically piercing into a star to measure the properties of its internal

structure is very remote, even for the technology available nowadays. Scientific inference is

the most obvious alternative to understand how are the stars like inside, and asteroseismology

is providing satisfactory answers to this for half a century now. Asteroseismology is the field

of astrophysics which provides density profiles, rotation profiles, interior chemical transport,

and even ages of the variable stars, all through the study of their pulsations. Certainly,

these contributions have been of great importance to the development of the knowledge of

the stellar structure and evolution available at the present moment.

Variable stars are the stars whose measurements of their luminosity changes with time.

They are divided in extrinsic variables, where the variability is owed to external causes (e.g.

in a binary system, a transit of the companion causes periodic changes in the measurements

of the luminosity), and intrinsic variables (or pulsating stars), where the variability is actually

coming from the star itself. These pulsations, generate standing waves that travel trough

the stellar medium, from which asteroseismology extracts all the information.
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1.1.1 Historical overview

Methodical observations of the night sky, ever since the ancient times up to the establishment

of the scientific method, have allowed to study pulsating stars for quite a long time. The

first record of an astronomical observation of a variable star is the one made in 1596 by

David Fabricius, when he discovered the Mira star (Jeffery, 2008). Later on (1785), John

Goodrike was the first one to make photometric measurements of variability using reference

stars. This comparison technique allowed him to discover the variability of the δ Cepheid

star (Goodricke and Englefield, 1785).

It was not until the 20th century that astronomers discussed the possibility that light

variation, observed for high amplitude and long periods variables, could have an intrinsic

nature (Moulton, 1909). The work of Shapley (1914) backed up this assumption, considering

the Cepheid stars variability in terms of radial oscillations as the most probable explanation.

But it was not until Sir Arthur Stanley Eddington proposed that a star could be working

as a Carnot engine in the thermodynamical sense, that sustained pulsation was physically

understood. The Eddington mechanism would lead the star to pulsate in their natural

oscillation modes, which are determined by the structure of the star. This explanation was

first exposed in his Pulsation Theory for Cepheid variables (Eddington, 1917), later explained

thoroughly in The Internal Constitution of the Stars (Eddington, 1920, 1926).

About the same time (1912), Henrietta Swan Leavitt found the period-luminosity relation

observed for Cepheid stars, when studying a sample of them in the Magellanic cloud. By

this time, it became clear that pulsating stars have considerable important applications

in astrophysics. For example, to achieve high precision in distance measurements and to

determine general properties of the stars (e.g. their density), by knowing the fundamental

radial mode.

Over time, not only radial oscillations were studied, but also the presence of non-radial

pulsations (Zhevakin, 1953) begins to be a possibility for explaining features that could
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not have been explained before (e.g. width variations in β Canis Majoris spectral lines).

Furthermore, the development of the perturbed equations of the stellar interior, together with

technology improvement, allowed for what might be called the first asteroseismic study, where

deeper layers than the photosphere could now be explored in greater detail for our nearest

star, the Sun. The first integrated light observations of the entire solar disk, allowed Claverie

et al. (1979) to interpret regular disturbances on the solar surface as the superposition of

acoustic modes (see Section 1.1.3) trapped in different sections inside the solar cavity. This

observing technique was applied to other types of variable stars, modelling their interiors

with more or less success, consolidating asteroseismology as a growing research area at the

service of improving current models of stellar evolution.

More recently, the field of asteroseismology experienced a boost in their findings in the

light of space missions. In the 90’s, many project proposals to take photometric observations

from space were requested, but none of them approved (Stars, Prisma, Mons, Eddington).

The first satellite dedicated to asteroseismology studies was the MOST spacecraft. It was

launched in 2003 by the Canadian Space Agency (CSA). Although it enabled many discov-

eries, later proposals had to be attached to exoplanetary transits missions. For example,

the CoRoT satellite (Auvergne et al., 2009), launched in 2006 by the French Space Agency

(CNES) along with the European Space Agency (ESA). Its photometric measurements met

the requirements of long observation with very high duty cycles of ≈ 90%, for obtaining

ultra-precise data. The Kepler mission (Gilliland et al., 2010), led by the United States

of America National Aeronautics and Space Administration (NASA), was launched in 2008.

This mission also delivered extraordinary duty cycles and light curves of ultra-precise quality,

still producing relevant discoveries.

Next, a brief summary of the theoretical framework of asteroseismology is presented with

the purpose of facilitating the understanding of the content of this thesis. For further details,

see Aerts et al. (2010) which is a very complete guide on asteroseismology, and Christensen-

Dalsgaard (1997) that delves into the theory of stellar oscillations.
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1.1.2 Perturbed linear equations of stellar structure and their so-

lutions

Hydrodynamic equations can describe stars since the stellar medium is considered a con-

tinuum (in Eulerian description) of plasma in energy balance. The basic equations of such

system, determining density (ρ), velocity (~ν), and pressure p (or temperature T) are given

by:

• Equation of continuity or mass conservation:

∂ρ′

∂t
+∇(ρ · ~v) = 0, (1.1)

• Equation of motion:

ρ
∂~v

∂t
+ ρ~v · ∇~v = −∇p− ρ∇Φ, (1.2)

• Equation of Poisson:

∇2Φ = 4πGρ, (1.3)

• Equation of energy or energy conservation:

∂p

∂t
+ ~v · ∇~p =

Γ1p

ρ

∂ρ

∂t
+ ~v · ∇~ρ, (1.4)

When trying to model the intrinsic oscillations of a star, perturbation analysis is applied

to the perturbed hydrodynamic equations. However, solving such equations can be a very

complex task, so at this point to simplify considerably the solution it is possible to take the

next reasonable approximations:

1. Amplitude of oscillations are small in comparison with global scales of the star (e.g.

its radius).

2. Adiabaticity: oscillation periods often greater than the Kevin Helmholtz characteristic

time of thermal adjustment.
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3. Assume perfect spherical symmetry.

Here, the perturbed stellar structure equations are presented around the equilibrium state

(labelled with the zero sub-index) and the perturbed variables represented with a prime (e.g.

ρ′):

• Perturbed equation of continuity or mass conservation:

∂ρ

∂t
+∇(ρ0 · ~v) = 0, (1.5)

• Perturbed equation of motion:

∂~v

∂t
= − 1

ρ0

∇p′ + ρ′

ρ0

∇Φ0 +∇Φ′, (1.6)

• Perturbed equation of Poisson:

∇2Φ′ = 4πGρ′, (1.7)

• Perturbed equation of energy or energy conservation:

∂p

∂t
+ ~v · ∇~p0 =

Γ1,0p0

ρ0

∂ρ

∂t
+ ~v · ∇~ρ0, (1.8)

where orders higher than one for the perturbation variables are neglected, meaning that they

are linearised.

Solutions for the perturbed variables are the eigenfunctions of the form:

~ζ(r, θ, φ, t) =
∑
k

ak~ζ(r)Y m
l (θ, φ)e(iωkt+Φk), (1.9)

where ~ζ represents the perturbed variable and r, θ, φ and t are the radial, colatitude, lon-

gitude and time variables respectively. The complex exponential represents the harmonic

behaviour of the perturbation with angular frequency ωk, amplitude ak and phase Φk, where

k denotes the mode index. Radial and angular solutions can be separated as ~ζ(r) (separable
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in their radial and/or tangential components) and Y m
l (θ, φ) respectively. The latter, namely

a spherical harmonic, can also be separated as:

Y m
l (θ, φ) = Pm

l (cos θ)eimφ; (1.10)

where Pm
l is the Legendre function and l and m are quantum numbers which are going to

be explained next.

1.1.3 Pulsation modes

The general equation of oscillations 1.9, characterizes each oscillation (of frequency ωk) as

a pulsation mode with index k described by the quantum numbers l, m and n. The index

l is the angular degree of the mode, it accounts for the number of node lines in the surface

of the star. The index m is the azimuthal order of the mode, |m| accounts for the number

of node lines in the surface to be longitudinal lines but m can take any value in the range

from −l to l, consequently for each degree l there are 2l+1 modes. The index n is the radial

order, it accounts for the number of radial nodes inside a star, which by definition specifies

the overtone of the mode.

Radial and non-radial modes

Since l and m are involved in the angular solution of Eq. 1.9, the particular case of l = 0

describes the radial modes. In this situation, the star expands (cooling) and contracts

(heating) as a whole if it is pulsating in the fundamental radial mode, or in the particular

shell for any overtone n. Concentric shells expand and contract in anti-phase.

The general case, when l ≥ 1, Eq. 1.9 refers to a non-radial mode (Fig. 1.1)(see Unno

et al. (1989) for the full development of the equations). The simplest non-radial pulsation

is the asymmetrical dipole pulsation (l = 1). In this pulsation mode the upper section of

the sphere is contracting while the other is expanding, leaving the center of mass of the star

unchanged. Non-radial modes become difficult to detect from the quadruple mode (when
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Figure 1.1 Radial and non-radial pulsation modes examples. The columns show
the modes from different viewing angles; the left column is for an inclination of the
pulsation pole of 30◦, the middle column is for 60◦, and the right column is for 90◦.
The white bands represent the positions of the surface nodes; red and blue represent
sections of the star that are moving in (out) and/or heating (cooling) at any given
time, then vice versa. The top row shows the (l = 3,m = 0) mode, where the nodes
lie at latitudes ±51◦and 0◦. The second row shows the (l = 3,m = ±1) mode, with
two nodes that are lines of latitude and one that is a line of longitude. The third
row is the (l = 3,m = ±2) mode, and the bottom row shows the (l = 3,m = ±3)
mode. Rotation distinguishes the sign of m. Source: (Aerts et al., 2010)

l = 3) to higher degree numbers due to effects of partial canceling. When the degree of the

mode is high means that many node lines run across the stellar surface, dividing it in many

swelling and contracting sections. The partial cancelling effects refer to flux cancellations

that take place when a hotter section (brighter) counteracts with a cooler section (dimmer)
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Figure 1.2 Pressure (a) and gravity (b) modes ray path examples. Shown in panel
(a) are rays corresponding to modes of frequency 3000 µHz and degrees (in order
of increasing penetration depth) l = 75, 25, 20 and 2; the line passing through the
centre schematically illustrates the behaviour of a radial mode. The g-mode ray
path (panel b) corresponds to a mode of frequency 190 µHz and degree 5 and is
trapped in the interior. In this example, it does not propagate in the convective
outer part. This figure illustrates that the g-modes are sensitive to the conditions
in the very core of the star. Source:(Cunha et al., 2007)

when measuring the integrated light of the whole stellar disk.

Deviations from the spherical symmetry cause the non-radial mode to split, breaking

the azimuthal degree degeneracy. This means that the star is pulsating in a multiplet of

frequencies, one for each m, separated at a distance proportional to the mechanism that

originates the spherical deviation (e.g. the rotation of the star or the presence of a magnetic

field).

Pressure and gravity modes

Considering plausible approximations, the motion equation 1.6 can be simplified resulting in

a waveform equation, so that plain waves can be solutions. Two possibilities, in terms of the

restoring force considered can explain the high and low frequencies of a star. Pressure modes

(or p-modes) are the plain waves travelling inside the star due to the pressure restoring force.

Whereas, gravity modes (or g-modes) have the gravity as the restoring force.

Both p-modes and g-modes interact in the stellar interiors at different depths. They

reach certain returning r depths values on which the wave energy is reflected. For p-modes,
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the returning points and the frequencies are directly proportional to the order of the mode

n: the higher the order the higher the frequency and the radius value of the returning shell

(see Fig. 1.2a). Consequently, p-modes of low order travel the vast majority of stellar radius.

On the other hand, order values of g-modes are inversely proportional to the frequency: the

higher the order the lower the frequency. These gravity modes have returning points which

are near the nuclei (see Fig. 1.2b). Therein lies the importance of their detection, them

travelling so close to the stellar core potentially allows to infer the core properties.

1.1.4 Excitation mechanisms

Developing the idea of a star working as a heat engine, one of the parameters Eddington had

to model was the opacity. Although he struggled to overcome the opacity discrepancy from

assuming the wrong elements present in the star, with discoveries of Saha (1920), Payne

(1925) and Strömgren (1932), he could solve the issue. But in this quest, he sustained

the hypothesis that if opacity increases increasing the temperature, the star could become

unstable against its natural pulsations. In this scenario the retention of energy creates a

pressure force outwards, thus decreasing the opacity and so allowing the radiation to escape.

This dilated layer can no longer support the outer layers of the star so it contracts again,

thus, increasing opacity and temperature, starting a dynamic of periodic nature. Zhevakin

(1953) proved that this occurs in the Hydrogen ionization zone through linearised equations.

Today known as the κ-mechanism, this thermodynamical exchange of energy into mechanical

energy is common to occur in the majority of pulsating stars. Whether it is stars with high

opacity zones, such as helium or hydrogen ionization zones, or stars that suffer from an

increased opacity of iron, this is the mechanism they have in common that sustains their

pulsations (Fig. 1.3).

Another mechanism found to be driving pulsations in stars is the stochastic excitation

mechanism. It is active in the convective shells of solar-like stars where the noise energy

9



Introduction

Figure 1.3 H-R diagram of different variable stars and their driven mechanism.
Graph taken from (Aerts et al., 2010)

from convection is enough for the outer layer to resonate in some of their natural acoustic

modes. Since it is directly related with convective turbulence, it is, as the name indicates, a

randomly excitation process.

A recently known mechanism, considered to be responsible for the low frequencies in

γ Dor stars, is the convective blocking mechanism (Dupret et al., 2005, Guzik et al., 2000,

Pesnell, 1987). It refers to the radiative flux blocking that may occur in the frontier of the

radiative core and a convective layer, causing a retention of energy similar to the one caused

by the increment in opacity acting in the κ-mechanism.
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Not all pulsations are explained by these mechanisms. Other possibilities have been

explored, e.g. ε-mechanism, where the rate of matter production ε might induce instability

of oscillations modes. However, for the purpose of understanding the analysis in this research

thesis, this basic introduction of the most common and proved driven mechanisms is enough.

1.2 Delta Scuti stars

There are many different types of pulsating stars which are classified by the mechanism that

drives their pulsations, by the type of modes that are unstable or by peculiarities in their

chemical abundances. Fig. 1.3 shows the positions of this classification in the H-R diagram.

A particular group of great relevance for asteroseismology are the Delta Scuti pulsating stars

(δ Sct).

The δ Sct are metal rich stars (Population I) with spectral types from A2 to F2. Their

temperature varies in the range of 6300 ≤ T ≤ 8900 K and their masses from 1.5 ≤ M ≤

2.5 M�. Regarding its pulsations, they are mainly driven by the κ mechanism (see Fig. 1.3)

and are what are called multi-periodic pulsators, meaning that they can resonate in radial

and non-radial modes from 3 d−1 up to 80 d−1 frequency region (p-modes) (Aerts et al.,

2010, Balona and Dziembowski, 2011, Grigahcène et al., 2010, Uytterhoeven et al., 2011).

The multi-periodicity is such that it is often difficult to identify the oscillation modes clearly.

Generally, they follow Stellingwerf (1979) period relations for radial modes:

0.756 ≤ P1

P0

≤ 0.787

0.611 ≤ P2

P0

≤ 0.632 (1.11)

0.500 ≤ P3

P0

≤ 0.525

where the exact value depends on the stellar mass and composition.

The amplitude range of δ Sct stars can go from 10−3 up to 10−1 mag. The ones with

higher amplitudes, from minimum to maximum in the light curve exceeding ∼ 0.3 mag (see
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Balona, 2016, McNamara, 1997), are called High Amplitude δ Sct (HADS) stars. They are

not very common, only 0.8% of the stars in the δ Sct instability strip are HADS (Lee et al.,

2008), the rest are common Low Amplitude δ Sct (LADS) stars. Generally, HADS stars

pulsate in radial modes and are mostly slow rotators (v sin i < 30 km s−1) . Additionally,

HADS stars have been assumed to be in an intermediate state of evolution between δ Sct stars

and classical Cepheids (Poleski et al., 2010). Although, many studies show that there are

exceptions for these characteristics, making them physically not very different from a normal

LADS highlighting the arbitrariness of the HADS stars definition. For example, some HADS

stars have been found to be pulsating in non-radial modes (Garrido and Rodriguez, 1996,

Mathias et al., 1997, Poretti, 2003), Balona et al. (2012) found a fast rotating HADS, and

finally Balona (2016) convincingly proved that HADS do not seem to be an extension of

Cepheids to lower masses.

The knowledge of stellar structure and evolution can greatly benefit from the astero-

seismic study of these stars. δ Sct stars mass range involves the estimated limits for stars

having radiative cores and convective envelopes(M ≤ 1 M�) to stars with convective cores

and radiative envelopes (M ≥ 2 M�). Knowing that they are multi-periodic stars, many

modes can pierce into different depths of their stellar interior, enabling to characterize the

different regions of this interesting transitional evolutionary state.

Historically, variability studies in δ Sct stars began with Eggen (1956), who suggested

that they should be grouped separated from the β Ceph stars and become a new group

of variables with their particular properties. In the 70s, extensive research of δ Sct stars

enable to characterize them. For example, in Baglin et al. (1973) the first definition of δ

Sct variable is formally given. After this well-defined class of variable star was established,

important discrepancies with the models started to be obvious. Also, what was very puzzling

is how different δ Sct stars, with similar stellar parameters showed so different frequency

distributions (see Fig. 1.4) .The first suspicions about the origin of this difference were

regarding the quality of the observations. Small duty cycles of the observations available
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Figure 1.4 Schematic oscillation spectra of a number of δ Sct stars. Very different
frequency distributions for the same type of variables of similar parameters. Source:
Christensen-Dalsgaard (1997)

could be biasing the signal interpretation and the mode identification in these stars.

In a collaborative effort to increment the duty cycle of δ Sct observations, Michel Breger

founded the δ Sct network in 1983. Coordinating three ground-based observatories, San

Pedro Mártir observatory in Baja California Mexico, Sierra Nevada Observatory in Granada

Spain and Xian Lang in China, observations of consecutive cycles were achieved. Data taken

by this network allowed the creation of the popular δ Sct catalogue (Rodríguez et al., 2000),

and enabled full asteroseismic analyses to δ Sct variables (e.g. Breger et al., 1999). However,

13



Introduction

the discrepancies with the models were still present and by that time, the technology was

advanced enough to start thinking of the possibility of space observations.

1.2.1 Ultra-precise photometry for Delta Sct stars

The birth of the space era for asteroseismic analyses with Corot and Kepler missions brought

amazing findings for the δ Sct stars (Balona and Dziembowski, 2011, Michel et al., 2017) .

For example, it was found that most of the δ Sct stars are hybrids (Balona, 2014, Balona

et al., 2015), meaning that they have low frequencies associated to g-modes of pulsation

as well as the expected p-modes, already detected by ground-based observations. Another

interesting finding, thanks to very large surveys of δ Sct stars, ware the precise estimations

of the red and blue edge of the instability strip. After determining the instability region

for these variables, it was intriguing to find that 68% of the stars in these particular zone

do not pulsate (Balona, 2018, Balona and Dziembowski, 2011). All these arose questions of

the actual knowledge of the driven mechanisms, damping effects and mode selection in this

stars.

Additionally, the low noise level of space measurements enabled the detection of frequen-

cies following regular patterns. These frequencies were associated to non-linear effects, which

are very common in stars with pulsations driven by the κ mechanism.

1.3 Non-linear effects

In Section 1.1.2 we have seen that the perturbed hydrodynamic equations are linearised,

meaning that they are truncated to the first order, discarding interactions between variables

and second order terms. This was justified by assuming the reasonable approximation of

small oscillation amplitudes in comparison with the stellar inherent characteristics (e.g. its

radius). However, features of the observed light curves could not be represented by models in

the linear regime. For example, high amplitudes and phase lags in observations of Cepheids
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and RR-Lyrae lead to think that linearity was underestimating the physics working within

some pulsating stars.

Figure 1.5 Non-linear temperatures variations in different depths. Source: Christy
(1967)

Non-linear effects could explain the amplitudes and phase lags between the luminosity
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curve and the velocity curves representative of RR-Lyrae and Cepheids stars (Christy, 1962,

1964, 1966, 1967). Non-linear models were also developed for white dwarfs, successfully

explaining their light curves in therms of a non-linear responses of the envelope to high

amplitude changes in temperature (see Fig. 1.5). (Brassard et al., 1995, Brickhill, 1992,

Christy, 1967, Montgomery, 2005, Wu, 2001).

Yet, for δ Sct stars, Stellingwerf (1980) pointed out that between the mass range of these

variables, the non-linear equations undertake an unexpected turn. The models predicted a

continuous and exponential growth of amplitudes, even passing the escape velocity, ending

up in an incredible amount of mass loss. This was called by Stellingwerf The Main Sequence

Catastrophe, since the observations did not provide evidence of a great amount of mass loss

for these stars in the main sequence.

A great deal of effort has been made to solve the main-sequence catastrophe of the non-

linear effects for δ Sct stars. Stronger damping effects, non-linear mode selection or some

amplitude saturation mechanism must be acting somehow within the pulsating star. For

example, the resonant mode coupling (Buchler et al., 1997, Dziembowski, 1982, Van Hoolst,

1994), was proposed as a possible mechanism that could explain, to some extent, the observed

amplitudes. At this point, due to the lack of precise data to prove these mode coupling

hypothesis, discussions in this matter stopped for a while. Recent analyses of the ultra-precise

photometric data taken by space satellites have reignited the non-linear effects subject. For

example, the light curves of g-mode pulsators (such as γDor, SPB and SX Phoenix stars),

have been explained in terms of non-linear effects (Kurtz et al., 2015). In particular for δ

Sct stars, given that non-linear effects could explain their not yet understood pulsational

content, the non-linear effect discussion is in its apogee (Balona, 2012, 2016, Balona et al.,

2012, Bowman, 2017, Breger and Montgomery, 2014).

In summary, non-linear models are far from being complete. Until this date they have

been developed only for radial modes, with expensive calculations and mainly for RR-lyrae,

Cepheids and White dwarfs. The non-linear models for δ Sct are extensions of the models
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for these subgroups of completely different variable stars, and with no very encouranging

results (Balona, 2012, Stellingwerf, 1980). Particularly in Stellingwerf (1980), mode ampli-

tude predictions of stars are too high. The amplitudes vary with the viscosity parameter,

however such dependency is not backed up by any known physics. In addition, Balona

(2012) proved that assumptions in the white dwarfs non-linear models were not applicable

to main-sequences stars (geometrical effects, i.e. variation in radius and surface normal, are

not negligible in main-sequence stars in contrast to the case of white dwarfs, where due to

their high density the lack of these variations are a valid approximation.), so discarding the

applicability of these models to a star of the δ Sct type. Consequently, there is a lack of

knowledge in the models, on one side in the damping mechanisms: we do not know much

about interaction between modes (e.g. coupling), or the physics of them passing through a

convective zone. On the other hand, we also do not know much about the selection of pul-

sating modes (e.g. the existence of δ Sct hybrids and non pulsating stars in the instability

strip). Answering these open questions is just one part of the motivation of this research

thesis.

1.4 Motivation and objective of the research thesis

Non-linear effects must be taken into account to explain observations when the perturbed

variable undertakes large amplitudes. Deviations from linearity occur for example in the

hydrogen ionization zone of a pulsating star, where the κ-mechanism is proved to be respon-

sible for driving oscillations. In fact, pulsating stars in which the oscillations are mainly

heat-driven (RR-Lyrae, Cepheids, White dwarfs, β Cepheids, SPB stars) exhibit high non-

linear effects signatures in their light curves (although they can also be seen in γ Dor stars ,

where the excitation mechanism is the convective flux blocking). Unfortunately, non-linear

models are far from complete.

In the heat-driven group of variable stars, the δ Sct are of special interest. They are
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in the mass range where the transition between radiative to convective envelopes happens,

without a doubt an evolutive state worth of studying. Moreover, they show very complex

and dense pulsational content. This is a very important characteristic in an asteroseismic

context because many oscillation modes travelling at many different depths across the star

translates to more detailed information of the internal profile of the star.

Stellingwerfs’Main Sequence Catastrophe explained in section 1.3, showed that non-linear

modeling could explain δ Sct variables, but important knowledge is missing from the models

for them to be complete. The main objective of this research thesis is to try to characterise

non-linear effects of δ Sct pulsating stars observationally. The motivation is the lack of non-

linear models for δ Sct stars. Altogether, the aim is that at some point in the future, this

study would allow to build effective non-linear models for main-sequence pulsators that could

lead to understand their mode selection or damping mechanisms, their convective zones (e.g.

mixing length, overshooting), and overall the structure and evolution of the stars.

In empirical research such as this, special emphasis should be devoted to the correct

application of the analytical tools for data interpretation. In our case, understanding the

mathematical foundations of the time series analysis techniques is critical to interpret pho-

tometric data. That is why, in the next chapter, the main concepts on the subject are

presented.
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Chapter Two

Photometric Time Series Analysis

Figure 2.1 First 2,4 days of the time series or light curve of the mono periodic δ
Sct star TIC 9632550 observed with the TESS space satellite

A chronologically arranged sequence of measurements of any observable is what is called

a time series. When the observable is the number of photons coming from the light of a sky

source that are captured by a photometer (during a certain exposure interval), it constitutes

a photometric time series called light curve. Particularly, if the sky source is a pulsating

star, its light curve captures the periodic light variability of the star (see Fig. 2.1).
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A time series can be characterised in the frequency space by Fourier analysis, which is

based on the assumption that any function can be represented as a sum of sine and co-

sine functions. Sometimes, it is useful to understand a function in terms of the frequencies

of these harmonic components, for example in voice recognition analyses, electrocardiogram

analyses, or in the case that concerns us, asteroseismic analyses. Considering that asteroseis-

mic modelling begins with identifying properly the pulsation modes frequency of a variable

star, it is relevant to review the Fourier tools and its principles. In this chapter, important

concepts to take into account when carrying out a discrete Fourier analysis of photometric

time series are presented in some depth.

2.1 Discrete Fourier Analysis

The discrete Fourier analysis is the suited formalism for analysing data such as stellar light

curves. Light curves are finite and discrete data from where the frequency content, corre-

sponding to the intrinsic variability of the star, is expected to be extracted. To transform

a finite discrete function from the time space to the frequency space, one makes use of the

finite Discrete Fourier Transform (DFT) defined as:

FN(ν) =
N∑
k=1

f(tk)e
i2πνtk ; (2.1)

where ν is the discrete range of frequencies to be evaluated (whose size and discretization

are explained in Sections 2.1 and 2.5, respectively), N is the number of integrated light

measurements and the f(tk) is the light curve data point at time tk.Generally, f(tk) will be

treated as a periodic or harmonic signal of the form:

f(tk) =
n∑
j=1

Aj sin(2πfjtk + φj); (2.2)

where n is the number of components, Aj is the amplitude of the signal jthcomponent with
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frequency fj and phase φj.

Notice that FN(ν) is a complex function. By computing the square amplitude of FN(ν),

the complex components are eliminated. This is called a Power Spectral Density (PSD)

estimation (or simply, the power spectrum) based on the DFT equation 2.1:

P (ν) ≡ |FN(ν)|2 =
1

N

∣∣∣∣∣
N∑
k=1

f(tk)e
i2πνtk

∣∣∣∣∣
2

; (2.3)

where the 1
N
is a normalization constant, chosen like this so that in the special case of equally-

spaced data, the size of the peak recovers the corresponding Fourier component amplitude,

Aj (Deeming, 1975). Now, P (ν) is a real-valued even function for a real signal. In this way,

the higher the value of PN(ν), the higher the contribution to the signal of the harmonic

component with ν as a frequency. This is known as the classical periodogram.

A very common algorithm to compute a DFT is the Fast Fourier Transform (FFT)

algorithm which, as its name implies, considerably reduces the computational time of the

calculations. Two conditions have to be met so it can be applied. First, the points of the

series must be equally-spaced and second, the total number of point N must be a power

of 2. However, this second condition is no longer a necessary condition in more recent

modifications to the FFT algorithm (Cooley and Tukey, 1965).

Nyquist Frequency

The Nyquist frequency is the highest frequency value that can be studied. This follows

from the Nyquist-Shannon sampling theorem that states that a complete reconstruction of

a periodic signal with period P can be done only if the sampling interval is, at much, half

of it. This can be expressed analytically in terms of frequency as:

FNy =
1

2∆t
; (2.4)

where ∆t is the sampling rate or cadence.
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Generally, the δ Sct frequency range of pulsation is expected to be between 3d−1 to 80d−1

(Aerts et al., 2010, Balona and Dziembowski, 2011, Grigahcène et al., 2010, Uytterhoeven

et al., 2011). According to Eq. 2.4, in order to sample the δ Sct stars pulsations, ∆t must

be of at least 0.01d. Every instrument has chosen this value carefully. For example, δ Sct

stars observed by CoRot have been sampled in two cadence modes: the Short Cadence (SC),

where ∆t ≈ 32s, and the Nominal Cadence (NC), where ∆t ≈ 512s. Kepler measurements

are also taken in two modalities, the SC and Long Cadence (LC) modes but the ∆t are

≈ 58.5s and ≈ 29.45m, respectively. TESS observations of δ Sct stars are given in a unique

mode of 2 min cadence (or ≈ 120s). Consequently, the δ Sct light curves used in this study

are the ones in SC mode of the CoRoT and Kepler data, and the 120s cadence of TESS,

since they exceedingly cover the frequency range of interest.

Frequency Resolution

The separation between frequencies, determined by the observation time spam ∆T , is what

is called the frequency resolution:

∆ν =
1

∆T
(2.5)

The expression 2.5 is often referred to as the Rayleigh resolution. As the main input data

for asteroseismic modeling are the natural oscillating modes of the star, it is really important

to resolve every frequency so they can be clearly distinguished from one another. In other

words, the proper situation, where the modes are well separated, is given when the following

condition is met:

|ωi − ωj|∆T � 1; (2.6)

for all pairs of i 6= j.

Notice that the Rayleigh resolution can be easily mistaken with the precision of the

frequency. When two or more frequencies are in the same interval of Rayleigh size, because

the frequencies are very close together or because the length of the observation is not enough

22



Photometric Time Series Analysis

to resolve them, then the Rayleigh resolution is the frequency uncertainty. Sometimes, it

could be even larger than the Rayleigh resolution (∆ν = 12
∆T

, see Christensen-Dalsgaard,

1997).

However, precision can go further if in the Rayleigh interval there is only one frequency

component. Dense power spectra is a common characteristic of δ Sct star power spectra,

yet the space measurements are long enough even to resolve very close rotational frequency

splittings.

Spectral windows

When dealing with real data, unfortunately one must take into account interferences that

arise due to the inevitable finite length of the observation and the sampling. An important

conclusion in this regard, stated by Deeming (1975), is that "[...] the observed Fourier

transform, FN(ν), is the convolution of the true Fourier transform F (ν) with a spectral

window δN(ν)". This can be expressed analytically by:

FN(ν) = F (ν) ∗ δN(ν) ≡
∫ ∞
−∞

F (ν − ν ′)δN(ν ′)dν ′; (2.7)

where the ∗ symbol corresponds to the convolution operation, and δN(ν) takes the form of:

δN(ν) =
N∑
k=1

ei2πνtk (2.8)

The effect of a convolution is shown in Fig. 2.2. A simple continuous periodic function

Y (t) (upper left) has an exact DFT shown in the upper right panel. If this continuous

function Y (t) is sampled with the window function of the mid left panel, the resulting DFT

of the sampled function (bottom left) will be the one shown in lower right panel. Therefore,

in order to disentangle the real Fourier transform (upper right) one must know the spectral

window, this is, the Fourier transform of the observation function or window function (mid

right panel).

23



Photometric Time Series Analysis

Figure 2.2 Convolution effect over the continuous function Y (t) = 1.2sin(2πt) +
0.8sin(4πt) + 0.4sin(6πt) + 0.1sin(8πt). Source: VanderPlas (2018)

Window functions can have very diverse forms depending on how the data is gathered.

One characteristic window functions are the ones generated by ground-base observations.

They usually are a discrete number of photon counting (done by a photometer) of the

integrated light from a stellar disk, separated by periodic gaps of one day approximately,

owing to the day-night cycle. When computing a DFT to this type of window functions,

one obtains a spectral window with a periodic component of one cycle per day which will be

modulating the entire DFT of the stars light curve.

Besides windows from ground-base observations, there are the ones generated by space

observations. These windows improve the precision of the data by not only removing unde-

sired atmospheric distortions, but by removing the one cycle per day periodic contribution

of the ground-based observations. The data used in this research thesis is gathered by space

satellites such as CoRoT, Kepler or TESS. In Fig. 2.3, window functions of each of these
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Figure 2.3 Examples of real window functions. CoRot window function of a ≈ 79
days long SC observation (upper panel). Kepler window function of quarter 4 (Q4),
≈ 31 days long SC observation (mid panel). TESS window function of a ≈ 27 days
long SC observation (bottom panel).
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instruments are shown.

Corot gaps every 0.072 days are due to the pass of the instrument over the South Atlantic

Anomaly (SAA), which influences the instrument’s electronics invalidating the measurements

gathered during that period of time. Big gaps are uncommon in Kepler light curves, although

must of the instrumental artefacts are due to a drift in time and consequently unevenly spaced

measurements (see ’undisciplined time’ in Van Cleve et al., 2016), generating an important

source of picks in the spectral window, that distorts the light curve’s DFT. TESS window

functions of sector 1 and 2, shows a gap every ≈ 13 days due to the moment when the

satellite orients the antennas to send the data to Earth. It Occurs one time in each orbit

of the satellite, which is in a 2:1 resonance with the Moon. Moreover, a disturbance in the

signal in the form of irregular gaps is common for the second part of the light curve (after

the gap due to data downlink to Earth).

On the other hand, another consequence of the finite duration of the observation is the

leakage effect. This effect can occur when the signal to which the DFT is going to be

computed, does not have an integer number of cycles. This affects how the power spectrum

looks like, because the energy of the frequency is not focused in one single bin, so it is

distributed in near apparent Fourier contributions called sidelobes.

2.1.1 Overcoming the DFTs interference from the spectral windows

The Lomb-Scargle periodogram

The Lomb-Scargle (LS) periodogram is an algorithm that tackles the very common issue of

uneven sampling when analysing astronomic time series. Unevenly-spaced data entails an

unstructured spectral window, whose convolution with the Fourier transform of the continu-

ous signal introduces interference in the DFT, jeopardizing the frequency analysis. Concepts

of classical Fourier analysis, such as the Nyquist frequency or the classical periodogram, do

not hold for the nonuniform sampling case. In the former, owing to the ambiguous value of

26



Photometric Time Series Analysis

∆t, and in the latter, owing to the discrepancy between the classical periodogram solution

for the unevenly sampled data from the chi-square distributed solution, corresponding to the

uniform case.

Scargle (1982) introduces a correction to the classical periodogram 2.3, allowing it to

conserve the statistical properties for the uniform case:

P (ν) =
1

2

[
(
∑

n f(tk) cos(2πf [tn − τ ]))2∑
n f(tk) cos2(2πf [tn − τ ])

+
(
∑

n f(tk) sin(2πf [tn − τ ]))2∑
n f(tk) sin2(2πf [tn − τ ])

]
(2.9)

where τ is a function of the frequency f, ensuring time-shift invariance (see VanderPlas,

2018):

τ =
1

4πf
tan−1

(
(
∑

n sin(4πftn)

(
∑

n cos(4πftn)

)
(2.10)

It should be noted that Lomb-Scargle periodogram is the same as filling the gaps with

zeros and computing a FFT, therefore the influence of the gaps remain in the resulting

periodogram. Conversely, the MIARMA interpolation method does break the gaps-signal

correlation.

MIARMA interpolation

Another solution to the unevenly-spaced sampling problem is to interpolate the gaps of

the time series. The interpolation algorithm will influence directly the shape of the light

curve, and consequently the resulting frequency spectra. When trying to explain the light

curve in term of a sum of harmonic components, it is possible that the gap-filling differs

significantly from the signal. In this case, not only the harmonic components owing to the

intrinsic variability of the star are enough, but more components are required in the sum to

completely explain the signal. In this sense, the interpolation algorithm chosen to fill in the

gaps is critical for an asteroseismic analysis.

In this research, gaps are interpolated by the MIARMA interpolation algorithm (Method

of Interpolation by Auto Regressive and Moving Average) (Pascual-Granado et al., 2015b),
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which aims to preserve the frequency content of the star. It uses the Moving Average Auto

Regressive models (ARMA models) to predict the data inside the gaps, without making

assumptions on the analyzed signal. As a consequence of this flexibility, statistical criteria

can be applied to choose a model in which minimal-loss of information can be guaranteed.

Moreover, periodograms of MIARMA interpolated light curves have proven to be suppressing

the effects of the spectral window to its minimum, in contrast to linear interpolation or by

simply leaving the gaps intact (Pascual-Granado et al., 2018). Altogether, the fact that

the MIARMA gap-filling algorithm aims to preserve the original frequency content of the

time series, besides minimizing the effects of the spectral window, makes it the more suited

interpolation method for an asteroseismic analysis.

Direct Deconvolution

Defining X as a continuous function describing the light variation of a pulsating star, then,

the product X ·W is the observed light variation denoted by,

fw(X) = X ·W (2.11)

where W is the window function, which can be extended to the concept of an effective

window if we define Ie to represent any instrumental response as a function of time, yielding

the definition of the effective window We,

We = W · Ie (2.12)

In such a way, this definition gives us a clear independence between the window and the

function X. Obviously, the effects of the window expected to be removed are those that do

not come from the observing box (i.e. Rayleigh resolution) and the sampling (i.e. Nyquist

frequency).

Generally, the samples are not evenly spaced, so the Fourier Transform for unevenly

spaced data is applied, here denoted by FTLS[·], which is based on the same framework as
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that behind the LS periodogram, but yields an estimate Fourier transform, the absolute-

square of which is identical to the periodogram (see Scargle, 1989, for details). This function

is an estimation of the Fourier Transform

FTLS[fw(X)] = FTLS[X ·W ]

= FTLS[X] ∗ FTLS[W ], (2.13)

where dot means product and asterisk convolution. Note that X does not depend on the

observational window.

Taking the Fast Fourier Transform of Eq. 2.13 denoted by FFT{·},

FFT{FTLS[fw(X)]} = FFT{FTLS[X] ∗ FTLS[W ]}

= FFT{FTLS[X]} · FFT{FTLS[W ]} (2.14)

Now its possible to obtain a ratio because the FFT{FTLS[W ]} is a complex function of

the LS Fourier Transform of the window, which is now evenly sampled in frequency following

prescriptions established in Scargle (1989). Then,

FFT{FTLS[fw(X)]}
FFT{FTLS[W ]}

= FFT{FTLS[X]} (2.15)

Finally, taking the Inverse Fast Fourier Transform,FFT−1〈·〉, we will obtain the ’true’

Fourier Transform of the signal without any procedure attempting to remove the effects of

the window (see e.g. Scargle et al., 2017).

FFT−1〈FFT{FTLS[fw(X)]}
FFT{FTLS[W ]}

〉 = FFT−1〈FFT{FTLS[X]}〉

= FFT{FTLS[X]}; (2.16)

which is, by construction, clearly independent of the window.
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Figure 2.4 Representative result of the application of the direct deconvolution (DD)
to the HD 174966 δ Sct star. The power contribution at 161.713 µHz, corresponding
to the orbital frequency of the satellite, is not removed by the DD.

The above formalism, namely the Direct Deconvolution (DD) formalism, aims to mini-

mize the contribution of the observational window in order to obtain only information from

the physical system in question. Fig. 2.4 shows the LS periodogram (black), the DFT

(blue), the FFT of the light curve interpolated with the MIARMA algorithm (red) and the

DD (green), for the δ Sct star observed by CoRoT, HD174966. The DD power spectra

shows frequencies that result from the convolution of the signal coming from the star with

the observation window, for example: the maximum at 161.713 µHz corresponding to the

orbital frequency of the CoRoT satellite and its pass over the SAA (Auvergne et al., 2009).

Comparing to the FFT of the light curve interpolated with the MIARMA (Pascual-Granado

et al., 2015a) algorithm, it is clear that the 161.713 µHz maximum (and its harmonics), is
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completely removed.

The DD was applied to a sample of 15 δ Sct stars observed by CoRoT. The behavior

exemplified in Fig. 2.4 is repeated for all of them: the DD does not remove the contribution

from the observation window as expected. It could be of interest for further studies to demon-

strate that the term FFT{FTLS[W ]}, of Eq. 2.1.1 is never zero. Such demonstration could

enable to correctly isolate (into one side of the equation) the term FFT{FTLS[X]}, which

would allow to finally obtain the DD expression with mathematical rigor. In this sense, a

LASSO regularization was performed but no conclusive results were obtained. Therefore, the

preferred method in this monograph to overcome the periodicities due to the observational

window, is to apply the MIARMA algorithm of interpolation (except for when the gaps are

small enough or not periodic, in those cases a LS is preferred).

2.1.2 Prewhitening

Once the computed periodogram is correctly representing the frequency content of the star

(either by the LS approximation or with the MIARMA interpolation algorithm) the next

step in the analysis is to specify the frequency values of those components that generate the

signal. This is commonly done by a prewhitening procedure.

The prewhitening procedure is based on the assumption that the light curve f(t) is a

composition of an harmonic part and an added Gaussian white noise ε(t) in the following

form:

f(t) =
n∑
k=1

Ak sin(2πfkt+ φk) + ε(t); (2.17)

where n is the number of components. Under this hypothesis, if n sine waves (each with its

νk frequency) are fitted to the light curve by the least squares method, ist expected for the

residual light curve to be the Gaussian white noise function ε(t).

The prewhitening algorithm first fits a sine wave with the frequency amplitude and phase
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of the highest contribution of power in the periodogram. Next, the highest contribution in the

periodogram of the residual light curve is fitted. This step is repeated until the residual light

curve shows only noise. By the end, the algorithm yields a list of frequencies, amplitudes and

phases corresponding to each sinusoidal component of the signal. This parameters can be

optimized computing a non-linear least squares, guaranteeing that the frequencies, amplitude

and phases correspond to the parameters of the minimized solution (minimal variance of the

residuals).

Figure 2.5 Example of the Plateau or grass of frequencies formed after N number
fits for the HD 50870 star. Source: Mantegazza et al. (2012)

Unfortunately, the expectation of reaching a residual light curve uncorrelated with the
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original signal after a sub sequence of sine waves fittings is not always fulfilled. Research in

this topic (Mantegazza et al., 2012, Poretti et al., 2009) have shown that, after a consider-

able amount of fits, the residual light curve is still correlated with the signal and spurious

information in the low frequency range is added, forming a Plateau (see Fig. 2.5).

In any case, despite the lack of stopping criteria owing to the never-reached white noise

residual light curve, the prewhitening algorithm remains the most common tool to determine

the list of statistically significant frequencies. Along with a non-linear least-squares param-

eter optimization, the prewhitening cascade is still practical if an ad hoc, but reasonable,

stopping criteria is adopted. For example, a very often criteria used by the asteroseismology

community is to consider a peak significant if the signal to noise ratio (S/R) of the peak is

≥ 4 in an amplitude spectrum (Breger et al., 1993), or ≥ 12.57 in a power spectrum (Reegen,

2007).

2.2 Time series analysis of Delta Sct light curves

In stellar physics, the use of light curves and power spectra to determine properties of variable

stars and their evolution is quite common, but these spectra can sometimes be extremely

difficult to interpret. Fourier analysis applied to light curves does not result in accurate

frequency identification. This can be due to various reasons such as the following:

1. Finite duration of the time series (e.g. the leakage effect).

2. Gaps (window function)

3. Damping of oscillations.

4. Combinations between modes.

5. Noise from the observation process.
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These, among other reasons, are introducing alterations in the power spectra. In this

way, there is a confusion between the system’s own frequencies and those that are not, called

spurious, which could lead to an incorrect identification with the theoretical frequencies.

The power spectra of δ Sct stars are not yet understood using standard physics. Until now,

it has not been possible to identify most of the oscillation modes, and therefore the interior

structure of the convective nucleus and the rotation profile are not known in detail. They

are often dense and complex, and do not match current available models (García Hernández

et al., 2013, Mantegazza et al., 2012, Poretti et al., 2009). This thesis will address the problem

of interpretation of the power spectra of the light curves of pulsating stars of the δ Sct type.

Specifically, it will focus in point 4 of the above list, on the study of the combinations

between excited modes, namely non-linearities, which have their origin in the non-linear

effects present in some of their light curves. Such concept of non-linear effects is presented

developed in the next chapter, along with a theoretical explanation of how non-linearities

can be present in δ Scts’ non-linear light curves.

34



Chapter Three

Non-linear effects in Delta Scuti stars.

Non-linear effects are consequences of physical processes that can be explained by second

or higher orders of the perturbed variables of the stellar structure equations, namely the

non-linear models. As mentioned in Section 1.1.4, non-linear models were able to describe

the non-sinusoidal shapes of some pulsating star light curves. Most of the studies of non-

linear effects through non-linear modeling were made for DA and DB variable stars (Brassard

et al., 1995, Brickhill, 1992, Montgomery, 2005, Wu, 2001). In this studies, such particular

changes in luminosity had physical explanations related to mechanisms that follow non-linear

dependencies, such as the T 4 dependence in the Stefan–Boltzmann law for the emergent flux,

or the non-linear response of the stellar interior to the oscillation wave occurring in the thin

outer convective layer. The interaction between the oscillation and the variation of the depth

of the convective zone in the outer layer of a pulsating star (Brickhill, 1992, Wu, 2001),

or the non-linear flux response of the stellar medium induced by surface geometrical and

temperature distortions (Brassard et al., 1995) are going to be grouped in this monograph

into the non-linear distortion processes (NLDP). These theories were extrapolated to the

rest of the pulsating stars where a convective envelope is believed to be present.

Balona (2012) found that some parts of non-linear modeling for white dwarfs are not

suited for intermediate-mass pulsating stars, such as δ Sct stars. According to him, the

assumption of no geometric variations (instant adjustment of the surface convective layers)
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Figure 3.1 Extract of the GSC 00144-03031 light curve observed by CoRoT. Steep
ascends and slow descends move away from the characteristic sinusoidal shape.

assumed for DA and DB stars can not be adopted for these variable stars. Nevertheless, the

above mentioned NLDP are still adopted as the possible explanation for the non-linear effects

seen in δ Sct variables. However, non-linear variations of the radius of the star (geometric

displacement) must be taken into account. It is worth to mention that Brickhill (1992) non-

linear models of white dwarfs discard the possibility of non-linear effects being generated in

the radiative zone of the star. Nonetheless, the group of δ Sct variables may contain stars

with enough mass to suffer the transition from a convective envelope to a radiative one, so

non-linearities coming from the radiative interior can not be ruled out in future attempts of

non-linear modeling of δ Sct stars.

Along with the non-linear effects from the NLDP, there are non-linear effects coming from

the amplitude limiting mechanisms (that could be time dependent. See Bowman, 2017), as

well explained by second order theories. Recalling the study of the non-linear theory for δ

Sct stars done in Stellingwerf (1980), amplitude predictions have considerably exceeded the

36



Non-linear effects in Delta Scuti stars.

observed ones (see Section 1.1.4). For this reason, assumptions over unknown damping or

mode selection mechanisms operating in these type of variables have been the motivation

of many recent studies. For example, the mode coupling theory developed by Dziembowski

(1982) proves parametric and direct resonance as possible amplitude limiting mechanisms.

Many authors have claimed that this type of non-linear effect is acting in some δ Sct stars

(Bowman et al., 2016, Breger and Montgomery, 2014, Buchler et al., 1997). It is important

to note, however, that this non-linear effect is not distorting the light curve. Mode coupling

footprint in a light curve is just the addition of another sinusoidal component in the Fourier

sense, the resonantly excited mode.

NLDP are responsible for distorting the light curve (see e.g. Fig. 3.1). Distorted light

curves induce harmonics to the Fourier power spectra. How harmonics and cross-terms

can appear in a power spectra is shown mathematically in the next section. However, it

is important to remark that this thesis is an observational or empirical study and that the

non-linear theory given in this chapter is not only abbreviated but general.

3.1 General non-linear theory for pulsating stars.

The non-linearised equation of oscillations, for the displacement vector ξ and considering

weakly non-linear pulsations, can be expressed by the following equation (see Kurtz et al.,

2015):

δ2ξ

δt2
+ L(ξ) +N (2)(ξ, ξ) +N (3)(ξ, ξ, ξ) + ... = 0; (3.1)

where the L(ξ) and N (k)(k = 2, 3, ...) are the linear and the non-linear operators of order k,

respectively. The solution of Eq. 3.1 up to the first order operator is already given in Eq. 1.9.

When including second-order terms of Eq. 3.1 the differential equation to be solved is:

δ2ξ(2)

δt2
+ L(ξ(2)) = −N (2)(ξ(1), ξ(1)); (3.2)
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which is the equation of a forced oscillation, being N (2)(ξ(1), ξ(1)) the force inducing the

oscillation. Eq. 3.2 is an inhomogeneous differential equation, therefore its solution is the

sum of the general solution (Eq. 1.9) plus the particular solution. Including the general

solution in Eq. 3.2, the final inhomogeneous differential equation to be solved for a second-

order non-linear oscillation is:

δ2ξ(2)

δt2
+ L(ξ(2)) = −

∑
nlm,n′l′m′

N (2)(anlm~Ξnlm, an′l′m′~Ξn′l′m′)ei{(wnlm±wn′l′m′ )t+(Φnlm±Φn′l′m′ )};

(3.3)

where the general solution for two modes of index k ≡ (n,m, l) and k′ ≡ (n′, l′,m′) are:

ξ
(1)
k =

∑
nlm

~Ξnlm(r)Y m
l (θ, φ)e(iωnlmt+Φnlm), (3.4)

ξ
(1)
k′ =

∑
n′l′m′

~Ξn′l′m′(r)Y m′

l′ (θ, φ)e(iωn′l′m′ t+Φn′l′m′ ) (3.5)

and the radial and horizontal displacement components of ~Ξ are:

~Ξnlm = ξnl(r)Y
m
l er +Hnl(r)

[
δY m

l

δθ
eθ +

1

sinθ

δY m
l

δφ
eφ

]
, (3.6)

~Ξn′l′m′ = ξn′l′(r)Y
m′

l′ er +Hn′l′(r)

[
δY m′

l′

δθ
eθ +

1

sinθ

δY m′

l′

δφ
eφ

]
(3.7)

The particular solution to Eq. 3.3 will have cross-terms of frequencies wnlm +wn′l′m′ and

wnlm−wn′l′m′ , explaining the combination frequencies. The particular case of wnlm = wn′l′m′

originates the second harmonic 2wnlm and so on for higher orders of the non-linear operator.

The development of the perturbed stellar structure equations up to the second order

perturbation above presented, have shown how cross-terms frequencies from independent

modes interaction can be explained when the variables are not truncated to the first order

of perturbation. But, are these the cross-terms showed in the power spectra?. To try to

answer this question, many studies focused in reproducing the non-linear light curves so the

non-linear terms in the power spectra could be completely explained.
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3.2 Modeling non-linear light curves

In Balona (2012), the expression for the luminous flux variations over time in the direction

of an observer in the co-rotating frame is given by the following expression:

∆F

F
=

εi
2π
<{(V1 + V2)Y mi

li
(Θ,Φ)Y

mj

lj
(Θ,Φ)ei((ωi+ωj)t+xi+xj)} (3.8)

where the points on the surface of the star are described by the angular coordinates (Θ,

Φ), (ωi and ωj) are the angular frequencies of two modes with arbitrary phases (xi and xj)

and their spherical harmonics ((li, mi) and (lj, mj), respectively). V1 is an expression that

comprehends the variations in the flux coming from geometry changes (i.e radius and surface

normal) and V2 from temperature and surface gravity changes.

Note that the relative flux variation expression can not be compared with the observa-

tions. The observed measures are integration of flux over the complete stellar disc, whereas

the equations are expressing the flux in a surface point. In theory, the observed light vari-

ation is described by ∆L
L
, which is obtained by integrating ∆F

F
over the visible hemisphere.

Additionally, one must take into account the limb darkening effect, as well as the way the

instrument takes the measurements.

In white dwarf non-linear theory (assuming that geometric effects are negligible), the

relative flux variation expression could be simplified and therefore integrated (numerically

according to Brickhill (1992), or analytically according to Montgomery (2005), Wu (2001))

obtaining the ∆L
L
, so it can be compared with the observations. Conversely, this was not pos-

sible for intermediate-mass stars (Balona, 2012), where the variations of radius and surface

normal have to be taken into account.

A possible path to take, in order to shed some light into the non-linear behaviour of

intermediate-mass pulsating stars, is to characterize the observed non-linear light curve by

its Fourier decomposition parameters (Simon and Lee, 1981). Their correspondence with

physical processes can be of later work. Generally, such characterization for combination

frequencies is described in the literature by the non-linear distortion model or simple model.
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In this dissertation, the Volterra-based model is introduced as an alternative way of charac-

terizing non-linear light curves.

3.3 Modeling the Fourier parameters

3.3.1 The non-linear distortion model (or simple model)

Non-linearities are combination frequencies arising in the star power spectrum due to non-

linear processes taking place inside the pulsating star, whose footprints are captured in their

light curves. These harmonics and cross-terms express interaction between the oscillating

modes of the physical system. The simplest interaction between modes can be explained by

the non-linear distortion model (or simple model). The luminosity signal of a double mode

pulsating star can be explained in terms of a product of two sinusoidal waves Y1 and Y2

Y1 = A1 cos(2πν1t+ φ1) (3.9)

Y2 = A2 cos(2πν2t+ φ2); (3.10)

where ν1 and ν2 are the independent frequencies (also called parent frequencies). They

interact with each other originating a signal Yc(t) of cross-terms at ν±c called combination

frequencies (or children frequencies)

Yc(t) ∝ Y1(t)Y2(t)

∝ A1A2 cos(2πν1t+ φ1) cos(2πν2t+ φ2)

≡ Ac cos(2πν+ct+ φ+c) + Ac cos(2πν−ct+ φ−c);

(3.11)

where

ν±c = ν1 ± ν2; (3.12)

φ±c = φ1 ± φ2; (3.13)

Ac =
A1A2

2
; (3.14)
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are the frequency, phase and amplitude relations of the combinations at t = 0, respectively.

In this model, children are expected to mimic (to correlate with) their parents phase

and amplitude. Unfortunately, this model does not explain many of the observed amplitude

distributions of combination frequencies in δ Sct stars. It is very frequent to find amplitudes

of combination frequencies much larger than the predicted by the simple model (Breger and

Montgomery, 2014), even surpassing their parents amplitudes (Kurtz et al., 2015).

3.3.2 Resonant mode coupling model

If any resonance condition is met, for example

ωc ≈ ω1 + ω2 (3.15)

or

ωc ≈ 2ω1; (3.16)

then the parent frequencies (ω1 and ω2) and their children are locked in energy, enabling

the possible interchange of energy between them (Buchler et al., 1997, Dziembowski, 1982,

Nowakowski, 2005). This means that any variation of the parent modes can be affecting the

children in the same amount. The energy of the independent mode is distributed in all the

coupled family.

In terms of Fourier parameters, frequency and phases under a resonant mode coupling

situation will follow the same relation as the non-linear mixing model (Eqs. 3.12 and 3.13).

However, the amplitudes relation for couple modes obeys a more sophisticated expression

(Dziembowski, 1982):

Ac = µcA1A2; (3.17)

where µc is the coupling coefficient described by the following form:

µc =
H

2σcγcIc
; (3.18)
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where the H coefficient determines the strength of the coupling and the σc, γc and Ic are the

dimensionless frequency, damping rate and inertia of the coupled child, respectively.

This formulation could explain the amplitude enhancement observed sometimes for chil-

dren frequencies, inexplicable by the simple model. According to Dziembowski and Kro-

likowska (1985), the most likely resonance mechanism occurring in δ Sct stars is the para-

metric resonance. Two g-modes (parents) can couple with an unstable p-mode (child). The

coupling of these modes would cause interchange of energy in anti-correlation with the par-

ent modes. Examples of this are given in Barceló Forteza et al. (2015), Bowman and Kurtz

(2014), Bowman et al. (2016), Breger et al. (2012), Breger and Montgomery (2014) where

identifications of families of couple modes in δ Sct stars were made. Their method is based

on the assumption that amplitudes of the members of a coupled family are similar, therefore,

larger values of µc are expected. For example, in KIC 8054146, the order of magnitude of

µc was of 103 for parents with an amplitude ≈ 10−1 mmag (Breger and Montgomery, 2014).

Their models for the amplitude of the coupled child match very precisely with the observa-

tions. However, it is important to note that to test their models the modes have to have

large-scale amplitude modulation, therefore, application of their method can be cumber-

some since variation in time between all the modes has to be studied to check the expected

interchange of energy.

3.3.3 The Volterra expansion model

In the context of system and signal analysis, the Volterra expansion (or Volterra series) is a

general non-linear model that can describe the output of a non-linear system in terms of an

infinite sequence of functions, namely, the generalized transfer functions.

Considering the pulsating star to be the non-linear system in question, and if the input

to such system is a single real-valued sine wave with frequency ω0 and amplitude A0, the
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output can be expressed as (see Priestley, 1988, p.29)

Y (t) = A0 · Γ1(ω0) · ei·ω0·t+φ0 + A2
0 · Γ2(ω0, ω0) · e2·i·ω0·t+2·φ0

+A3
0 · Γ3(ω0, ω0, ω0) · e3·i·ω0·t+3·φ0 + . . .

(3.19)

where the ΓO functions are the generalised transfer complex functions. Sub-index O de-

notes the non-linear order of interactions, i.e. Γ1 represents the system response for each

independent frequency, Γ2 represents the system response for first order interactions, and

so on. With the purpose of obtaining a physical model that explains non-linear effects, the

generalised transfer functions must be fully characterized.

Although Y(t) is not linear between the input/output spectra, it is linear between Y(t)

and the ΓO functions (Scargle, 2020), so a standard least-squares procedure quantify not

only the parameters of the input components, but also the contribution from the generalised

transfer functions. For example, since the ΓO functions are complex functions, they can be

expressed by

Γo(ωi) = |Γo(ωi)|eiarg{Γo(ωi)} (3.20)

Therefore, Eq.3.19 can be rearranged as:

Y (t) = Ã1 · eiω0·t+φ̃1 + Ã2 · e2·i·ω0·t+φ̃2+

Ã3 · e3·i·ω0·t+φ̃3 + ...

(3.21)

where,

Ã1 = A0 · |Γ1(ω0)|,

Ã2 = A2
0 · |Γ2(ω0, ω0)|, (3.22)

Ã3 = A3
0 · |Γ3(ω0, ω0, ω0)|

and

φ̃1 = φ0 + arg{Γ1(ω0)},

φ̃2 = 2 · φ0 + arg{Γ2(ω0, ω0)}, (3.23)

φ̃3 = 3 · φ0 + arg{Γ3(ω0, ω0, ω0)}
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Examining the case when the input is composed of two real-valued sine waves at frequencies

ω0 and ω1, the output of a non-linear system modelled by a Volterra series is:

Y (t) = A0 · Γ1(ω0) · ei·ω0·t+φ0 + A1 · Γ1(ω1) · ei·ω1·t+φ1

+A2
0 · Γ2(ω0, ω0) · e2·i·ω0·t+2·φ0 + A2

1 · Γ2(ω1, ω1) · e2·i·ω1·t+2·φ1

+A0 · A1 · Γ2(ω0,±ω1) · ei·(ω0±ω1)·t+(φ0±φ1)

+A1 · A0 · Γ2(ω1,±ω0) · ei·(ω1±ω0)·t+(φ1±φ0) + ...

(3.24)

Eq.3.24 can be rearranged as:

Y (t) = Ã1 · ei·ω0·t+φ̃1 + Ã2 · ei·ω1·t+φ̃2+

Ã3 · e2·i·ω0·t+φ̃3 + Ã4 · e2·i·ω1·t+φ̃4+

Ã5 · ei·(ω0±ω1)·t±φ̃5 + ...

(3.25)

where,

Ã1 = A0|Γ1(ω0)|,

Ã2 = A1|Γ1(ω1)|,

Ã3 = A2
0|Γ2(ω0, ω0)|,

Ã4 = A2
1|Γ2(ω1, ω1)|, (3.26)

Ã5 = A0A1|Γ2(ω0, ω1)|,

or Ã5 = A1A0|Γ2(ω1, ω0)|1
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and

φ̃1 = φ0 + arg{Γ1(ω0)},

φ̃2 = φ1 + arg{Γ1(ω1)},

φ̃3 = 2 · φ0 + arg{Γ2(ω0, ω0)}, (3.27)

φ̃4 = 2 · φ1 + arg{Γ2(ω1, ω1)},

φ̃5 = φ0 ± φ1 + arg{Γ2(ω0,±ω1)},

or φ̃5 = φ1 ± φ0 + arg{Γ2(ω1,±ω0)}1

A Fourier Transform of Eq.3.25 results in a power spectrum with peaks at the parent

frequencies ω0 and ω1, as well as on the frequencies of the non-linear terms or children

frequencies. This is a well-known phenomenon in system and signal analysis called inter-

modulation distortion. In the case of one parent frequency it is called frequency multiplication

or harmonic distortion.

The Volterra expansion model was first proposed by Garrido and Rodriguez (1996) to be

suited to model non-linear light curves. The non-sinusoidal shapes of the light curves can

be reproduced by treating the variable star as a non-linear but stationary system, where the

origin of the pulsation is interpreted as the application of a known input (a basic harmonic

signal) to the system. In the next chapters, non-linear terms in δ Sct stars power spectra

are going to be empirically characterized under the general non-linear model given by the

Volterra series. In chapter 5, results of a first approach to an empirical characterization of

the ΓO functions are presented.

1since no condition of symmetry is yet imposed.
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Chapter Four

Non-linearities in Delta Sct stars. I The

frequency relation

Combination frequencies in the power spectrum of a variable star due to NLDP, or from

a resonantly excited nature, are called non-linearities. To start to characterize them ob-

servationally, it is imperative to determine their position in the power spectrum, i.e. their

frequency value. So far, discerning unambiguously whether a maximum in the power spec-

trum is due to an excited radial or non-radial mode of the pulsating star, or the result of a

combination produced by the interaction between these modes has not been possible.

In this study, the variable star behaviour as a non-linear system is taken as a hypothesis,

so that all the underlying theory of signals and systems (explained in Section 3.3.3) could

be applied. Therefore, in order to identify combinations as non-linearities, the frequency,

amplitude and phase relations must be hold. The frequency relation is considered first as

it is totally determined, and is exactly the same for the Volterra model as for the simple

model.

In this chapter, a self-consistent method to identify the frequencies of the power spectrum

that comply with the parent-child relationship is presented in Section 4.2, along with its

application to various δ Sct stars (Sections 4.3.1-4.3.3). This method is capable of yielding

great precision in the frequencies as well as to exhaustively find the parents that ’best’ explain
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the signal in terms of their non-linear components, although it does not clarify which are the

parents and which are the children. To begin with its description, it is important to review

current methods available to identify families of parents and children.

4.1 Identifying combination frequencies: state of the art

4.1.1 Frequency near a combination frequency value

An heuristic approach, commonly used as initial inspection to solve the problem of combina-

tion frequencies identification, is to simply examine a list of frequencies (fi) resulting from a

prewhitening cascade (see Sec. 2.1.2) and select as combination frequencies those that differ

a small quantity (δf ) from an exact combination frequency value (fc)

|fi − fc| ≤ δf , (4.1)

where i = 1, 2, 3, ..., K, and K is the number of prewhitened frequencies. The fc values are

calculated choosing as parents any of the frequencies from the list. Often, the chosen δf is

the Rayleigh frequency resolution (Degroote et al., 2009, Murphy et al., 2013, Pápics, 2012,

Saio et al., 2018, Zwintz et al., 2020). Nevertheless, the value of this parameter is arbitrary

and can be chosen differently (e.g. García Hernández et al., 2013).

The inconsistency of the reasoning behind this method is that when the frequency does

not match the value of the combination exactly, the residuals after the fit will still be cor-

related with the combination frequency. Evidently, that could lead to uncleaned power

spectra from the contribution of combination frequencies but more importantly, it could

lead to wrongly identify an oscillation mode as a combination frequency. Moreover, the

premise of choosing the Rayleigh frequency resolution as δf enclose that it is taken as if it

were the uncertainty in the frequency, however it could be a very coarse limit election when

frequencies are resolved, since uncertainty can go further the Rayleigh frequency resolution

in such cases.
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4.1.2 COMBINE

COMBINE is a software package that performs iterative analyses to identify combination

frequencies. It was developed by Reegen (2011), and basically consists in a more sophisticated

version of the method explained in Section 4.1.1. It adds tools to measure the Reliability of

a combination that obeys Eq. 4.1.1, and an automatized mechanism which iteratively finds

linear combinations of any of the previously identified as significant frequencies. Despite of

the efforts to provide robustness to the method, it can not guarantee that the residual light

curve will be free of the contribution of combination frequencies. This is because frequencies

identified as combinations are not the exact combination values.

4.1.3 Fitting exact combination values

Selecting the exact combination frequencies to fit them to the variable star light curve could

guarantee that the residual light curve of such fit is uncorrelated to the combination fre-

quencies initially contributing to the stellar light curve variability. This was the identifica-

tion method in Balona (2016) and in Kurtz et al. (2015). Both studies take into account

that non-linearities must be found exactly in their combination frequency value (since they

are mathematical footprints of non-linear effects), but parents are determined by a non-

exhaustive non-linear least-squares method (Period 04 ), so the children originated by those

parents may be slightly different from the real ones.

Period 04 is a software package dedicated to perform time series analyses (Lenz and

Breger, 2004). The Fourier decomposition tool allows to decompose the signal in sine waves

with frequency, amplitude and phases parameters which can be optimized by a non-linear

least-squares fit. This optimization option is the functionality behind the buttons "calcu-

late" (to optimize only amplitudes and phases) and "calculate all" (to optimize frequencies,

amplitudes and phases). However, the optimization procedure that the algorithm follows

is not described in the software manual whatsoever. In fact, when conducting a Fourier
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analysis and wanting to compute the non-linear least-squares, clicking the "calculate" (or

"calculate all") button several times leads to different values of the parameters and smaller

values of the residual light curve variance, but no explanation is found to how many times

the user of the package should press this button and what is it really doing. Such black box

in the non-linear least-squares determination does not make it possible to guarantee that

the yielded parameters are their best optimization, or that the search for these optimization

is conducted exhaustively. Besides, although by using Period 04 is possible to fit the exact

combination values of any chosen parents, this input must be entered manually, so the user

must know in advance the combination frequencies present in the power spectrum (which

can often go unnoticed), not to mention that it can become a laborious task when many

combination frequencies are present.

4.2 The Best Parent Method

The Best Parent Method (BPM), consists in an algorithm that recursively searches for the

parent frequencies that describe the most of the variable star non-linear signal in terms of

its non-linearities, or combination frequencies. This is accomplished by computing different

non-linear least-squares fits for different possible parent frequencies and the children gen-

erated by them. In these fits, Eqs.3.21 and 3.25 are the chosen approximation functions

modelling the non-linearities (in light curves of mono-periodic and double-mode variable

stars, respectively).

The residual light curve of each fit should be uncorrelated with the parents and the

statistically significant combination frequencies fitted. Then, the variance of the residual light

curve (in comparison with the variance of the original light curve) quantifies to which extent

the parents and children fitted explain the signal: the lower the variance value the better

the fit. Therefore, the minimum variance value of all the fits, will indicate the independent

frequencies that best describe the signal, i.e. the ’best’ parent frequencies.
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Formally, it is possible to define V (namely, the variance function) as a continuous func-

tion conformed by the variance values of fittings relating different parent frequencies (and

their children) to a given light curve. The aim of the method is to find a local minimum in

V . Note that V is only a function of the parent frequencies (i.e. V = V (ωi)). There are

several procedures for finding the minimum in a non-linear least-squares fitting (Bevington

and Robinson, 2003), but in the method here presented we follow an empirical approach

which consists in exploring the n-dimensional independent frequencies surface exhaustively.

The code for the algorithm implementation is written in Python, and now constitutes an

importable Python library called combi_filter.py.

4.2.1 Algorithm flow

For a global understanding, a representation of the design of the algorithm is presented in

Fig.4.2.1. However, the linear flow of the algorithm is described in the following steps:

• Number of parents

The number of parents (or independent frequencies) is asked. In the code this variable

is named n_p.

• Building the families to test

Several possible parents, differing in a small step (ε) from each other, around a first

coarse parent guess (νi), are chosen. Concretely, if n_p = 1, then the possible parents

are:

νi ± k · ε; (4.2)

where k is an integer number from zero to the number of sets of the exploration variable,

n_exp, which can be chosen by the user of the library (see panel (a) from Fig. 4.2.1).

The small step (ε) is also a variable in the code.
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Figure 4.1 Design of the algorithm for the extraction of combination frequencies.

When n_p ≥ 2, then the user can choose the number of terms composing each com-

bination with variable n_t. This variable refers to the number of addends in the

frequency relation between parents and children:

ωk = |±n · ωi ±m · ωj ± ...| (4.3)

where m and n are integer numbers and their absolute sum is the order of the combi-

nation,

O = | ± n|+ | ±m| (4.4)

For each parent to be tested, their children are calculated. In this moment, the user

will be asked for the number of harmonics (the n and m in Eq. 4.3). In the algorithm,
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Figure 4.2 Schematic representation of best parent search with n_exp = 2 . Panel
(a) for one parent frequency ωi and panel (b) for two parent frequencies ωi and ωj.
The search does not allow overlapping of the possible parents (red arrow)

these are represented by the variable name n_h.

• Iterative Search

In this step the iterative computations of the least-squares fitting starts. For each

family, only the combination frequencies surviving a statistical test of significance (e.g.

Student’s t or Snedecor’s-F) are fitted to the light curve. In this research thesis, a

Student’s t criterion of significance with a level of confidence of 99.9% is used. An array

of variance values for the residual light curve of each fit results from this procedure.

The minimum value of this array points out to the ’best’ parent(s) of the first iteration.

Now that the parent(s) that minimise the V function is (are) found, this result is used

as seed for the next iteration, where the search is conducted with a smaller ε step.

This recursive process is repeated until the ε have the same number of decimals set

in a variable set by the user n_dec. At the end of this loop the aim of the search is

achieved, that is, to sift out which possible parent(s) yielded the minimum variance

value.
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• The final extraction

This last step is when the user’s intention is to obtain the power spectrum free of

combination frequencies. To obtain it, a last fitting of a series of sinusoids to the

original light curve is computed. This time, the frequencies of the fitted sinusoids are

of the ’best’ parent(s) found and the children. Again, the value of the n and m in

Eq. 4.3 is asked for this final extraction. The residual light curve of such fit is expected

to be uncorrelated with the non-linear terms and the ’best’ parents, so, a FFT to that

residual light curve will yield the wanted clean power spectrum.

4.2.2 Criteria adopted for the input parameters

The search of the ’best’ parent(s) can be computationally expensive in terms of time

consumption. Therefore, although the algorithm was developed to use any wanted

value for each variable, in this research certain limiting criteria over the input param-

eters were chosen caring for efficiency, without jeopardizing the exhaustive property of

the search. In Table (4.1), the algorithm variables are listed along with their description

and the values used in the analysis made in this research.

Concretely, the criteria adopted in this work for n_p is that no more than two parents

are chosen. In the particular case of n_p = 2, only combinations of two terms are

explored (n_t = 2). Then, all the possible parents around the initial ones are calculated

according to Eq. 4.2, where n_exp = 4 steps around the initial guess are explored (the

algorithm does not allow overlapping when choosing n_exp if n_p ≥ 2. See panel (b)

from Fig. 4.2.1). Therefore, all potential pairs (when n_t = 2) of possible parents are

the parents to be tested.

The criteria adopted for n_t allow to avoid increasing the probabilities for false com-

bination frequencies identifications since any frequency value can be represented as

a linear combination of other frequencies (Balona, 2012, Pápics, 2012). Additionally,
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Variable Description Values used in

name this research.

n_p Number of parents 1 (mono-periodic stars)

or 2 (double-mode stars)

ε Array of values of the small step of (0.1, 0.01, 0.001, · · · )

separation between possible parents

for each iteration

n_exp Integer number of steps of ε value 4

to explore around the initial guess

n_t Number of terms: addends in the 2

combination expression

n_h Number of harmonics: highest integer The corresponding n and m

number of the harmonics in Eq. 4.3 so the

to explore harmonic value do not

exceed the Nyquist frequency

n_dec Number of decimals to explore 5 (See Section 4.4)

or the uncertainty to reach.

Corresponds to the number of

iterations of the search.

Table 4.1 Input parameters in the BPM algorithm.
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choosing n_p = 2 as maximum value diminishes the computational time considerably

since exploring all possible combinations between more than 2 parents represents many

more combinations to test as follows:

Number_of_pairs =
d!

r!(d− r)!
, (4.5)

where d is the number of possible parents to choose from and r is how many to select

from them. So, if n_p = 2 (r = 2) and n_exp = 4, then d = 10 and so 100 pairs of

possible best parents have to be tested in each iteration, whereas if n_p = 3 (r = 3),

then 1000 pairs of parents have to be tested.

Moreover, in this dissertation, for an exhaustive search, the first ε is set to 0.1 and will

be decreasing in order of magnitude in each interaction (second iteration with the next

lower magnitude order: 0.01, and so on). In the iterative search, a minimum will be

reached in an unknown number of steps, but in this algorithm the user can choose to

truncate the search to a certain final precision with the variable n_dec. An example of

this can be seen at Section 4.3.1 in Table 4.2, where the minim is really reached in the

14h iteration, however, the value taken as the final result is the one of the 5th iteration.

For all the other analyses in this work n_dec is also set to 5, and the reasoning behind

it is explained in Section 4.4.

The criteria in this work to select the n_h parameter is that the highest combination

(harmonic or sum) does not exceed the Nyquist frequency. When dealing with more

than one parent frequency, it was convenient to choose smaller values for the n_h

parameter in the iterative search for it to be faster. This is based on the fact that very

often the combinations contributing the most to the light curve variability of the star

have low orders (O < 5). However, in the final extraction phase of the procedure, the

one that yield the residual light curve for posterior studies, the criteria of not going

beyond the Nyquist frequency is adopted. It is important also to highlight that the

applicability of this method is not just for evenly spaced data. When dealing with

55



Non-linearities in Delta Sct stars. I The frequency relation

unequally spaced data, the set of combinations to calculate and fit can be accordingly

chosen up to any convenient frequency, since Nyquist frequency is undetermined in

these cases (∆t is not unique. See Section 2.1).

4.3 Application of the BPM

To test the performance of the method, three δ Sct stars, of different pulsational contents,

were chosen: first, a mono-periodic δ Sct variable, in order to verify the process of finding the

‘best’ parent; next, a double-mode pulsator; and finally, a multi-periodic δ Sct star, where

more complex non-linearities can be present and where their extraction could be critical to

the frequency analysis. Relevant information describing the light-curves is listed in Table A.1.

4.3.1 Mono-periodic variables:

In the case of a single parent frequency (e.g. a Cepheid or a high amplitude mono-periodic

variable), the highest peak in the power spectrum is selected as a first approximation to the

parent frequency with a coarse precision. Then, V(ω) is sampled with a progressively smaller

step until the minimum is reached. In this way, the minimum V value yields a much more

precise frequency. Often, the frequency error is smaller than the Rayleigh resolution (see

Section 2.1). The frequency value is compatible with that obtained by the O-C (Observed

minus Calculated) method (Sterken, 2005), which is basically how the times of arrival of

the pulses are determined in the Pulsar Timing analysis technique, known for yielding ex-

traordinary precision when calculating the period of a pulsar (Lorimer and Kramer, 2004).

All this was proved in Lares-Martiz et al. (2020), where the mono-periodic δ Sct star TIC

9632550 observed by The Transiting Exoplanet Survey Satellite (TESS, Ricker et al., 2014)

was analysed in order to test the performance of the BPM.

In Lares-Martiz et al. (2020), it is shown how the BPM applied to a light curve of a

mono-periodic pulsating star results in a local minimum of the V function, which determines
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Figure 4.3 Application of the BPM to the light-curve of TIC 9632550. Upper panel:
fundamental period found as a local minimum at 5.054963644 d−1.Lower panel: in
blue, the FFT of the original light-curve; in red, the FFT of the residuals after
fitting the fundamental frequency and 13 statistically significant harmonics. Units
of power are [(e−/s)2]. Source: Lares-Martiz et al. (2020)
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Table 4.2 The ‘best’ parent search tree for the mono-periodic δ Sct star TIC
9632550. The first column quantifies the number of statistically significant frequen-
cies, or children, detected with the parent frequency specified in the third column,
in d−1 (zeros are omitted for the sake of clarity). The second column is the variance
after fitting the parent and combination frequencies (in this case, only harmonics of
the highest one).

No. of statistically V value Frequency[d−1]
significant frequencies

1 3155.844405793707201 5.0

5 948.937738175725485 5.05

14 33.629889361388315 5.055

14 33.629889361388315 5.055

14 32.871889584474623 5.05496

14 32.862102488776905 5.054964

14 32.862102488776905 5.054964

14 32.862101660828912 5.05496404

14 32.862101656257245 5.054964037

14 32.862101656225789 5.0549640372

14 32.862101656224368 5.05496403722

14 32.862101656224311 5.054964037229

14 32.862101656223409 5.0549640372274

14 32.862101656222627 5.05496403722726

14 32.862101656222627 5.05496403722726
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Figure 4.4Application of the O-C method to the light-curve of TIC 9632550. Upper
panel: in blue, the times of the light maximum, corresponding to the maximum value
of a parabola fitted to each cycle; in red: the regression line Tmax = T0 +PE, where
P is the trial period, T0 is the zero epoch, and E is an integer number of cycles
elapsed since the zero epoch. The fundamental frequency (ω0 = 1/P ) calculated
by the O-C method is ω0 = (5.05496 ± 0.00002) d−1. Lower panel: residuals of the
regression. Source: Lares-Martiz et al. (2020)
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Table 4.3 Results of the combination frequencies extraction process for the mono-
periodic δ Sct star TIC 9632550. The first column shows the ‘best’parent from the
search tree in cycles per day. The second column specifies the number of statistically
significant frequencies, or children, extracted. The %CF (third column) quantifies
the percentage of the initial power attributable to the combination frequencies and
their parents.

TIC 9632550

Tag ’best’ parent [d−1] Combinations %CF
extracted

f0 5.05496 13 Harmonics 98.98

the fundamental period.(see Fig. 4.3, upper panel). The iterative process of searching for

the ’best’ parent explained in Section 4.2, refines the frequency until the variance value (V )

does not change. In this particular case, it happened in the 14th iteration (see Table 4.2).

However, the value at the 5th interaction is the one chosen to be the best parent (see discussion

subsection 4.4 for a full explanation). This result for the fundamental frequency is compatible

with the one obtained by the O-C procedure (see Fig. 4.4):

ω0 = (5.05496 ± 0.00002) d−1.

The results of the final extraction procedure are graphically represented in the lower panel

of Figure 4.3 and quantitatively expressed by the high percentage of the original power

explained by these non-linear effects and their parents (expressed as %CF in Table 4.3).

These results shows that after the parent and its children are extracted, the power spectrum

is almost cleaned from all signal contribution. Still, there are three peaks remaining in the

residual power spectrum: the first one corresponds to the first frequency bin and it is the

residual of a second order polynomial fitting, performed in order to remove any trend in the

light curve; the second peak, appearing next to the fundamental frequency, and the third

one, which is next to the first harmonic, are possibly explained by an amplitude modulation

of the fundamental frequency. An alternative explanation of these two peaks, appearing

at about the same frequencies as the fitted ones, might be the fractal property studied by
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Table 4.4 Results of the combination frequencies extraction process for the double-
mode HADS star KIC 5950759. The first column shows the ‘best’ parents from the
search tree in cycles per day. The second column specifies the number of statistically
significant frequencies, or children, extracted. The %CF (third column) quantifies
the percentage of initial power attributable to the combination frequencies and their
parents.

KIC 5950759

Tag ’best’ parents [d−1] Combinations %CF
extracted

f0 14.22136 177 in total: 97.48
f1 18.33722 17 harmonics

92 sums

and 68 differences

De Franciscis et al. (2018), which is impossible to reproduce by using a Fourier representation.

In any case, the logarithmic scale shows 5 orders of magnitude difference between the original

and the residual power, which is in very good agreement with our expectation of uncorrelated

residuals.

4.3.2 Double-mode variables:

In the case of two parent frequencies, for example double-mode Cepheids, HADS stars or

RR Lyrae, the procedure for finding the ’best’ parents is also effective. There is a slight

tendency for HADS stars to have higher number of non-linearities (Balona, 2016). This is

why in Lares-Martiz et al. (2020) the KIC 5950759, a HADS star observed by the Kepler

satellite (Gilliland et al., 2010), was chosen to test the BPM. The original power spectrum

(blue in Figure 4.5) shows a very regular structure where the first two highest peaks follow the

fundamental period and first overtone ratio expected to occur for δ Sct stars (see Stellingwerf,

1979).

In a recent study for this star by Yang et al. (2018), the parent frequencies for the SC
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Figure 4.5 Application of the BPM to the light-curve of KIC 5950759. Blue: FFT
of the original light-curve. Red: FFT of the residuals after fitting the ‘best’ parents
and the combinations generated by them. Green dashed: new frequencies detected
in the residuals of the fitting. Black dash–dotted: ‘best’ parent frequencies. Notice
in the middle panel the significant peak corresponding to ωm ≈ 0.32 d−1. Also notice
that the separation between the dashed green lines around the black dash–dotted
line is equal to ωm. Units of power are [(e−/s)2]. Source: Lares-Martiz et al. (2020)
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data were:

ω0 = (14.221367± 0.000015) d−1

ω1 = (18.337228± 0.000023) d−1

Which are compatible with the ’best’ parents computed by the BPM (see Table 4.4). In Yang

et al. (2018), frequency errors were calculated according to a heuristically derived formula

for the upper limit of the frequency uncertainty in Kallinger et al. (2008). The precision

reached with the ’best’ parents search is also empirically justified in Section 4.4.

When dealing with very high power of the initial components, the significance level is

set too high, leading to an incomplete combination frequency extraction when computing

the final extraction procedure. In such a scenario, the extraction from the residual light

curve has to be completed in several steps, three in this particular case. In the first step,

71 combinations were significant (black in Fig.4.6), in the second 99 (green in Fig.4.6), and

finally 7 (red in Fig.4.6). Notice how the black FFT still have many significant combination

frequencies (in the range of 160 and 300 d−1), which justify the extraction continuation. The

green FFT is almost completely covered, since it is practically the same as the red (only 7

frequencies of small amplitudes different).

As a consequence of these fittings, a new frequency structure (that was previously hid-

den) emerges in its power spectrum (see middle panel of Fig. 4.5). Notice that the frequency

ωm ≈ 0.32 d−1, that is modulating the entire spectrum, is now significant according to the

Reegen (2007) criteria of signal/noise > 12.57 in the power domain. As firstly discussed

by Bowman (2017), the new frequency structure seen for the KIC 5950759 deserves further

studies regarding its origin, since it could be possibly indicating the existence of other inde-

pendent modes. Yang et al. (2018) explored several physical explanations, proposing as the

most likely to identify ωm as the rotation of the star, meaning that the dashed lines around

ω0 in the middle panel of Figure 4.5 corresponds to the modulation of the main pulsation

modes with rotation frequency. Other possible explanations for the fine structures appearing
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around the main frequencies, might be carefully evaluated taking into account the work of

Zong et al. (2018), where different frequency and/or amplitude modulation patterns were

identified in the power spectra of an ensemble of pulsating hot B subdwarf (sdB) and white

dwarf stars observed by the Kepler satellite.

In any case, the results shown in Figure 4.5 stress the need of a correct extraction of the

combination frequencies. It was shown that it is possible to unveil frequency structures that

previously did not exceed the detection threshold. In this particular case, the detection of

ωm frequency was possible using SC data, whereas in Yang et al. (2018), using LC data, a

super-Nyquist and alias analysis were necessary in order to identify it.

4.3.3 Multi-periodic variables:

When analysing non-linear light curves of multiperiodic stars such as low amplitude δ Sct

(LADS) stars, γ Dor, etc., the application of the BPM could be done for more than two

parents. In such cases, exploring the frequency space of the V function recursively to find

its minimum value can be computationally expensive, but the implications of applying the

BPM can be crucial for an asteroseismic analysis, as showed in the previous section. In

Lares-Martiz et al. (2020), the BPM method was tested to the light curve of HD 174966,

a LADS (or simply δ Sct star) observed by the CoRoT satellite (Auvergne et al., 2009).

This star was studied in García Hernández et al. (2013), who found that the 5th highest

peak in the amplitude spectrum was very near to the estimated fundamental radial mode

(17.3± 2.5 d−1).

In multi-periodic variables, the independent frequencies are not easy to identify. The

first five peaks of highest power are chosen as independent frequencies, to seek possible

frequency relations, of the form of Eq. 4.3. This way of choosing independent frequencies

is arbitrary, but it will reveal the signal components following the non-linearities frequency

relation Eq. 4.3, even if the chosen independent frequency is actually a combination.
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Figure 4.7 Application of the BPM to the light-curve of HD 174966. Blue: FFT of
the original light-curve. Red: FFT of the residuals after fitting the ‘best’ parents and
the series of combinations originating from them. Green dashed: new frequencies
detected after the fit. Black dash–dotted: ‘best’ parent frequencies. Units of power
are [(e−/s)2]. Source: Lares-Martiz et al. (2020)
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Table 4.5 The ’Best’ parents for every possible couple of the first five highest power
peaks in the HD 174966 power spectrum

Couple Tag Couple Frequencies [d−1]

(f0, f1) (17.62288, 23.19479)

(f0, f2) (17.62298, 21.42079)

(f0, f3) (17.62280, 26.95853)

(f0, f4) (17.62291, 27.71456)

(f1, f2) (23.19477, 21.42097)

(f1, f3) (23.19479, 26.95851)

(f1, f4) (23.19477, 27.71503)

(f2, f3) (21.42078, 26.95853)

(f2, f4) (21.42078, 27.71463)

(f3, f4) (26.95851 , 27.71487)

Instead of searching the combinations of the full set of five independent frequencies, the

search is divided in couples in order to reduce the computational cost of the BPM solution.

In Table 4.5, the results of the BPM for every possible couple with the precision adopted in

this work (see 4.4) show small differences. In this case, we select as the ’best’ parents for

the 5 highest amplitude peaks the median of all the found values.

In the final extraction procedure (see Fig. 4.7 for the resulting combination frequency

free power spectrum) it was found that particularly in this star, 118 combinations were

statistically significant (see Table 4.6). Notice that the number of subtractions is higher

than the number of sum combinations. This may raise concerns about the validity of these

identifications in the lower frequency range.

The majority of the subtraction combinations correspond to high order combinations (see

Table B.3), but harmonics (n · ωi or m · ωj) with such high n and m, are not statistically

significant (only 2f3 is detected). Alternatively, these significant differences could simply
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Table 4.6 Results of the combination frequencies extraction process for the mul-
timode δ Sct star HD 174966. The first column shows the ‘best’ parents in d−1,
which are derived from the median value in Table4.5. The second column speci-
fies the number of statistically significant frequencies, or children, extracted. The
%CF (third column) quantifies the percentage of the initial power resulting from
the combination frequencies and their parents.

HD 174966

Tag ’best’ parents [d−1] Combinations %CF
extracted

f0 17.622895 122 in total: 93.02
f1 23.194755 1 harmonic

f2 21.420785 13 sums

f3 26.958552 108 differences

f4 27.714750

be false identifications, due to the fact that at higher n and m more combinations are

tested, increasing the probability of a match, as well as the possibility of choosing as parent

frequencies a combination frequency. In this work, we do not exclude any match because the

interest relies upon finding the set of combination frequencies that could explain the most

of the signal as non-linearities. Furthermore, Kurtz et al. (2015) state that the amplitude

of a child frequency could be higher than their parents’ amplitudes, which could explain the

missing high-order harmonics issue.

Further discriminating criteria (apart from the frequency value) are required for an un-

ambiguous identification, so as to avoid false identifications due to high values of n and m.

Nevertheless, this example shows that in no case the extraction procedure (here presented

as the BPM method) is introducing new frequencies. Moreover, even when it is not clear

that the arbitrarily chosen parent frequencies are actual oscillation modes of the star (which

is often the case when dealing with multiperiodic stars), the set of significant combinations

resulting from the algorithm can still be useful to test whether extracting them has simplified
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the power spectrum in agreement with a solution from a linear stellar oscillation mode (see

Fig.4.7. Notice that, some of the green dashed lines are equally spaced, possibly identifiable

with non-radial frequency structures or rotational splittings). This could be showing again

that extracting combination frequencies in a least-squares sense, as a first step before un-

dertaking the frequency analysis, can expose pulsation modes or frequency spacing patterns

that would otherwise be hidden.

4.4 Uncertainties in frequencies

The method described in this manuscript mainly relies in how well the BPM determines

the ’best’ parents. Progressively increasing the precision in frequency (when searching the

minimum of the V function) involves getting closer to the floating point number precision,

which implies that numerical errors are an important source of uncertainty. Finding when

these numerical effects are hampering the ’best’ parents computations provides us with an

estimate of the upper limit in the uncertainty of the frequencies. We find this limit by

building a synthetic light curve with this analytical expression:

S(t) =
n∑
k=1

Ak cos(2πkωt+ φk), k, n ∈ N (4.6)

where the input Fourier parameters are obtained by initially applying the method to real

data, meaning that ω is the ’best’ parent frequency for a mono-periodic variable up to n

harmonics. Notice that there is no added noise and the synthetic light curve has the same

number of data points as the observations. In this way, the minimum of the V function for

the synthetic light curve, theoretically expected to be zero, will reveal the error in machine

calculations. Results of this test, using the components extracted from the mono-periodic δ

Sct star TIC 9632550 to build the synthetic light curve, are listed in Table 4.7. The ’best’

parent is reached with the V value of order ≈ 6 · 10−10. Consequently, V values smaller than

this number are compromised by the numerical errors intrinsic to machine calculations.
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Table 4.7 The ‘best’ parent search tree for the synthetic light-curve built from TIC
9632550 data. The first column quantifies the number of statistically significant
frequencies, or children, detected with the parent frequency specified in the third
column, in d−1 (zeros omitted for the sake of clarity). The second column is the
variance after the fit of the parent and combination frequencies (in this case, only
harmonics of the highest one).

N of fitted V value Frequency [d−1]
frequencies

1 3156.591456884018044 5.0

5 948.685924387723073 5.05

14 7.165213986246192 5.055

14 7.165213986246192 5.055

14 0.804372110830800 5.05496

14 0.007417117763935 5.054964

14 0.007417117763935 5.054964

14 0.000552438323944 5.05496404

14 0.000045278362580 5.054964037

14 0.000005430569507 5.0549640372

14 0.000000546520136 5.05496403723

14 0.000000051236668 5.054964037227

14 0.000000008582531 5.0549640372273

14 0.000000000602951 5.05496403722726
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Table 4.8 Results of the fundamental frequency determination by the ‘best’ parent
search and O-C method for the four partitions of the light-curve of the mono-periodic
δ Sct star TIC 9632550. Each section is ≈7 d long.

Section ’Best’ parent [d−1] O-C Frequency [d−1]

S1 5.05491643 5.0548± 0.0001

S2 5.05490929 5.0550± 0.0001

S3 5.05501342 5.0549± 0.0002

S4 5.05501167 5.0548± 0.0002

Table 4.9 Results of the fundamental frequency determination by the BPM re-
garding the number of cycles in the light-curve of the mono-periodic δ Sct star TIC
9632550.

Number of cycles ’Best’ parent [d−1]

138.4 5.0549640

138 5.0549637

137.5 5.0549631

137.2 5.0549627

132.4 5.0549595

In addition, another test was built dividing the real light curve of TIC 9632550 in four

sections to find the ’best’ parent in each of this partitions. In spite of the reduced frequency

resolution, due to the smaller time interval of the light curve, the parent frequency found for

each partition is similar, and also compatible with the O-C method up to the 4th decimal

(see Table 4.8). This test confirms the robustness of the BPM search.

In order to test if the effect of leakage (see Section 2.1) had something to do with the small

variation in the 4th decimal (i.e. ≈ 0.000004 d period variations), the BPM was applied to the

mono-periodic light curve with exactly an integer number of cycles and with a half-integer

number of cycles (along with other number of cycles). Results of this test (see Table 4.9)

highlighted the influence of the number of cycles on the determination of the period. Future
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work could explore this issue to give a precise lower limit to the frequency uncertainty. In

this regard, a conservative approach is adopted in this dissertation, expressing results with

the precision that the O-C method achieves.

As a last remark, the duration of the observation T is a relevant parameter for estimating

the frequency uncertainty when dealing with two close frequencies (closer than 1/T to each

other). In that case, the Rayleigh frequency resolution becomes a good estimator. But,

precision can go further the Rayleigh frequency resolution if there is only one frequency

component inside the Rayleigh interval (see Section 2.1). This was just proved for each

≈7 days long sections of the light curve of the mono-periodic δ Sct star, TIC 9632550. The

numerical precision reached was ±1·10−8 and is not "as if we were observing ≈274000 years".

Rayleigh resolution remains the same: ≈1/7 days, that is, ≈0.14 d−1.

4.5 Chapter Summary

• The BPM consists essentially in a ‘standard’ approach of fitting sinusoids to the light-

curve, but under the framework given in Section 3.3.3. The advantage of this empirical

minimisation is that it assures an exhaustive search for the ’best’ parents, which can

not be accomplished by any other algorithm of non-linear least-squares available at the

moment.

• Commonly, combination frequencies are identified when significant frequencies from

a prewhitening cascade are near an exact combination value. Fitting combination

frequencies identified in such way (to extract them from the power spectrum) can

introduce spurious frequencies in the signal, hampering the analysis. The BPM does

not add information to the residual light curve, since it fits the exact combination

values simultaneously. The method guarantees that any variance that remains after

calculating the power spectrum of the residual light curve, is not caused by the parent

mode frequencies and their associated children frequencies.
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• Although in this work we focus the application on δ Sct stars, this method could be

applied to any type of variable star, where non-linearities are expected to be present

in their power spectrum.

• For mono-periodic stars, it achieves precision in frequencies approximately equal to

those achieved by the O-C method.

• For double-mode and multi-periodic stars, it allows frequency structures to emerge

from what was previously considered as noise. The structures are not seen without

doing the correct combination frequencies extraction.

• For multi-periodic stars, the identification of non-linear terms is still ambiguous. Obey-

ing only the equation of the relationship in frequencies between parents and children,

does not guarantee that the combination is a non-linearity from a non-linear distortion

process. There is still the possibility that it is an independent mode that coincides

with the position in frequency of a combination purely by chance. It might also be

coinciding with a component of a rotational splitting or any other. For this reason,

more constraints are required and therefore, the phase and amplitude relationships are

reviewed in the next chapter.
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Chapter Five

Non-linearities in Delta Sct stars. II

Phases and Amplitude relations

In the last chapter it was clear that there is ambiguity in identifying non-linearities consid-

ering only their frequency relation with the parent modes. Significant power at the exact

frequency value of a combination between the parent modes could still be confused, for

example, with a rotational splitting (Bowman, 2017), or even be a coincidence with an in-

dependent mode. Extra criteria for discerning the nature of the combination frequency is

needed. In this chapter, a study of the phases and amplitude relations that non-linearities

must obey is presented.

The approach in Simon and Lee (1981) was to characterize non-linear light curves of

mono-periodic Cepheid’s with two parameters they called the phase difference and the am-

plitude ratio, which they obtained by Fourier decomposition (see Section 2.1.2). This was

also explored by Antonello et al. (1986) for the characterization of mono-periodic HADS and

δ Sct’s non-linear light curves, whereas Balona (2012) explored it for multi-periodic HADS

and δ Sct. Similarly to all these previous studies, in this thesis the characterization approach

is through a Fourier decomposition of the non-linear light curve, but under the mathemat-

ical expressions derived from Eq. 3.19 and the BPM presented in Section 4.2. This is a

continuation of the Garrido and Rodriguez (1996) exploration where, for the first time, the
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Volterra series is proposed for modeling non-linearities in a pulsating star.

In the formalism given in Section 3.3.3, the phases (Eqs.3.23 and 3.27) and amplitudes

(Eqs. 3.24 and 3.26) relations can be generalized in the following forms respectively:

• Phases:

arg{Γo} = ∆φ = φobs − φcalc (5.1)

= φobs − (±nφi ±mφj) (5.2)

• Amplitudes:

|Γo| = Ar =
Aobs
Ani A

m
j

(5.3)

where the Aobs and φobs are the amplitudes and the initial phases, parameters resulting from

the least-squares fit of sinusoids whose frequencies are the significant combination frequencies

(i.e. children of the best parents frequencies found by the BPM). In the same way, Ai,j and

φi,j are the parameters resulting from the least-squares fit of sinusoids whose frequencies are

the best parent frequencies. From these expressions it is obvious that the amplitudes and

phases of non-linearities are expected to be correlated with the amplitudes and phases of

their parents.

The complex generalized transfer functions ΓO, where O is the order of the combination

(see Eq. 4.4), contain the non-linear physics that may be involved within the star. Therefore,

it is of great interest to somehow characterize them. In Chapter 3 it was already mentioned

that two forms of non-linearities are present in δ Sct stars: the non-linearities due to the

NLDP and non-linearities in the form of resonant mode coupling. Many efforts have been

made to be able to differentiate the nature of a combination frequency (Bowman et al.,

2016, Breger and Lenz, 2008, Breger and Montgomery, 2014, Degroote et al., 2009, Zong

et al., 2016). There is a special interest in the characterization of non-linearities of NLDP

nature, because these are just harmonics and cross-terms (additions and subtractions) of
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the independent modes of oscillation owed to the mathematical interaction between modes,

meaning that they are not solutions of the perturbed linear stellar structure equations and

in this sense, it is imperative to remove them from the variable star power spectrum.

In this chapter, it is shown that an empirical characterization of the ΓO functions is pos-

sible when the the combination frequencies are effects of the non-linear distortion processes.

This is done by assuming that the combination frequencies observed in HADS stars power

spectra are non-linearities of this nature, which is a reasonable assumption and is sustained

by 5 arguments:

• There are too many combination frequencies to be eigenmodes themselves.

• They usually are slow rotators, and the fine structure (i.e. spacings between modes)

due to slow rotation can easily be explained with linear superposition of the splitting

multiplet of the independent modes. The fine structure that double-mode HADS stars

display is more intricate, so very unlikely to be confused with rotational splittings.

• The double-mode HADS normally pulsate in radial modes, meaning that the high

amplitude modes follow the 0.765 < f0
f1
< 0.781 frequency relation for the fundamental

en first overtone modes, the exact value depending on the stellar mass and composition

(Suárez et al., 2007). This assures that the children frequencies are cross-terms of clear

independent modes as parents.

• It is expected that high amplitude parents have many detectable combination frequen-

cies because of the large pulsation amplitudes of the parent modes.

• Interchange of energy between modes due to mode coupling induce amplitude modula-

tion of the modes. The majority of the known HADS do not show amplitude variabil-

ity, supporting the assumption of their combination frequencies being consequences of

NLDP.
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The assumption that significant combination frequencies in HADS are due to the NLDP

is not new (Bowman, 2017, Bowman et al., 2016). Nonetheless, this is not proven to be a

fact. In the next section, this is going to be explored applying the general form of phases and

amplitudes (Eqs. 5.1 and 5.3, respectively) to the combination frequencies in HADS stars.

Special features found in the results are expected to be associated with the NLDP.

5.1 Phase relation of HADS combination frequencies

In order to show the results of the general reasoning explained in this chapter introduction,

a single star is presented as case of study. The chosen case of study star is the HADS KIC

5950759 observed by Kepler space satellite. It is a book style HADS where the first two

highest amplitude Fourier components follow the Stellingwerf (1979) period relation for the

fundamental mode and first overtone and it is not a fast rotator. Moreover, high quality and

precise photometric data is available, revealing many detectable (i.e. statistically significant)

combination frequencies.

The general form for the arguments of the ΓO functions (Eq. 5.1) can be understood

as the difference between the observed phase (phase from the Fourier decomposition, see

Section 2.1.2) and the expected phase (i.e. the one predicted by the simple model, see

Section 3.3.1). Observed and expected phases are plotted for KIC 5950759 in the upper

panel of Figure 5.1. The delay between the observed phase and the expected one seems to be

decreasing with the order of the combination O. According to Eq. 5.1, each delay corresponds

to the argument of the ΓO function of order O (arg{ΓO}) and the aim here is to characterise

them. Representations of arg{ΓO} versus the frequency of each combination will be referred

to as the relative phases plots (∆φ) from now on. Bottom panel of Figure 5.1 shows the

relative phases plot (up to order 4) for the case study star, where the independent frequencies

have, by definition, relative phases equal to zero.

In Garrido and Rodriguez (1996), the relative phases for HADS stars were studied for
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Figure 5.1 First 4 combination orders of the case study star KIC 5950759. Upper
panel: Observed (circles) and calculated (dots) phases of the statistically significant
combination frequencies (only sums and harmonics). Parents (f1 and f2) follow the
Stellingwerf (1979) period relation of fundamental en first overtone. Botton Panel:
Relative phases plot.
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ground-based observations, so not many combination frequencies were fitted. Nevertheless,

those observations allowed Garrido to inspect at least up to the second combination frequency

order and to notice that the relative phases were almost constant, supporting the hypothesis

he made over the ΓO functions. The hypothesis consisted in stating that at least for δ Sct

stars, one can safely assume that the generalized transfer functions are independent of the

frequency, thus imposing the symmetry condition over the generalized transfer functions:

Γ2(ω0, ω0) = Γ2(ω1, ω1) = Γ2(ω0, ω1) = Γ2(ω1, ω0) = Γ2; (5.4)

where one must take into account that a complex function is the same as other if they have

the same modulus and their phases are the same plus 2π, so

|Γ2(ω0, ω0)| = |Γ2(ω1, ω1)| = |Γ2(ω0, ω1)| = |Γ2(ω1, ω0)| = |Γ2| (5.5)

and

arg{Γ2(ω0, ω0)} = arg{Γ2(ω1, ω1)} = arg{Γ2(ω0, ω1)} = arg{Γ2(ω1, ω0)} = arg{Γ2} (5.6)

which, one might think, is holding up to order 4 when seeing the bottom panel of Figure 5.1.

However, this hypothesis is not fulfilled when examining a more complete relative phases

plot, provided by the new available ultra-precise photometric data.

The 177 statistically significant combination frequencies (see Table 4.4) found by the

BPM using the ultra precise photometric data of the KIC 5950759 allow to build a rich

relative phases plot (see the relative phases of 92 sums and 17 harmonics plotted in Fig. 5.2).

Subtraction combinations are not discussed in this monograph because their relative phase

plots do not show a clear pattern like the harmonics and sums. This is possibly due to the

fact that subtraction does not hold the commutative property, the phase would be different in

terms of the order of the factors in the subtraction, implying that somehow the ΓO functions

may not be symmetric. It could also be due to an unknown dependence of the ΓO functions

on the frequency. Regardless of the subtraction problem, the analysis for harmonics and

sums continued considering the interesting patterns obtained.
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Note that in Fig. 5.2 the Y-axis, representing the difference between observed and ex-

pected phase is between 0 − 2π radians. Every phase exceeding 2π (or below 0 radians)

is corrected to be between this range. In this way, one can think of the first set of points

(from combination order 2 to ≈ 9) as the first Riemann surface or the first phasor cycle,

the second set of points of higher frequency (from combination order 10 to ≈ 18) as the

second Riemann surface or second phasor cycle, and so on. Moreover, the cyclic property

of the Y-axis explains that the order O = 1 (corresponding to the parents) represents no

discontinuity in the plot since zero is the same as 2π. To avoid confusion in this regard,

circles of the parent frequencies (O = 1) are going to be removed from the following plots.

A clear parabolic pattern for each combination order is noticed. This is the first study

to expose this pattern of relative phases. Although Balona worked with ultra-precise photo-

metric data when studying the correlation between relative phases and frequency, only low

order combinations were fitted, then perceiving linear patterns (see Fig.1 and 3 in Balona,

2012).

A zoom of Fig. 5.2, to represent the first 5 combination orders with labels over each

combination, is shown in Fig. 5.3. The relative phases are in consecutive order, harmonics

being the left and right ends of the parabola branches. The 6f2 harmonic is not detectable,

the same happens with higher combination orders. The f2 frequency belongs to the parent

with the lowest amplitude, so it is expected not to detect many of its harmonics. That is

why the parabolas of O > 5 are incomplete (detecting only the parabola left branch).

Physically, how can this pattern of relative phases be explained?. Kurtz et al. (2015)

proposed that the phases of combination frequencies and harmonics are determined by the

balance between driving and damping mechanisms in each individual star. The driving of the

independent frequencies (e.g. the κ mechanism and the convective blocking for intermediate-

mass pulsating stars) and the damping of the harmonics (by heat loss) may show phase

differences different to zero in the presence of changes in the thermal properties of the star.

If the difference of phases is zero, then the maximum of the combination frequency is the
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same as that of their parents and, so, reinforcing its maximum. This (along with other

factors like amplitudes) determines the upward shape of the light curve. Conversely, if its π

delayed, then it determines the downward shapes of the light curves. Intermediate values of

relative phases attenuate these effects in the shapes. Kurtz et al. (2015) study was focused

in g-mode pulsators (γ Dor, SPB en Be stars), but can be extrapolated to p-mode pulsators.

Kurtz’s approach might explain the extremely symmetric light curve of the case study HADS

star KIC 5950759. The relative phases pattern is very regular and cancels the effects from

one another. The regular spacing between orders may be pointing to regular changes in the

thermal properties of the outer (or superficial) layers of the star, in this way characterizing

combination frequencies of NLDP. Additionally, it must be taken into account that non-

linear effects in δ Sct stars, meaning the variations in geometry (i.e. radius and surface

normal) and variations in temperature and surface gravity, are in general out of phase, so

every relative phase also accounts for this phase difference (Balona, 2012).

From Figure 5.3 it can be said that Garrido’s relationship is more or less fulfilled for

the first orders but is no longer acceptable for higher orders (≈ O > 4). Moreover, for

each combination order O of the statistically significant combination frequency, the relative

phase can take a range of values corresponding to that combination order O. Roughly

speaking, the argument of each generalised transfer function can take a range of possible

values, constituting for each combination order a band of possible values. For example,

arguments of the generalised transfer function of order 2 can take values inside the 6.28 ≥

arg{Γ2} < 5.28 interval. 5.28 ≥ arg{Γ3} < 4.28 for order 3, taking into account that

the bands become thicker for higher O values and allowing overlapping between bands. A

more sophisticated characterization is needed to cope with the overlapping that starts to

be evident around O = 5. This is a matter of future work (e.g. only values over fitted

parabolas), but for the sake of initial characterization, this is enough. The question is, does

this hold for other HADS stars?

As the aim is to characterise the relative phases for combination frequencies from NLDP,
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Table 5.1 Time series information from each space satellite. T is the length of
the observation in days and δt is the cadence or sampling rate in seconds. For
the TESS and Kepler light curves, we used the instrumental effects free light curve
resulting from the Pre-Search data Conditioning (PDC) pipeline, accessible in the
Mikulski Archive for Space Telescopes (MAST: https://archive.stsci.edu/). Stars
with a peculiar relative phases pattern are marked with the letter p ahead of the
name. Modes column tells if the star is mono-periodic (Mp) or a double-mode
pulsator(Dm).

Star name Modes T [d] δt [s] Obs. Sequence

KIC 5950759 Dm 31.04 58.85 Quarter 4

GSC 00144-03031 Dm 76.67 31.99 Run LRa04

TIC 51991595 Mp 13.04 120.00 Sector 2

TIC 139845816 Mp 13.23 120.00 Sector 1

TIC 144309524 Mp 13.04 120.00 Sector 2

TIC 183532876 Mp 13.04 120.00 Sector 2

TIC 224285325 Dm 13.04 120.00 Sector 2

TIC 231632224 Mp 13.23 120.00 Sector 1

TIC 355547586 Dm 13.23 120.00 Sector 1

TIC 355687188 Dm 13.04 120.00 Sector 2

TIC 358502706 Dm 13.23 119.99 Sector 1

p TIC 9632550 Mp 13.04 120.00 Sector 2

p TIC 126659093 Mp 13.23 120.00 Sector 1

p TIC 260654645 Dm 13.04 120.00 Sector 2

p TIC 261089835 Mp 13.23 120.00 Sector 1

p TIC 431589510 Mp 13.04 120.00 Sector 2

p KIC 9408694 Dm 27.07 58.85 Quarter 6a
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Figure 5.4 Relative phase plot of 17 HADS stars (top panel). In the bottom panel,
6 peculiar HADS stars have been removed.

the relative phases plot is computed for a set of stars where the combination frequencies

are most likely to be non-linearities of such nature, meaning the HADS stars. The relative

phases plot for a sample of 17 HADS stars is represented in the top panel of Fig. 5.4. For

the sake of simplicity, only the first phasor cycle is represented. From the HADS sample, 14
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were observed by TESS, 2 by Kepler and 1 from CoRoT (see Table 5.1 for the light curve

parameters). It seems that the pattern holds similarly for all the HADS, except for a few

peculiar patterns (see bottom panel of Fig. 5.4) which are going to be carefully examined.

Figure 5.5 Relative phases of 4 peculiar mono-periodic HADS

For a detailed inspection, the relative phases of the 17 HADS can be separated in mono-
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Figure 5.7 Relative phases plot of 8 double-mode HADS (Upper panel). In the
bottom panel 2 peculiar double-mode HADS are removed.

periodic HADS and double-mode HADS plots. Except for a few peculiar mono-periodic

HADS, the arguments of the ΓO functions for mono-periodic HADS do hold Garrido’s hy-

pothesis of constant ΓO (see Fig. 5.5). The peculiar mono-periodic HADS are the ones that
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do not match the general pattern. It is not the overlapping of the higher orders what makes

them peculiar, it is a distortion of the pattern from the lowest order to the highest.

It is widely known that near-degeneracy on the frequencies becomes very important for

rotational velocities larger than about 15 − 20 Km s−1 (Suárez et al., 2007), and although

HADS stars are typically slow rotators, two of these peculiar stars (TIC 9632550, TIC

126659093, upper row of Fig. 5.6) happen to have high rotational velocities (see Table A1

from Antoci et al. (2019)). This might be the cause of distortion in the relative phases plot,

allowing to infer high rotational velocities in other stars which have similar deviations in

their relative phases plot (e.g. TIC 261089835 and TIC 431589510, bottom row of Fig. 5.6,

from which no rotation values are available).

When dealing with two dominant modes, both strongly non-sinusoidal, the ΓO functions

represent the non-linear interaction with parabola shapes. The higher points of the parabola

branches, determined by the harmonics of the corresponding O, and the base of the parabola,

determined by the sum of harmonics (of ≡ O
2
), create the bands of possible relative phases

values for each combination order O. In Fig. 5.7, the bands can be seen, except for a couple

of peculiar double-mode HADS showing pattern distortions which are pointing to the same

explanation regarding high rotational velocities.

In the case of the HADS KIC 9408694 (bottom panel of Fig. 5.8), identified as a fast

rotator by Balona et al. (2012), the pattern is visibly distorted possibly by its fast rotation

nature. In the case of TIC 260654645, the parents almost follow the fundamental and first

overtone period ratio expected for a δ Sct star of that mass (Stellingwerf, 1979), so the

pattern may be distorted if the parents do not follow the ratio P1

P0
strictly (see upper panel

of Fig. 5.8). Many possibilities can explain the change in the theoretical period ratio: small

deviation of the frequencies due to fast rotation can induce change in period ratio relation

of about 0.01 d−1, which is the case of TIC 260654645. Although there is no obvious way

on how can rotation alter phase of combination frequencies, this empirical correlation is

something to be explored.
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Figure 5.8 Relative phases of 2 peculiar double-mode HADS

Future work involving statistical analysis is required to complete the empirical charac-

terization of the arguments of the generalised transfer functions. Nonetheless, the obtained

results so far in this line of investigation are revealing. Combination frequencies of HADS
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follow a very specific pattern in their relative phases, supporting the assumption that they

are non-linearities from the same nature. On the other hand, it is important to emphasize

the fact that for each combination order, the relative phase is almost the same, indepen-

dently of the frequency or the star. The only parameter changing from star to star is the

slope of the linear correlations of the relative phase with the frequency, which is due to the

level of asymmetry of the light curve of the dominant frequency (Balona, 2012).

A rough characterization of the arguments of the generalized transfer functions was made

by constraining their value to a certain range, depending on the order of the non-linearity.

Truly, the pattern suffers dispersion, possibly due to parents not following Stellinwerf’s period

relations, or, in some cases, possibly because of fast rotation. Discriminate fast rotation with

these plots is just one of the possible practical applications, other potential applications are

going to be explained in Section 5.3.

5.2 Amplitude relation of HADS combination frequen-

cies

The general form for the module of the ΓO functions (Eq.5.3) can be understood as measures

of the amplitude ratios between parents and children. In sum combinations of two parents,

the amplitude ratio is similar to the van Kerkwijk et al. (2000), where he added the nij cor-

rection to make them equivalent to the amplitude ratio of the harmonics. Here, no correction

is imposed, and the analysed amplitude ratio is as derived from Priestley’s description of a

non-linear time series (Section 3.3.3).

From the simple model, it is logical to assume that combination frequencies from non-

linear mixing of the modes will have smaller amplitudes than their parents amplitude. Al-

though Kurtz et al. (2015) proved that combination frequencies could have greater amplitudes

than their parents (since parents can be non-radial modes, which suffer from cancellation
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Figure 5.9 Amplitude ratios for the case study HADS star KIC 5950759

effects that could interfere with amplitudes measurements), in HADS stars the simple model

amplitude assumption can still hold. The highest amplitude components of these peri-

odograms are usually radial modes, concretely the fundamental and first overtone. This

perspective leads us to expect amplitude ratios to decrease with the combination order. In

Fig 5.9 the amplitude ratio (or module of the generalised transfer functions) is presented for

our case study star, where the order O = 1 corresponds to the parent frequencies that by

definition are equal to 1. As expected, in the HADS case study the amplitude ratio described

by the simple model holds. A zoom of Fig 5.9 is shown in Fig 5.10, where tags over the

combinations are given.

The same can be observed when testing the amplitude ratios of the sample of 11 non-

peculiar HADS (see Fig. 5.11). The decreasing ratio with increasing order of combinations

strengthens the assumption that combination frequencies in HADS are product of the same

non-linear process, from the hypothesis taken, due to NLDP. Finally, note the fact that

for each combination order the amplitude ratio is almost constant, independently of the
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Figure 5.11 Amplitude ratios of the sample of 11 non-peculiar HADS stars.

frequency or the star.

5.3 Practical applications: unambiguous non-linearity iden-

tification

Despite all the efforts done (Balona, 2012, 2016, Balona and Dziembowski, 2011, Balona

et al., 2012, Buchler et al., 1997), combination frequencies do not yet have any asteroseismic

use for δ Sct stars. When a combination frequency is owed to nonlinear response of the

stellar flux, it is just a mathematical consequence of the distorted light curve, so, it is not

a solution of the perturbed stellar structure equations. If the combination frequency is due

to resonant mode coupling, it is considered a stable mode that becomes unstable because of

a resonance condition being met, and for example, in the case on non-radial parent modes

can be useful for mode identification (Buchler et al., 1997, Goupil et al., 1998). That is

why combination frequencies studies in δ Sct stars have been centered in unambiguously

94



Non-linearities in Delta Sct stars. II Phases and Amplitude relations

identifying the nature of a combination frequency (Barceló Forteza et al., 2015, Bowman and

Kurtz, 2014, Bowman et al., 2016, Breger and Lenz, 2008, Breger and Montgomery, 2014,

Degroote et al., 2009) The unambiguous identification has become more and more important

for LADS stars, where their usually multi periodic dense and unexplained power spectra have

been keeping mode identification in δ Sct stars to be a complex task. This section provides

possible new methodology that uses combination frequencies as proxy variables, allowing to

serve relevant purposes such as mode identification in asteroseismic studies of δ Sct stars.

It has already been mentioned several times that the ΓO functions contain information

about the non-linear processes occurring in a variable star. From the relative phases and

amplitudes ratio patterns seen for HADS stars, empirical inference over the ΓO functions

can be made. As combination frequencies of HADS stars are most likely to be from a non-

linear distortion nature (see discussion in the beginning of this chapter), the pattern of the

relative phases and the pattern of the amplitude ratios can be associated to these non-linear

processes. In this sense, a different physical origin of the combination frequencies (e.g. mode

coupling) will be described by different ΓO functions, consequently, different patterns in the

relative phases and amplitudes ratio plots.

As the relative phases and amplitude ratios do not seem to depend on frequency (top

panel and bottom panel, respectively in Fig. 5.12), it is possible to merge them to plot what

is considered a Template of combination frequencies from NLDP (Fig. 5.13) or Non-linear

distortion template. The nature of a combination frequency detected in a LADS star can

be determined by plotting its relative phase and its amplitude ratio over the corresponding

template. Such plots are going to be called Diagnostic plots, since they will be testing that

their position matches the pattern that combination frequencies from NLDP follow. This

empirical methodology was tested in the set of 117 A-F stars observed by the TESS space

satellite analysed in the first light results of this mission (Antoci et al., 2019).

The BPM was computed for each star of the set, using the first two highest amplitude fre-

quencies (because there is a slight tendency to find more combination frequencies the bigger
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Figure 5.12 First phasor cycle of the relative phases (top panel) and amplitude
ratios (bottom panel) plots of alleged NLDP non-linearities of 11 HADS stars (5
monoperiodic and 6 double-mode).

the amplitude of the parents, see Balona 2016), or when it was possible, a pair of frequen-

cies that follow any of the period relations (P0

P1
,P0

P2
or P0

P3
, to make sure that the combination

frequencies were from eigenmodes and not taking as parents other combinations). Table C

shows the resulting best parents for each star. In the set of 117 A-F stars, 74 were identified
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Figure 5.13 Alleged template of combination frequencies from non-linear distortion
processes. Concretely, the first phasor cycle of the relative phases and amplitudes
ratios of 11 HADS stars (5 mono-periodic and 6 double-mode).

in Antoci et al. (2019) as δ Sct stars (or hybrids). Few combination frequencies were found

in the set of 74 low amplitude δ Sct stars. Combination frequencies for each of the 74 LADS

stars, found by the BPM method and the unambiguous non-linearity identification, are also

given in Table C. Note that the study was constrained to the children of the two highest

amplitude frequencies, or when a pair of frequencies followed any period ratio relationship,

so maybe more combinations frequencies (from other parents) might be present.

5.3.1 Possible mode identification using non-linearities in p-mode

pulsators

Before discussing the diagnostic plots, it is important to remember Kurtz et al. (2015) state-

ment about the possibility of children having higher amplitudes than their parents. When

dealing with radial modes, as it is the case in HADS stars, the amplitude ratios pattern does
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benchmark the amplitudes of non-linearities from NLDP. However, when analysing LADS

stars, the highest amplitude peaks in their spectra (which are taken as parent frequencies)

can be non-radial. Cancellation effects affecting non-radial modes could be messing the am-

plitude ratios, leading to wrongly discard the combination frequencies that do not follow the

bottom panel of Fig. 5.12 pattern, when they actually are non-linear effects from NLDP. For

this reason, amplitude ratio plots patterns are inspected to support identification, but not

to discriminate the nature of non-linearities. However, decisive inferences can be made from

relative phases plots.

There are several cases or situations to explore. First, the ones that match the pattern of

the non-linear distortion template (see Fig. 5.14). In these cases, the combination frequencies

can be unambiguously identified as non-linearities, and moreover that they are effects of the

NLDP. In some of these stars interesting frequency structure emerges in the residual light

curve, which would have to be analysed for a deeper understanding of the pulsational content.

Reasoning for pattern matching not only led to unambiguously identify a combination

frequency of non-linear distortion nature, additionally it also means that the parents are

radial modes. For example, in Fig. 5.15 for TIC 150394126, the methodology allowed to

identify f1 + f2 as a NLDP non-linearity, but also to make the inference that f1 and f2

are radial modes. Assuring that the parents of f1 + f2 are radial modes adds an extra

constrain for identifying the radial order of the radial parents. In the particular case of TIC

150394126, the real orders of f1 and f2 can be estimated taking into account Stellingwerf

(1979) period relations, and that radial modes are equally separated in the asymptotic regime

(large separation, ∆ν). An example of such estimation, made for TIC 150394126 f1 + f2 =

107.67141d−1 combination frequency, is presented in the following equations knowing that

f1 = νn = 49.08808d−1 and f2 = νn+1 = 58.58333d−1:

∆ν = 9.49525 d−1 (5.7)

νn
νn+1

= 0.838 (5.8)
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Figure 5.15 Relative phase diagnostic plot for the statistically significant combi-
nation frequency f1 + f2 found in TIC 150394126

and from Stellingwerf’s period relations (Eqs. 1.11) it is possible to calculate,

0.818 ≤ ν2

ν3

≤ 0.831 (5.9)

Although it is in the limit of the ν2
ν3

range, error management might allow to identify f1 to

a radial mode of radial order n = 2 and f2 to a radial mode of radial order n = 3.

What about when the relative phase does not match the pattern?. One of the situations

found is when the chosen as an independent frequency, is actually a combination frequency.

In Fig 5.16, one of this cases is shown, where the 2f1 harmonic is not-matching the relative

phase pattern but matching the amplitude ratio expected. Noting that the phase of f1 =

16.01867 d−1 is 5.2855, matching the value as if it were an harmonic of order 2, then the

2f1 harmonic can be identified with 4f1. If this was true, the new f1 would be around

≈ 8.009335 d−1. Such fundamental frequency should be verified calculating an oscillation

model with the stellar parameters of the TIC 144387364 δ Sct star.
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Figure 5.16 Diagnostic plot of the 2f1 harmonic in TIC 144387364

5.3.2 Terms from NLDP or resonantly excited coupled modes?

Figure 5.17 Example of fine structure of combination frequencies resembling a
rotational splitting. Source (Bowman, 2017)

Resonance (direct, parametric and rotationally induced) can produce similar fine fre-
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quency structure as independent modes. For example, in the case of rotationally induced

resonance, the frequency structure generated can be very similar to a rotational splitting (see

Fig. 5.17 of Bowman, 2017). For this reason, being able to distinguish non-linearities due to

NLDP from resonantly excited couple modes and from independent modes, has become so

important.

When analysing cases like the ones shown in Fig 5.18, the methodology can only say that

Fourier component is not an effect from NLDP produced by the interaction of radial modes.

The random relative phase (or simply not matching the template pattern) could indicate

that it is:

1. An effect of the NLDP from non-radial parents (whose template is still unknown)

2. A resonantly excited or coupled mode.

3. An independent mode

The 3rd point should yield random diagnostic plots, so the first and second possibility

are the ones to be differentiated. Several studies have discussed the nature of combination

frequencies in δ Sct stars, to prove the mode coupling theory (Balona et al., 2012, Barceló

Forteza et al., 2015, Bowman and Kurtz, 2014, Bowman et al., 2016, Breger et al., 2012,

Breger and Lenz, 2008, Breger and Montgomery, 2014, Handler et al., 2000, Nowakowski,

2005). A special highlight to Breger and Montgomery (2014), where a method is presented

not only to identify which frequencies are parents and which are children, but to also dis-

criminate whether a combination frequency is a resonantly excited mode or just an effect of

NLDP (Section 3.3.2).

The method requires significant amplitude modulation in three similar amplitude modes

with large values of µc. Searching for this situation is not an easy task because the time

variability of each member of the combination has to be studied in detail. The fast rotating

δ Sct star KIC 8054146 was analysed by the Breger and Montgomery (2014) method, con-
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Figure 5.19 Dominant 9 frequencies of the T family (Source: Fig.1 from Breger
and Montgomery, 2014))

cluding that the frequency f66 is most likely to be a coupled mode, whose parents are f40 and

f26 (f66 = f40 + f26 using the Breger and Montgomery (2014) nomenclature, see Fig 5.19).

Figure 5.20 Phase diagnostic plot for the statistically significant combination fre-
quencies of triplet 2 (Breger and Montgomery (2014) nomenclature) for KIC 8054146

104



Non-linearities in Delta Sct stars. II Phases and Amplitude relations

The diagnostic plot for the f66 frequency (Fig.5.20) supports Breger’s conclusion. Clearly,

the relative phase of f66 does not match the relative phase values for combinations of order 2

when the non-linearity is from a non-linear distortion process. Moreover, the dominant low-

frequency f6, is also rejected to be a non-linearity consequence of a non-sinusoidal shaped

light-curve. Note that although in Fig. 5.19 f3 looks like one component, in a closer look it is

really two very close frequencies (f3a = 2.9301d−1 and f3b = 2.9340d−1), so the f6 component

could correspond to a linear combination of the form 2f3a or f3a + f3b. The relative phase

for f6 is not over the combination order 2 zone of the template, even if this frequency is

considered to be 2f3a or f3a + f3b.

So far, amplitude and phases of each combination frequency are calculated for the entire

light curve as if they were constant. Nonetheless, resonant mode coupling induces amplitude

modulation of the modes (either from direct, rotationally induced or parametric resonance)

(Bowman, 2017). Therefore, it is relevant to discuss if time variability could affect the

argumentation exposed until now. It is clear that amplitude modulation of a mode does

not influence its phase (nodes and antinodes of a mode, with changing amplitudes in time,

remains at same positions), but in regard to phase modulation it is not that clear. If a phase

variation as function of time, instead of a constant phase, is introduced in a one component

signal Y (t) in the following way:

Y (t) = A cos(ωt+ φ(t)) (5.10)

and the phase function of time can be represented by a Taylor series,

φ(t) ≈ φ0 + φ′(t)t+ ... (5.11)

where φ′(t) ≡ ω̃, then

Y (t) = A cos(ωt+ φ0 + φ′(t) + ...) ≈ A cos((ω + ω̃)t+ φ0) (5.12)

If the phase variation is small, it translates into a small frequency shift, however, the

adjusted phase is going to be the same as if there was no phase variation. Consequently, the
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patterns of the relative phase plots are not compromised by neither the amplitude modula-

tion, nor the phase modulation.

To sum up, the combination frequencies of KIC 8054146 do not match the non-linear

distortion template. This was expected since in Breger and Montgomery (2014) they were

identified as a non-linearities from resonant mode coupling. Their position (near 0 and near

π) are similar to other diagnostic plots from Fig. 5.18 (e.g. TIC 381857833, TIC 38587180,

TIC 32197339, TIC 183595451, TIC 350563225), guessing that these combination frequencies

of these stars are non-linearities from resonant mode coupling as well. However, the pattern

of the ΓO functions for combination frequencies from NLDP of non-radial parents (if these

exist), is still unknown. In the next section, the ΓO functions of combination frequencies in

stars pulsating in the g-mode regime (e.g. the γ Dor stars) are examined, since the g-modes

are non-radial pulsations, so their study can be revealing.

5.4 Extra: Non-linearities in g-mode pulsators

Combination frequencies in g-mode pulsators have been found useful for asteroseismic infer-

ence Buchler et al. (1997), Goupil et al. (1998), Kurtz et al. (2015). For example, in Kurtz

et al. (2015), the characteristic shapes of the light curves for γ Dor stars (upward, symmetric

or downward shapes) were explained by the phases of the combination frequencies, concretely

by computing the relative phase parameter. Buchler et al. (1997) describe a method of iden-

tifying modes from constraining conditions over the degree of the mode in relation to the

detectable combination frequencies. Regardless of these advances, the characterization of

non-linear light curves of g-mode pulsation is far from complete.

In this section, the study of unambiguous identification of the nature of a combination

frequency (is it a non-linearity? and if so, is it a non-linearity of resonant mode coupling

nature or a convective or surface driven non-linearity?) is extended to g-mode pulsators such

as γ Dor stars. A brief study over the characteristics of the ΓO functions (their arguments
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and modulus) for four previously studied γ Dor stars is presented. The motivation is to test

the behaviour of a Volterra-based non-linear model for characterization of non-linear light

curves of g-mode pulsating stars.

The set of four γ Dor stars used in this section are KIC 8113425 (analysed by Kurtz

et al., 2015), KIC 4731916 (analysed by Bowman, 2017), KIC 5608334 (analysed by Saio

et al., 2018), and TIC 30531417 (analysed by Antoci et al., 2019). Combination frequencies

have been detected in their power spectra by the BPM.

KIC 8113425

The γ Dor of Kurtz et al. (2015) study has a strongly non-linear light curve, whose power

spectrum shows the typical frequency groups for this type of variables. The first four high-

est power components of its power spectrum, and the two-termed combination frequencies

generated by them, accounts for %CF = 58.04% of all the light variability, meaning that the

variance after the fit was reduced considerably. Meeting such fine structure of many combi-

nation frequencies by chance or by resonance mode coupling is highly improbable, therefore

the strong chance of them being non-linearities from NLDP makes this star an interesting

target for the analysis of the relative phases and amplitude ratios.

The relative phases of the statistically significant combination frequencies for KIC 8113425

are shown in the upper panel of Fig. 5.21. The arguments of the complex ΓO functions, de-

spite taking very different values, seem to follow an increasing trend with the order of the

combinations (and with the frequency). Recall that Y-axis of this plot is cyclic, so the sta-

tistically significant frequencies of order 5 do not show a discontinuity. Interestingly, relative

phases increasing with the frequency in g-mode pulsators, in opposition with the p-mode

case (where the relative phases decreased with the frequency), is in agreement with the as-

teroseismic fact that the radial order n, referring to the order of the mode, increases with

the frequency in p-modes, whereas n increases for lower frequencies in g-modes.

In γ Dor stars the children frequencies come from non-radial mode parents, so cancella-
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Figure 5.21 Relative phase (upper panel) and amplitude ratio (mid panel) of com-
bination frequencies for KIC 8113425. Relative phases as functions of the amplitude
ratios (bottom panel).

tion effects could be affecting the observed amplitudes, enabling the possibility of children

frequencies having higher amplitudes than their parents (Kurtz et al., 2015). However, this

does not seem to be happening in this star, as it can be seen in the amplitude ratios plot

(mid pannel of Fig. 5.21). As in the p-mode case, one can plot relative phases as a function

of amplitude ratios, obtaining what can be conjectured to be a non-linear distortion pattern

of non-radial parents (Bottom panel of Fig. 5.21).

KIC 4731916

The case of KIC 4731916 was an interesting case of study because of the previous analysis

made by Bowman (2017). Tracking plots of the variability of each mode revealed that the

combination frequencies did not mimic the parents variability, which is not expected by the
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mode coupling theory or by the non-linear distortion model. The amplitude and phases of

the combination frequencies remained constant in the entire observation, whereas the parent

mode decreased its amplitude over time. The relative phases of the harmonics and sums

of KIC 4731916 are discussed in Kurtz et al. (2015). In this study, it was found that the

relative phases near 0 or 2π leads to upward light curve shapes, whereas values near π leads

to downwards light curves. The conclusion in Kurtz et al. (2015), regarding relative phases

of the combination frequencies in KIC 4731916, was that their effects are not very strong in

the shape of this star light curve.

Surprisingly, the relative phases and amplitude ratios plots for the combination frequen-

cies exhibit a very interesting pattern including the subtraction combinations (see Fig. 5.22).

This is the only star where the subtraction combination shows a clear pattern in their rela-

tive phases along with the sums and harmonics. For even combination order, the argument

of the generalized transfer function increases. Conversely, for odd combinations it decreases

at the same rate. They are seemingly cancelling each other .

The unconserved mode energy in this star was argued by Bowman to be a challenge

for the theoretical expectations of combination frequencies. Undoubtedly, this star is very

interesting for non-linearities in γ Dor stars studies. In the light of this result, further effort is

needed to understand the relative phases plot and amplitude ratios including the subtraction

combinations, since the range of possible pulsation content of these stars comprehends the

low frequencies zone.

KIC 5608334

Saio et al. (2018) study claimed that the combination frequencies detected in this star were a

product of its fast rotation. When the rotation of the star exceeds the pulsation of the mode,

resonance conditions can be met inducing the coupling of the modes. The relative phases and

amplitude ratios, for the harmonics, sums and subtraction combination frequencies detected

in KIC 5608334, are plotted in Fig. 5.23. All combinations of the same order do not have
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similar relative phases evoking the coupling of modes in the δ Sct star cases (see Sec. 5.3.2).

TIC 30531417

Figure 5.24 Relative phase (upper panel) and amplitude ratio (bottom panel) for
sums and harmonics combination frequencies of TIC 30531417

The TIC 30531417 star shows a very regular light curve. The principal component of the

power spectrum belongs to the g-mode frequency range (0.3 < ν < 3 d−1) but showing high

amplitude for a γ Dor star. For this reason, it was baptised by Antoci et al. (2019) as a High

Amplitude γ Dor (HAGD) star. The BPM was computed first for the highest amplitude

peak, extracting almost all the harmonics. After an inspection of the residual light curve, a

second mode was detected at ν2 = 4.96067 d−1.

Expectations over the relative phases were that they must follow the increasing pattern

given by the first γ Dor analysed in this section (KIC 8113425), but this hypothesis is not
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fulfilled (see Fig. 5.24). The relative phase of the principal component, whose frequency

value is in the g-mode regime, seems to be increasing with the higher the frequency value

and with the combination order. However, it is not increasing in the same rate as KIC

8113425, and from 6f1 it starts to decrease. Regarding ν2, the second order harmonic seems

to be following the non-linear distortion template, so ν2 is possibly a radial p-mode.

5.5 Chapter Summary

• In this chapter, characterization of non-linearities in terms of their phases and am-

plitudes was intended. The motivation was that a combination frequency, meeting

only the frequency relation between parent and children, does not necessarily mean

that it is a non-linearity. The study enables to characterize the non-linearities due to

non-linear distortion processes of radial p-mode parents, and exposed the possibility

of mode identification and unambiguous non-linearity nature identification (non-linear

distortion nature or resonant mode coupling nature). Additionally, the study took

the first steps towards the characterization of non-linearities of g-mode and non-radial

mode parents.

• HADS stars exhibit so many combination frequencies that they are assumed to be from

the non-sinusoidal shape of the light curve due to NLDP. Clear patterns are observed

when analysing the relations of phases and amplitudes between these combinations

and their parents, under the general Volterra expansion framework.

• The relative phases represent the arguments of the ΓO complex transfer functions of

Volterra expansion. For combination frequencies with radial mode parents, the relative

phases showed a decreasing pattern with the frequency and the combinations of the

same order shared almost the same relative phase value. Moreover, the pattern is

similar for every HADS star. This was tested in a set of 17 HADS stars observed by
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the TESS space satellite.

• The distortions in the relative phase patterns, for the few cases where they exist,

coincide with stars with high rotation speed and due to slight deviations in the period

ratios.

• The amplitude ratio represents the modules of the ΓO complex transfer functions of

Volterra expansion. For combination frequencies with radial mode parents, their ampli-

tude ratio follows a decreasing exponential pattern. Care must be taken when dealing

with LADS stars, as generally the parents chosen are most probably non-radial modes

where cancellation effect could be hampering the amplitude ratio pattern.

• Subtractions do not meet the relative phases nor the amplitude ratios pattern. The

subtractions do not fulfill the commutative property, so the order of the factors in the

linear combination of independent mode phases is important. The equations must be

revised to resolve this issue.

• Since the patterns do not vary from star to star, in the sense that the combination

frequencies of all the HADS were grouped by the order of the combination in the

same way, then it was possible to build the non-linear distortion template by plot-

ting all relative phases as a function of their amplitude ratios. From these empirical

characterization of NLDP non-linearities, a procedure to unambiguously identify the

non-linearities nature was conjectured in terms of their position over the template,

namely the diagnostic plots. Although, this reasoning would require more statistical

support.

• The combination frequencies of 76 stars from TESS sectors 1 and 2 were analyzed with

the diagnostic plots and the results are given in the Table C. It was shown how to

estimate radial orders n in some cases where the combination frequency matched the

pattern. The no-match cases could be pointing to a resonantly couple mode, so in this
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way determining its nature. This was tested for a previously known case of resonant

mode coupling, confirming the no-match position of their combination frequencies over

the template. Other no-match possible explanation is that those combination frequen-

cies parents are non-radial modes. These motivate the brief study of stars pulsating in

g-modes such as γ Dor stars, where all the modes are non-radial.

• The phase and amplitude relationships in pulsating g-modes such as γ Dor stars were

explored, yielding interesting results in which to continue working. The phase patterns

appear to be clustered but vary for each star. Under the theoretical formulations

presented in this work, and in the 4 stars analysed, it was not possible to find a

pattern that would unite them all. In any case, the patterns found attracted a lot of

attention, especially in the KIC 4731916 γ Dor star, where the subtractions were part

of the pattern.

• The ΓO functions for g-mode pulsators such as the γ Dor stars are far from being

characterized. Carrying out the relative phases and amplitude ratios study to a larger

sample of γ Dor stars, will allow to know to what extent the generalized ΓO functions

can be characterized for the g-modes. Nevertheless, the results obtained from the

chosen γ Dor stars already delivered interesting patterns, so further research in this

direction could be promising.
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Chapter Six

Conclusions and Future work

6.1 Conclusions

In this chapter, the conclusions drawn from the empirical characterization of non-linear

components in δ Sct stars power spectra are presented. Additionally, future work ideas on

how to continue this study are given afterwards.

• Characterizing non-linearities in p-modes pulsating stars such as δ Sct has yielded very

interesting results. Initially, to face the challenge of correctly identifying them in the

power spectra, a method was developed (The BPM) in which it is possible to identify

the parents that best describe the light curve in terms of their linear combinations.

This is relevant for the analysis of a given light curve, firstly, because it takes into

account the non-introduction of spurious information in the process and, at the same

time, gives very high precision in the determination of the frequency. In essence it

was shown that, when fitting combination frequencies of the parents yielded by the

BPM, the residual light-curve is the one with the lowest contributions from these

components, and is the only method available nowadays that does this automatically

and exhaustively. From the point of view of asteroseismology, it allows us to take a step

forward in the understanding of the dense and complex power spectra, characteristic of

these stars. For example, considering that non-linearities from NLDP are not solutions
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of the perturbed stellar structure equations, one may be interested in extracting these

contributions from the spectrum and this method would do it with great efficiency

(Lares-Martiz et al., 2020).

• Fitting combination frequencies with the BPM presented in Chapter 4 could help to

identify pulsation modes by possibly revealing radial and non-radial frequency patterns,

rotational splittings in the periodogram of the residuals, or just frequency and/or

amplitude modulations. An example of this was shown in the results for the mono-

periodic TIC 9362550, where a possible amplitude modulation was found, and in the

SC observations of the HADS star KIC 5950759, where the modulating frequency

ωm became detectable without needing LC super-Nyquist alias analysis, as in Yang

et al. (2018). Likewise for the multi-periodic star, where a new unexplained frequency

structure emerged from what was considered noise before the combination frequencies

extraction.

• With respect to phase and amplitude relationships, the empirical characterization of

the ΓO functions in stars with radial parents proved to be largely constant, regardless of

the star analysed. Taking advantage of this fact, it might help to identify non-linearities

nature (NLDP or resonant mode coupling). Moreover, it might help to identify the

radial nature of an independent mode, in this way providing an extra constrain that

would enable mode identification. This finding is relevant because it might be the first

time that combination frequencies can be of asteroseismic use in intermediate-mass

pulsating stars. Further study and statistical robustness are required to be able to

establish the diagnostic plots as a consistent tool for asteroseismic analyses.

• The diagnostic plots of the combination frequencies in 74 δ Sct observed by the TESS

satellite were analysed. At least 10 of them showed matching positions to the NLDP

non-linearities template pattern, so the conjecture is that they are non-linearities from

a non-linear distortion nature. On the other hand, at least 10 stars whose combination
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frequencies did not match the NLDP non-linearities template pattern, showed similar

positions to the pattern of a previously known resonant mode coupling family detected

in the KIC 805414 δ Sct star. If future work succeeds to statistically strengthen this

procedure, it would be a faster method to identify the non-linearities nature and with

no previous condition needed to apply it. It shows advantages over the Breger and

Montgomery (2014) method, where the implicated coupled modes have to be modulated

in amplitude and the variations between all the signal components must be tracked.

• The observational characterization of non-linearities in g-mode pulsating stars, partic-

ularly for γ Dor stars, yielded interesting but not conclusive results. In some cases the

patterns are clear, increasing in relative phases with the order of combination. Mak-

ing a visual comparison, it is seen that they have similar features between them. For

example, in most cases the combination frequencies relative phases have values around

0, π and 2π. We speculate it to be the signature for non-linearities of mode coupling

nature, or, still can be from NLDP nature but of non-radial parents. Results for KIC

4731916 (a γ Dor also analysed by Bowman, 2017) are unexpected and challenging.

The resulting pattern of the relative phases for the combination frequencies in this

star, without modifying the phase relationship in any way, unexpectedly presents a

clear pattern including the subtraction combinations. The required research to under-

stand the results for this star are promising to explain a non-linear effect in γ Dor

stars.

• The models for stars that display non-linear effects in their power spectra could benefit

from this work. The state-of-the-art model regarding non-linearities was the non-linear

amplitude equations (AEs in Buchler et al., 1997, Goupil et al., 1998), the work of

Van Hoolst (1994), and more recently, the new MESA (Modules for Experiments in

Stellar Astrophysics) functionality regarding non-linear radial stellar pulsations (Pax-

ton et al., 2019). Perhaps the key to finally understand δ Sct stars pulsational content
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is to develop non-linear models balancing the mechanisms driving and damping the

pulsations in the way non-linearities are showing from their ΓO functions presented in

this work. Anyway, a rigorous study to understand the underlying physical meaning

of the ΓO functions is needed.

6.2 Future work

Much remains for the complete characterization of non-linearities. In the course of these

work, ramifications of the study came out, some to provide even more rigor to the present

study and some to take further the investigation. For example:

• Building a HADS Catalog of Space Observations:

Although HADS are not very common, efforts need to be made to constitute a bigger

catalogue of HADS in order to conduct a statistical robust study and confirm the

assumptions made in Chapter 5 about the arguments of the ΓO functions in HADS

stars. For example, observations looking for HADS in the southern hemisphere could

help to add HADS located in the Magellanic cloud to the sample used in this monograph

(Balona, 2016).

• Spectroscopic follow-up of δ sct stars (HADS and LADS):

It would confirm the origin of the combinations as non-linearities from NLDP, since

they are not real oscillations. For example, they do not produce a real observable

displacement in a radial velocity plot (van Kerkwijk et al., 2000), since they are math-

ematical products of the deviation of the sinusoidal shape of the light curve. Radial

velocities taken from a spectroscopic follow-up could bring confirmation on the identi-

fications of NLDP non-linearities from radial parents, and to maybe identify the ones

from non-radial parents.
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• Time-frequency analysis:

Conducting time-frequency analysis could help in the identification of a non-linearity

nature. It is known that resonant mode coupling can induce amplitude and frequency

modulation of the modes (Bowman, 2017, Buchler et al., 1997, Dziembowski, 1982,

Nowakowski, 2005) so, this might be a way to confirm or support non-linearities nature

identifications.

• Development of the analytical equations:

The development of the equations and the modeling of the results from the empirical

characterization found in this study, may allow us to achieve numerical solutions for

the non-linear treatment of temperature, pressure, displacement or any other variable

that may present non-linearities.

The patterns obtained could be modeled to analytically characterize the non-linearities,

at least the non-linearities of stars pulsing in radial p-modes such as δ sct stars. The

increasing rate of the delay between the observed phases and the phases expected by

the simple model can be the starting point to model non-linearities, whose parameters

have to be closely linked to the non-linear effect happening in convective layers and

star surfaces, or any other non-linear process within the pulsating star. Additionally,

better characterizations could be done to the very complete patterns of the case study

KIC 5950759. Parabolic functions could be appropriate to model the relative phases

and the amplitude ratios.

• Massive application in γ Dor stars:

To establish statistical criteria that allow us to draw conclusions about the non-

linearities in these stars through the procedures presented in this monograph. Also, a

study in this direction could be helpful for developing new non-linear theories, since

they could possibly be pointing to new non-linear processes happening near the core
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of the star.

• Study of the physical meaning of the ΓO functions:

They differ enormously when the phases belong to g-modes or p-modes. This strength-

ens the argument that the ΓO functions would speak about the different non-linear

effects within each physical system. Future research could be focused in understanding

the arguments of the ΓO functions, when the non-linear effect is of a resonant mode

coupling nature.

121



APPENDICES



Appendix A

Relevant information on the time series

of the Delta Sct stars used in chapter 4

Table A.1 Relevant time series information. T is the length of the observation in
days and δt is the cadence or sampling rate in seconds. For the TESS and Kepler
light curves, we used the instrumental effects free light curve, resulting from the
Pre-Search data Conditioning (PDC) pipeline, accessible in the Mikulski Archive
for Space Telescopes (MAST: https://archive.stsci.edu/).

Time series Parameters

Star Name T [d] δt [s] Obs. Sequence

TIC 9632550 27.41 120.01 Sector 2

KIC 5950759 31.04 58.85 Quarter 4

HD 174966 27.20 31.99 Run SRc01
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Appendix B

Combination frequencies detected in the

Delta Sct stars analysed in chapter 4

Table B.1 Tags of the statistically significant combination frequencies for the mono-
periodic δ Sct star TIC 9632550. The frequency values can be calculated with the
parent frequency f0 resulting from the BPM given in Table 4.3, since the fitted
values are the exact combination frequency values

Combination frequencies

in TIC 9362550

2f0 5f0 8f0 11f0 14f0

3f0 6f0 9f0 12f0

4f0 7f0 10f0 13f0

Table B.2 Tags of the statistically significant combination frequencies for the double
mode HADS star KIC 5059759. The frequency values can be calculated with the
given parent frequencies f0 and f1 resulting from the BPM given in Table 4.4, since
the fitted values are the exact combination frequency values.

Combination frequencies of KIC 5059759

2f0 3f0+2f1 7f0+5f1 11f0+7f1 6f0-3f1 4f1-1f0

3f0 3f0+3f1 7f0+6f1 12f0+1f1 7f0-1f1 4f1-2f0

4f0 3f0+4f1 7f0+7f1 12f0+2f1 7f0-2f1 4f1-3f0

5f0 3f0+5f1 8f0+1f1 12f0+3f1 7f0-3f1 4f1-5f0

Continued on next page
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Table B.2 – continued from previous page

Non-linearities of KIC 5059759

6f0 3f0+6f1 8f0+2f1 12f0+4f1 7f0-4f1 5f1-1f0

7f0 3f0+7f1 8f0+3f1 12f0+5f1 7f0-5f1 5f1-2f0

8f0 4f0+1f1 8f0+4f1 12f0+6f1 8f0-1f1 5f1-3f0

9f0 4f0+2f1 8f0+5f1 13f0+1f1 8f0-2f1 5f1-4f0

10f0 4f0+3f1 8f0+6f1 13f0+2f1 8f0-4f1 5f1-6f0

11f0 4f0+4f1 8f0+7f1 13f0+3f1 8f0-6f1 6f1-4f0

12f0 4f0+5f1 9f0+1f1 13f0+4f1 9f0-1f1 6f1-5f0

13f0 4f0+6f1 9f0+2f1 13f0+5f1 9f0-2f1 6f1-6f0

14f0 4f0+7f1 9f0+3f1 13f0+6f1 9f0-6f1 6f1-7f0

2f1 5f0+1f1 9f0+4f1 14f0+1f1 10f0-1f1 7f1-6f0

3f1 5f0+2f1 9f0+5f1 14f0+2f1 10f0-2f1 7f1-7f0

4f1 5f0+3f1 9f0+6f1 14f0+3f1 10f0-4f1 7f1-8f0

5f1 5f0+4f1 9f0+7f1 14f0+4f1 10f0-6f1 7f1-9f0

1f0+1f1 5f0+5f1 10f0+1f1 14f0+5f1 10f0-7f1 8f1-7f0

1f0+2f1 5f0+6f1 10f0+2f1 15f0+4f1 11f0-1f1 8f1-6f0

1f0+3f1 6f0+1f1 10f0+3f1 2f0-1f1 11f0-2f1 8f1-8f0

1f0+4f1 6f0+2f1 10f0+4f1 3f0-1f1 11f0-7f1 8f1-9f0

1f0+5f1 6f0+3f1 10f0+5f1 3f0-2f1 11f0-4f1 9f1-7f0

1f0+6f1 6f0+4f1 10f0+6f1 4f0-1f1 12f0-1f1 9f1-8f0

2f0+1f1 6f0+5f1 10f0+7f1 4f0-2f1 20f0-14f1 15f1-19f0

2f0+2f1 6f0+6f1 11f0+1f1 4f0-3f1 1f1-1f0 16f1-19f0

2f0+3f1 6f0+7f1 11f0+2f1 5f0-1f1 2f1-1f0 17f1-19f0

2f0+4f1 7f0+1f1 11f0+3f1 5f0-2f1 2f1-2f0 18f1-20f0

Continued on next page

125



Combination frequencies detected in the Delta Sct stars analysed in chapter 4

Table B.2 – continued from previous page

Non-linearities of KIC 5059759

2f0+5f1 7f0+2f1 11f0+4f1 5f0-3f1 3f1-1f0

2f0+6f1 7f0+3f1 11f0+5f1 6f0-1f1 3f1-2f0

3f0+1f1 7f0+4f1 11f0+6f1 6f0-2f1 3f1-3f0

Table B.3 Tags of the statistically significant combination frequencies for the multi-
periodic δ star HD 174966. The frequency values can be calculated with the parents
given in Table 4.6 since the fitted values are the exact combination frequency values

Combination frequencies of HD 174966

2f3 7f0-4f4 8f1-6f4 9f2-7f3 2f4-1f3

1f0+1f1 8f0-5f1 8f1-8f2 1f3-1f1 3f4-2f0

1f0+1f2 8f0-6f2 9f1-9f2 1f3-1f2 3f4-3f0

1f0+1f3 8f0-5f3 2f2-1f0 2f3-3f0 3f4-4f0

1f0+1f4 9f0-6f2 2f2-1f1 2f3-1f4 3f4-3f1

1f1+1f2 9f0-7f2 2f2-1f3 3f3-1f4 3f4-2f3

1f1+1f3 1f1-1f0 3f2-1f0 4f3-5f0 4f4-4f0

1f1+2f3 1f1-1f2 3f2-2f3 4f3-4f1 4f4-4f1

1f1+1f4 3f1-3f0 3f2-1f4 4f3-5f2 4f4-4f2

2f1+1f3 3f1-3f2 4f2-3f3 5f3-5f0 4f4-5f2

2f1+1f4 3f1-2f3 4f2-2f4 5f3-7f0 4f4-4f3

1f2+1f3 4f1-5f0 4f2-3f4 5f3-3f1 5f4-5f3

1f2+1f4 4f1-3f3 5f2-6f0 5f3-5f2 6f4-8f0

1f3+1f4 4f1-2f4 5f2-2f3 5f3-4f4 6f4-7f1

2f0-1f1 5f1-6f0 5f2-3f3 6f3-8f0 6f4-7f2

Continued on next page
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Table B.3 – continued from previous page

Non-linearities of HD 174966

2f0-1f3 6f1-7f0 6f2-7f0 6f3-7f2 6f4-6f3

3f0-1f1 6f1-4f3 6f2-2f3 6f3-4f4 7f4-7f1

3f0-3f1 6f1-5f4 6f2-4f3 7f3-7f2 7f4-8f1

3f0-1f4 7f1-8f0 6f2-4f4 7f3-8f2 7f4-9f2

4f0-3f2 7f1-9f0 7f2-6f1 8f3-8f1 8f4-8f1

5f0-3f2 7f1-7f2 7f2-4f4 8f3-9f1 8f4-8f2

5f0-2f3 7f1-6f3 8f2-9f0 1f4-1f2 8f4-9f2

5f0-2f4 8f1-8f0 8f2-6f3 1f4-1f3 9f4-8f2

6f0-3f1 8f1-9f0 8f2-6f4 2f4-2f0

7f0-4f3 8f1-8f2 9f2-6f3 2f4-2f2
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Appendix C

Combination frequencies detected in a

set of light curves obtained by the TESS

mission and their non-linearity

unambiguous identifications.

Table C.1 Combination frequencies detected in the stars of the set analysed in
Antoci et al. (2019). Variability type column is extracted from Antoci et al. (2019)
A1 table. In column 2, the Best Parents resulting from the BPM in cycles per day.
In the 4th column, the combination frequency values can be calculated with the
given parent frequencies resulting from BPM in column 2, since the fitted values are
the exact combination frequency values. (M) means that the combination matches
the NLDP non-linearities template. (N-M) means no-matching the NLDP non-
linearities template.

TICs Variability Type Best Parents [d−1] Combinations

TIC 102090493 δSct/Ap/binary? f1 =23.79306 only subtractions

f2 =24.47857

TIC 116157537 δ Sct f1 =2.72392 f1 + f2 (M)

f2 =4.44156 and a few subtractions

TIC 12784216 δ Sct / hybrid? f1 =12.65818 2f1, 2f2, f1 + f2 (N-M)

f2 =16.70634 and a few subtractions

Continued on next page
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Combination frequencies detected in a set of light curves obtained by the TESS mission
and their non-linearity unambiguous identifications.

Table C.1 – continued from previous page

TICs Variability Type Best Parents [d−1] Combinations

TIC 137796620 δ Sct f1 =29.79899 No combinations

f2 =40.49900

TIC 139825582 δ Sct / hybrid? f1 =5.93556 2f1 (N-M)

f2 =7.93856 and a few subtractions

TIC 144387364 δ Sct / hybrid? f1 =16.01867 2f1 (N-M)

f2 =16.70819 and a few subtractions

TIC 147085268 δ Sct / hybrid? f1 =13.94128 only subtractions

f2 =22.55033

TIC 150101501 δ Sct f1 =42.75621 1 subtraction

f2 =45.93556

TIC 150394126 δ Sct / hybrid? f1 =49.08808 f1 + f2 (M)

f2 =58.58333

TIC 152864226 δ Sct / hybrid? f1 =32.62299 1 subtraction

f2 =41.57444

TIC 161172103 δ Sct f1 =7.93333 only subtractions

f2 =14.77690

TIC 166808854 δ Sct f1 =21.63202 only subtractions

f2 =37.34444

TIC 167602316 δ Sct / hybrid? f1 =1.41631 2f1, 2f2, 3f2, 5f2, 7f2,

9f2, 10f2

f2 =5.74444 f1 + f2, f1 + 4f2, f1 + 5f2

(N-M)

and a few subtractions

Continued on next page

129



Combination frequencies detected in a set of light curves obtained by the TESS mission
and their non-linearity unambiguous identifications.

Table C.1 – continued from previous page

TICs Variability Type Best Parents [d−1] Combinations

TIC 183595451 δ Sct f1 =10.70333 f1 + f2 (N-M)

f2 =11.93333 and a few subtractions

TIC 197686479 δ Sct f1 =8.27070 only subtractions

f2 =9.19179

TIC 197759259 δ Sct / hybrid? f1 =24.47584 only subtractions

f2 =26.28570

TIC 198035211 δ Sct f1 =19.74444 only subtractions

f2 =31.05598

TIC 201250317 δ Sct f1 =26.92956 only subtractions

f2 =34.69396

TIC 211379298 δ Sct / binary f1 =22.46870 No combinations

f2 =32.13282

TIC 219332123 δ Sct / hybrid? f1 =28.24515 2f1 (M)

TIC 224285142 δ Sct f1 =20.17758 1 subtraction

f2 =22.44444

TIC 229059574 δ Sct f1 =18.59344 only subtractions

f2 =30.20444

TIC 229150702 δ Sct f1 =25.21282 2f1, f1 + f2 (M)

f2 =26.80444 and a few subtractions

TIC 229154157 δ Sct f1 =10.98872 2f1, 3f1, 4f1, 5f1,

6f1, 7f1 (M)

TIC 231014033 δ Sct f1 =23.59567 only subtraction

f2 =30.61971

Continued on next page
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Combination frequencies detected in a set of light curves obtained by the TESS mission
and their non-linearity unambiguous identifications.

Table C.1 – continued from previous page

TICs Variability Type Best Parents [d−1] Combinations

TIC 231020078 δ Sct / hybrid? f1 =17.98733 only subtractions

f2 =32.76667

TIC 231048083 developed

δSct?

f1 =6.29135 2f1 (M)

TIC 234498473 δ Sct f1 =16.30171 only subtractions

f2 =18.63009

TIC 234516307 δ Sct f1 =20.00806 only subtractions

f2 =30.11556

TIC 234528371 δ Sct f1 =32.10399 only subtractions

f2 =37.97444

TIC 234548714 δ Sct / hybrid? f1 =15.43207 only subtractions

f2 =17.87356

TIC 237318602 δ Sct f1 =7.27344 only subtractions

f2 =23.30243

TIC 237881239 δ Sct / hybrid? f1 =16.79003 only subtractions

f2 =21.77969

TIC 253917376 δ Sct f1 =9.14444 only subtractions

f2 =13.33404

TIC 260353074 δ Sct/ hybrid? f1 =12.00606 only subtractions

f2 =14.60759

TIC 265566844 δ Sct? 1 peak f1 =5.63108 2f1, 3f1 (N-M)

TIC 269994543 δ Sct / hybrid? f1 =19.43133 only subtractions

f2 =23.13667

Continued on next page
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Combination frequencies detected in a set of light curves obtained by the TESS mission
and their non-linearity unambiguous identifications.

Table C.1 – continued from previous page

TICs Variability Type Best Parents [d−1] Combinations

TIC 277682809 δ Sct / hybrid? f1 =22.89667 only subtractions

f2 =46.46667

TIC 279361762 δ Sct f1 =6.71667 only subtractions

f2 =10.76687

TIC 279613634 δ Sct f1 =12.65844 only subtractions

f2 =20.61042

TIC 303584611 δ Sct f1 =8.84756 2f1 (N-M)

f2 =17.63556 and a few subtractions

TIC 308396022 δ Sct /HADS/

hybrid?

f1 =13.20347 2f1, 3f1, 4f1, 5f1 (M)

TIC 32197339 γ Dor (unre-

solved)

f1 =2.76196 2f1

TIC 30531417 HAGD f1 =3.03967 2f1, 3f1, 4f1, 5f1, 6f1

f2 =4.96067 7f1, 8f1, 9f1,

f1 + f2, 2f1 + f2, 3f1 + f2

TIC 33911462 δ Sct f1 =5.66125 only subtractions

f2 =8.54603

TIC 348762920 δ Sct / hybrid? f1 =12.28199 only subtractions

f2 =15.58145

TIC 348772511 δ Sct f1 =6.67509 2f1 (N-M)

TIC 350431472 δ Sct f1 =27.37762 only subtractions

f2 =23.97945

Continued on next page
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Combination frequencies detected in a set of light curves obtained by the TESS mission
and their non-linearity unambiguous identifications.

Table C.1 – continued from previous page

TICs Variability Type Best Parents [d−1] Combinations

TIC 350563225 δ Sct f1 =15.12392 f1 + f2 (N-M)

f2 =26.82290

TIC 358070081 δ Sct f1 =24.67471 No combinations

f2 =27.86013

TIC 364399376 δ Sct f1 =7.07729 2f1, 3f1, 4f1 (M)

TIC 381204458 δ Sct / binary f1 =25.60145 2f1, f1 + f2 (M)

f2 =27.56295

TIC 381857833 δ Sct f1 =9.86770 3f1, 2f1 + f2 (N-M)

f2 =13.00469

TIC 38587180 δ Sct f1 =8.89994 f1 + f2 (N-M)

f2 =9.60006

TIC 38602305 binary or multi-

ple system

f1 =2.11512 2f1 (N-M)

TIC 38847248 δ Sct / EB f1 =0.27791 2f1, 4f1 + f2, 6f1 + f2,

f2 =15.85333 7f1 + f2, 8f1 + f2,

11f1 + f2, 12f1 + f2,

14f1+f2, 16f1+f2 (N-M)

TIC 394015973 δ Sct / hybrid? f1 =18.13799 only subtractions

f2 =21.89067

TIC 396720223 δ Sct / hybrid? f1 =14.63695 only subtractions

f2 =23.42661

TIC 402318229 δ Sct / hybrid? f1 =19.12031 2f1 (M)

f2 =25.30510

Continued on next page
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Combination frequencies detected in a set of light curves obtained by the TESS mission
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Table C.1 – continued from previous page

TICs Variability Type Best Parents [d−1] Combinations

TIC 439399707 δ Sct / binary /

flares

f1 =0.30121 2f1, 3f1, 4f1, 5f1,

6f1, 8f1, 9f1, 10f1,

13f1, 14f1, 17f1 (N-M)

TIC 441110063 δ Sct f1 =26.22285 No combinations

f2 =34.47330

TIC 44627561 δ Sct / binary /

Ap?

f1 =0.32056 [1-6]f1, 59f1, [61-66]f1,

74f1 (N-M)

TIC 469844770 δ Sct f1 =43.58022 No combinations

f2 =50.23215

TIC 469933721 γ Dor / δ Sct /

hybrid?

f1 =4.58435 2f1 (N-M)

TIC 49677785 δ Sct / binary f1 =0.62718 [1-10]f1, [12-14]f1,

32f1 ,33f1, 43f1 (N-M)

TIC 52244754 δ Sct f1 =20.33117 No combinations

f2 =23.37295

TIC 52258534 δ Sct f1 =8.87822 only subtractions

f2 =9.04222

TIC 66434034 δ Sct f1 =39.76912 No combinations

f2 =41.13685

TIC 71334169 δ Sct f1 =22.46268 only subtractions

f2 =22.96432

Continued on next page
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TICs Variability Type Best Parents [d−1] Combinations

TIC 80474886 δ Sct f1 =14.82019 No combinations

f2 =18.17329

TIC 88277481 γDor/hybrid/1

peak only in δ

Sct regime

f1 =28.05811 No combinations

TIC 89464315 δ Sct f1 =6.00045 only subtractions

f2 =8.01266

TIC 89542582 δ Sct f1 =22.16419 only subtractions

f2 =28.29050

TIC 92734713 δ Sct f1 =49.69298 No combinations

f2 =54.40333

TIC 399572664 δ Sct / binary?

/ rot?

f1 =2.23314 2f1 (N-M)

TIC 99839685 δ Sct / hybrid? f1 =7.54644 2f1 (N-M)

f2 =13.81373
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