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Polarización de vaćıo y colapso gravitatorio
regular

Valentin Boyanov Savov

Supervisors:

Luis Javier Garay Elizondo,
Carlos Barceló Serón,
Raúl Carballo Rubio

ar
X

iv
:2

30
6.

07
16

9v
1 

 [
gr

-q
c]

  1
2 

Ju
n 

20
23





Universidad Complutense de Madrid

Facultad de Ciencias F́ısicas

Tesis Doctoral

Vacuum polarisation and regular gravitational collapse
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Raúl Carballo Rubio

1email: vboyanov@ucm.es; valentinboyanov@tecnico.ulisboa.pt





“First, the matter of thought exists in itself, while though in itself is
empty [. . . ] Second, the matter object in itself is something complete,
which does not require thought at all, while thought is something to be
completed by it [. . . ] Third, the object and thought are each in a sphere
separate from the other [. . . ] thought does not leave itself when receiving
and adapting to matter, but rather just modifies itself [. . . ] These are the
fallacies which bar the gateway into philosophy, and must be overcome
before entry.”

- G. W. F. Hegel, Science of Logic (1812).





Abstract

It is the goal of this work to revisit and revise the problem of black hole (BH) formation
and evolution in semiclassical gravity—a theory in which spacetime is treated classically,
while matter admits a quantum description, coupling to gravity through an expectation
value of a stress-energy tensor operator. Particularly, we analyse the vacuum expectation
value of this operator for a test scalar field in spherically symmetric spacetimes in which
trapped regions either form or are close to forming. First, we look at the magnitude of
potential corrections to the spacetime evolution in the vicinity of outer horizons formed
by collapsing matter in different dynamical regimes. We find that when the matter
approaches an adiabatic collapse regime while close to forming a trapped region (i.e.
close to crossing its Schwarzschild radius), the vacuum energy tends to grow unboundedly.
This relates to the Boulware state divergence at horizons, which in turn can be related
to the existence of static horizonless BH mimicker solutions to the semiclassical Einstein
equations. This suggests that the growing vacuum energy in slow collapse regimes may
stabilise the matter into a final horizonless configuration.

We then look at how the dynamics of such horizonless ultracompact objects can
lead to the emission of Hawking radiation (without the formation of trapped surfaces).
We find that an oscillatory movement of its surface results in the emission of bursts
of radiation, while a slow collapse which asymptotically approaches the crossing of the
Schwarzschild radius can result in a thermal spectrum akin to that of BHs, but with
a modified temperature. We also analyse the causal structure of the latter family of
spacetimes (in which the formation of a trapped surface is approached asymptotically),
finding that they posses an event horizon and either a Cauchy horizon, or two separate
future (null and timelike) infinity regions in the interior and exterior.

Finally, we look at the vacuum energy content in the vicinity of a BH inner horizon,
a region of spacetime which is classically known to amplify perturbations in a highly
non-linear manner. On a classical level, the evolution of the inner horizon in the presence
of generic perturbations present in the astrophysical medium leads to the so-called “mass
inflation instability”, wherein curvature around and below the initial position of the inner
horizon grows exponentially, while the inner horizon itself tends to approach the origin.
On a semiclassical level, we find a negative ingoing flux of energy, akin to the one which
drives Hawking evaporation at the outer horizon. However, backreaction from this flux
seems to indeed be amplified, growing exponentially and quickly overcoming of the Planck
scale suppression suffered by semiclassical dynamics. Indeed, classical mass inflation and
the semiclassical effect (which we dub inner horizon inflation) act in opposite ways on
the inner horizon: one pushing it inwards and the other outwards. Analyses comparing
the two effects suggest that the semiclassical one may dominate at late times, making it
possible for the trapped region to disappear from the inside out, on a time scale much
shorter than the Hawking evaporation time. As an aside, we find that the techniques used
for analysing the semiclassical stability of the inner horizon can also be applied to other
geometries with similar causal properties. In particular, we look at the geometry of a
warp drive spacetime, and use its causal structure to argue that an instability previously
found in 2-dimensional models can be avoided in higher dimensions.

To complete the picture of BH objects in semiclassical gravity, we propose that, if
trapped regions indeed disappear on short timescales, then the ultracompact objects



observed astrophysically may indeed be horizonless BH mimickers, formed from slowly
collapsing matter, the initial conditions for which are obtained after the dissipation from
one or several iteration of trapped region formation, inner horizon inflation and recollapse.



Resumen

El objetivo de este trabajo es reexaminar y revisar el problema de la formación y evolución
de agujeros negros en gravedad semiclásica, una teoŕıa en la que el espaciotiempo se trata
de forma clásica, mientras que la materia admite una descripción cuántica, acoplándose
a la gravedad a través de un valor esperado de un operador tensor de enerǵıa-momento.
En particular, analizamos el valor esperado en vaćıo de este operador para un campo
escalar de prueba en espaciotiempos esféricamente simétricos en los que se forman o
están a punto de formarse regiones atrapadas. En primer lugar, examinamos la magnitud
de las potenciales correcciones a la evolución del espaciotiempo en las proximidades de
horizontes externos formados por materia en colapso en diferentes reǵımenes dinámicos.
Encontramos que cuando la materia se aproxima a un régimen de colapso adiabático
mientras está cerca de formar una región atrapada (es decir, cerca de cruzar su radio
de Schwarzschild), la enerǵıa de vaćıo tiende a crecer ilimitadamente. Esto se relaciona
con la divergencia presente en el estado de Boulware en horizontes, que a su vez se
puede relacionar con la existencia de soluciones de las ecuaciones semiclásicas de Einstein
de objetos estáticos sin horizonte capaces de imitar observacionalmente a los agujeros
negros. Esto sugiere que la creciente enerǵıa de vaćıo en los reǵımenes de colapso lento
puede estabilizar la materia en una configuración final sin horizonte.

Después, estudiamos cómo la dinámica de tales objetos ultracompactos sin horizonte
puede conducir a la emisión de radiación de Hawking (sin la formación de superficies atra-
padas). Encontramos que un movimiento oscilatorio de su superficie da lugar a la emisión
de ráfagas de radiación, mientras que un colapso lento que se aproxime asintóticamente
al cruce del radio de Schwarzschild puede dar lugar a un espectro térmico similar al de
los agujeros negros, pero con una temperatura modificada. También analizamos la es-
tructura causal de esta última familia de espaciotiempos (en los que la formación de una
superficie atrapada se aproxima asintóticamente), encontrando que poseen un horizonte
de sucesos y, o bien un horizonte de Cauchy, o bien una separación en dos de la región
asintótica futura (de género tiempo y nulo) entre el interior y el exterior.

Por último, examinamos el contenido de enerǵıa de vaćıo en las proximidades del hor-
izonte interno de un agujero negro, una región del espaciotiempo clásicamente conocida
por su amplificación no lineal de perturbaciones. A nivel clásico, la evolución del hori-
zonte interno en presencia de perturbaciones genéricas presentes en el medio astrof́ısico
conduce a la inestabilidad llamada ”inflación de masa”, debido a la que la curvatura
alrededor y por debajo de la posición inicial del horizonte interno crece exponencial-
mente, mientras que el propio horizonte interno tiende a acercarse al origen. A nivel
semiclásico, encontramos un flujo de enerǵıa entrante negativo, similar al responsable de
la evaporación de Hawking del horizonte externo. Sin embargo, el efecto que tiene este
flujo sobre la geometŕıa parece ser amplificado, creciendo exponencialmente y superando
rápidamente la supresión Planckiana que sufre la dinámica semiclásica. De hecho, la
inflación de masa clásica y el efecto semiclásico (que denominamos inflación del horizonte
interno) actúan de forma opuesta sobre el horizonte interno: uno lo empuja hacia dentro
y el otro hacia fuera. Los análisis que comparan ambos efectos sugieren que el semiclásico
puede dominar en tiempos tard́ıos, haciendo posible que la región atrapada desaparezca
desde dentro hacia fuera, en una escala temporal mucho más corta que el tiempo de
evaporación de Hawking. Adicionalmente, observamos que las técnicas utilizadas para
analizar la estabilidad semiclásica del horizonte interno también pueden aplicarse a otras
geometŕıas con propiedades causales similares. En particular, examinamos la geometŕıa
de un espaciotiempo de warp drive y utilizamos su estructura causal para argumentar que



una inestabilidad encontrada previamente en modelos bidimensionales puede evitarse en
dimensiones más altas.

Para completar la imagen de los agujeros negros en gravedad semiclásica, proponemos
que, si las regiones atrapadas desaparecen en escalas de tiempo cortas, los objetos ultra-
compactos observados astrof́ısicamente pueden ser imitadores de agujeros negros que no
tienen horizonte, formados a partir de materia que colapsa lentamente, cuyas condiciones
iniciales se obtienen tras la disipación de una o varias iteraciones de formación de regiones
atrapadas, inflación del horizonte interno y recolapso.
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Introduction

A black hole (BH) in classical general relativity (GR) is a finite region of spacetime in
which the future of all causal trajectories is disconnected from that of the rest of the
universe. The geometric description of its inner region reveals a complex structure even
in the classical theory [1–4], though this is all hidden behind an event horizon from which
nothing can escape. Incidentally, no information to confirm the existence of this inner
region as described by GR can escape either, making its study within this theory a purely
mathematical exercise.

This is no longer the case when quantum corrections are considered. As Hawking
showed [5], when one takes into account the presence of quantum fields in a curved
spacetime [6, 7] with an event horizon, the mass of the BH will slowly be reduced, while
an equivalent amount of energy will be emitted at infinity—a process known as Hawking
evaporation. As the mass is depleted, the BH outer horizon would slowly shrink and
reveal (i.e. bring into causal contact with the outside universe) the innermost regions of
the object. This is the first indication that a complete description of BHs is physically
necessary, including an appropriate regularisation or dynamical avoidance of classical
singularities.

On the classical side, the GR description of the evolution of a BH interior has gone a
long way since the first model of spherical collapse [8]. It is now known that the region of
large curvature begins much further out than what might be expected from looking at the
Schwarzschild solution [4]; that the central singularity may well have a chaotic oscillatory
character [3], and that another oscillatory singularity (albeit a milder one) develops at
finite radii over a Cauchy horizon [9].

Although many works on semiclassical BH physics still treat the interior of these ob-
jects as essentially the Schwarzschild solution (particularly, many of those which analyse
the issue of information loss, e.g. [10,11]), there have been analyses which partially incor-
porate a more realistic version of a classical BH interior [12–17]. Still, a self-consistent
semiclassical solution of gravitational collapse which incorporates all the inherent com-
plexity of this problem does not yet exist. While it may well be the case that only a full
quantum description of gravity can provide us with a consistent picture of BH spacetimes
as a whole (see e.g. [18–20]), the semiclassical approach used by Hawking still has a wide
range of potential applications, especially pertaining to BHs, which have not yet been
fully explored.

It is the goal of this thesis to bring together and expand upon the different aspects
of semiclassical BH analysis: from effects around the formation of trapped regions, to
their short- and long-term evolution under backreaction, as well as the relation of this
evolution to semiclassically-sustained static horizonless BH mimickers [21, 22]. We work
in asymptotically flat spacetimes, and test these effects with a quantum massless scalar
field in the “in” vacuum state, defined as the Minkowski vacuum at past null infinity. We
also work in spherical symmetry, and our main tool for probing semiclassical corrections
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is the renormalised stress-energy tensor (RSET) of this massless field, calculated in the
Polyakov approximation [23], which makes use of dimensional reduction in the angular
variables and a quantisation in a 1+1 dimensional spacetime to approximate the radial
and temporal components of the RSET, much like an s-wave approximation.

We begin by studying the magnitude of semiclassical corrections in several spacetimes
which represent a collapse of matter in different dynamical regimes. Building on previous
work in this direction [24], we find that this magnitude is large enough for backreaction
to be relevant to the evolution when the collapse is slowed down or reversed just before
a trapped region is formed [25]. This can be understood in terms of the fact that if
the background dynamics is stopped before a trapped region forms, the “in” vacuum
state quickly relaxes to the static Boulware state, which approaches a divergent energy
contribution at the horizon [26–28]. Particularly, we use a toy model with a spherical
thin shell of matter to explore three different dynamical regimes: a small oscillation of
the matter surface just above the Schwarzschild radius, an asymptotic approach toward
this radius, and a crossing of this radius (and trapped region formation) at arbitrarily
low speeds. In the oscillating case, we find a series of bursts of outgoing radiation emitted
when the shell is closest to crossing its gravitational radius but bounces back, separated
by periods of approximately thermal emission during the rest of each oscillation cycle.
In the case of horizon crossing at low speeds, we find large values in all components of
the RSET, tending to a divergence in the zero limit of the speed parameter, suggesting
backreaction would become extremely large when matter collapses slowly, possibly leading
to the formation of horizonless static ultracompact objects [21,22].

In the case of asymptotic approach toward the formation of an apparent horizon,
we find an exact thermal emission of Hawking-like radiation, although at a temperature
lower than that of Hawking radiation of a Schwarzschild BH of the same mass. In light
of this intriguing result, we subsequently analysed the causal structure of these space-
times [29], finding that an asymptotic tendency in time toward the formation of a trapped
region, if continued indefinitely, is in fact sufficient to generate an event horizon, since
the expansion of outgoing radial light rays can tend to zero sufficiently quickly for their
overall radial displacement to be finite in infinite time. The temperature of the quantum
emission of these objects depends not only on the surface gravity of the asymptotically
formed apparent horizon, but also on the details of their dynamical approach toward this
formation. This discrepancy leads to an exponential growth of the RSET components
in the vicinity of the would-be horizon, suggesting that these periods of thermal BH be-
haviour could only last for a short time in a full self-consistent semiclassical evolution of
objects without trapped surfaces.

We then turn our attention to semiclassical effects in standard scenarios of BH forma-
tion, where matter collapses quickly and the RSET is initially very small in comparison
to the classical energy in the system. We perturbatively analyse backreaction, focusing
in particular on the dynamics of the trapped region. Classically, when a trapped region
forms, it usually does not extend all the way to the origin (at least initially). This is the
case when a BH has electric charge or angular momentum [1], or when an effectively clas-
sical regular central region is present [30, 31]. The lower boundary of the trapped region
is known as the inner apparent horizon, and it has some unique geometric properties. On
the one hand, geodesic observers which approach it experience a slow-down of their proper
time parameter with respect to the outside universe, making their trajectories extendable
past the bounds of the initial universe through what is known as a Cauchy horizon (as
beyond it, Cauchy initial data is no longer sufficient to determine the evolution). On

2
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the other hand, small energy perturbations in its vicinity have a disproportionately large
effect on the growth of spacetime curvature. This latter property in particular has lead to
the discovery of the mass inflation instability, wherein generic decaying classical pertur-
bations present in the astrophysical medium lead to an exponential growth of curvature
(and, in spherical symmetry, of the locally defined Misner-Sharp mass) [2, 9, 32].

We first look at the effect that backreaction from the RSET has on a classically static
inner horizon, as well as on an inner horizon which moves to the origin prior to the for-
mation of a spacelike singularity (as e.g. happens in the Oppenheimer-Snyder model [8]).
We find that the amplifying effect the inner horizon has on perturbations makes it so the
seemingly negligible RSET can lead to drastic changes in the evolution of the trapped
region [33]. Particularly, since the RSET violates energy positivity conditions [34], it
actually pushes the inner horizon outwards, tending to reduce the size of the trapped
region from the inside. Our perturbative analysis reveals that the initial tendency of
this inner horizon semiclassical correction is exponential in time, making it clear that, on
the one hand, a quasi-stationary approximation such as the one used to analyse Hawk-
ing evaporation would not be adequate, and on the other, that the time scale involved in
inner-horizon-related dynamics is much shorter than the Hawking evaporation time. This
latter conclusion in particular leads to the possibility that the whole semiclassical picture
of BHs should be revised, and full attention should be placed on how the inner horizon
evolve in realistic scenarios which involve both classical and semiclassical perturbations.

In an attempt to address this issue, we construct a toy model for mass-inflation-
inducing classical perturbations based on spherical thin shells interacting with a generic
(spherical) BH with an inner horizon. We analyse when and how mass inflation is trig-
gered from this interaction, and then use these backgrounds to once again perform a
perturbative semiclassical backreaction analysis [35]. The classical and semiclassical per-
turbations basically have opposite effects: the former pushing the inner horizon inwards,
while the latter pushing it outwards; we find that initially, the classical evolution contin-
ues, but after a short time (linear in the mass) the semiclassical outward push tends to
dominate. This is further corroborated by the asymptotic analyses performed in [14–17],
where it is found that semiclassical backreaction at the Cauchy horizon, if such a horizon
were to form, would dominate over classical mass inflation, forming a stronger curvature
singularity. Extrapolating from our analysis, we argue that even in the presence of mass
inflation, the inner horizon may still end up having an outward movement, extinguishing
the trapped region from the inside and changing the lifetime of BHs to an extremely
short one. If a full numerical analysis of the semiclassical Einstein equations were to
indeed lead to this outcome, then the extremely compact dark astrophysical objects ob-
served [36,37] may likely turn out to be horizonless BH mimickers, such as those obtained
semiclassically [21,22].

Under this hypothesis, we conjecture that the full picture of BHs in semiclassical
gravity consists in the following. Initially, a trapped region is formed by quickly collapsing
classical matter, followed by an equally quick outward inflation of the inner horizons and
disappearance of this trapped region. After some energy is dissipated from this process,
the dispersed classical matter recollapses under its own gravity. With possibly several
iterations of this process, enough energy is dissipated for the initial recollapse conditions
to be those of “slow collapse” in which the Boulware-like terms in the RSET are ignited,
leading to a final relaxation into a semiclassical ultracompact horizonless BH mimicker.

This thesis is based on several publications [25, 29, 33, 35, 38–40]. The structure is
as follows. The remainder of the Introduction chapter presents a brief overview of the
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theory of quantum fields in curved spacetimes, explaining the ambiguities in quantising
on non-trivial backgrounds and how they can translate into different possible values for
the RSET, and thus to different self-consistent evolutions of spacetime. We briefly show
how quantisation is performed and how the RSET is calculated in a 1+1 dimensional
spacetime, on the one hand, because the simplicity allows for analytical results, and
on the other, because we then use the result to approximate the RSET for spherically-
symmetric 3+1 dimensional spacetimes. A short review of how this theory has been
applied to the study of BHs thus far is also presented.

In part I we study the magnitude of semiclassical effects in the vicinity of horizon
formation for collapse scenarios with different classical dynamics. In Chapter 1 we start
by looking at the model of an oscillating thin shell which periodically approaches crossing
its own Schwarzschild radius only to bounce back outwards each time. We find periodic
emission of nearly thermal Hawking-like radiation, separated by non-thermal bursts, along
with large values of the RSET. In Chapter 2 we use the same model, but allow the matter
surface to cross the Schwarzschild radius, and do so at arbitrarily low speeds. We find
that nearly static classical matter close to crossing this radius results in large values of
the RSET. In Chapter 3 we analyse a matter distribution which collapses so slowly that
it only approaches the formation of a trapped surface asymptotically in time. We find an
emission of thermal Hawking-like radiation along with a growing value of the RSET, as
well as some interesting causal behaviours.

In part II we study semiclassical corrections to BHs with an inner apparent horizon.
In Chapter 4 we begin by reviewing the classical behaviour of such a horizon, focusing in
particular on the instability under perturbations known as “mass inflation”. We present
a simple model which contains the essential characteristics necessary to reproduce this
instability, while also being analytically solvable. On the other hand, in Chapter 5 we
focus on the semiclassically sourced evolution of an inner horizon in the absence of classical
perturbations, obtaining the result that trapped regions have a tendency to evaporate
not only form the outside, but also from the inside. In Chapter 6 we take a brief detour,
wherein we apply the conceptual results of the inner horizon analysis to determine the
semiclassical stability of a different class of spacetimes: the warp drive. Finally, in
Chapter 7 we return to BHs and put together the classical and semiclassical perturbations
in order to see what the evolution of a generic inner horizon may be. We find a tendency
for classical evolution to dominate initially, but for semiclassical effects to become relevant
after a very short timescale (of the order of the BH mass in geometric units).

In the Conclusions we summarise our results and link them together to list the pos-
sibilities of what the ultimate fate of BHs in semiclassical gravity could be.

We use the metric signature (−,+,+,+). Greek letters µ, ν, etc. are used for space-
time indices in 3+1 dimensions, and Latin letters a, b, etc. for indices in 1+1 dimensions,
unless otherwise stated. In general we use natural units, where c = 1, G = 1 and ℏ = 1,
except when writing the semiclassical Einstein equations, where having ℏ written explic-
itly is useful for comparison between the classical and semiclassical terms (to make the
dimensionality of the constant clear we in fact use the square of the Planck length, l2p,
rather than ℏ).
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I -1. Preliminaries to quantisation in curved space-

times

The quantisation of a field in Minkowski spacetime follows a well established procedure
(see e.g. [41]), the physical validity of which is shown by a myriad of experimental re-
sults. However, this procedure relies heavily on the symmetries present in flat spacetime
(i.e. Poincaré invariance), making its generalisation to curved spacetimes a complicated
task. We begin by briefly explaining the method of this generalisation and its inherent
ambiguities, following in part the discussion presented in [6].

Here and throughout the thesis, we make use of a massless real scalar ϕ minimally
coupled to gravity. Given that we will work in spherical symmetry, the quantisation of
this field is sufficient to probe generic effects from the presence of quantised matter. Its
action is

Sϕ =

∫
d4x

√−gLϕ = −1

2

∫
d4x

√−g∇µϕ∇µϕ, (I .1)

where g is the determinant of the metric tensor gµν , and Lϕ is the Lagrangian density.
The equation of motion which determines the dynamics of this field, known as the Klein-
Gordon equation, is simply

∇µ∇µϕ = 0, (I .2)

where ∇µ is the covariant derivative compatible with gµν .

I -1.1. Flat spacetime quantisation

In flat spacetime, using Cartesian coordinates adapted to an inertial observer we have
∇µ = ∂µ. We define the Klein-Gordon product,

(ϕ1, ϕ2)KG = −i

∫

Σt

ϕ1

↔
∂tϕ

∗
2 dΣt, (I .3)

where Σt is a t = const. hypersurface, t being x0, and f
↔
∂tg = f∂tg − (∂tf)g. For pair

of solutions to the Klein-Gordon equation, this constitutes a pseudo-scalar product (as
the norm it generates is not positive-definite), the values of which are independent of the
particular choice of t = const. slice. A basis of solutions to the Klein-Gordon equation
which is orthonormal with respect to the product (I .3) are the normalised plane waves

uk =
1√

2ω(2π)3
e−iωt+ik·x with norm δ(k− k′),

vk = u∗
k =

1√
2ω(2π)3

eiωt−ik·x with norm − δ(k− k′),
(I .4)

where ω = |k| is the frequency and k is the wave number, x being the 3-vector of the
spatial Minkowski coordinates. A generic solution can be expanded in terms of this basis
as

ϕ =
∑

k

(akuk + a∗ku
∗
k). (I .5)

Formally, if the domain in x is infinite, then k becomes continuous and should be inte-
grated over rather than summed, here and in the expressions below.
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The basis (I .4) allows us to divide solutions into two subspaces: one comprised of
solutions which can be obtained from an expansion solely in uk’s, which we will denote
by S⊕, and one of solutions which are obtained from vk’s, which will be denoted by
S⊖. The S⊕ functions are referred to as positive-frequency solutions, and the S⊖ ones
as negative-frequency solutions. Any solution can be expressed as s = s+ + s−, where
s+ ∈ S⊕ and s− ∈ S⊖. Note that while all positive-frequency solutions have positive
norm, the reverse is not true: a solution with an overall positive norm can have negative-
frequency components. In other words, the product (I .3) is not sufficient to define a
unique positive- and negative-frequency subspace separation. This will play a key role in
the ambiguity of quantisation in curved spacetimes.

The quantisation of this field is performed by promoting ϕ to an operator ϕ̂ which
satisfies the equal time commutation relations

[ϕ̂(t,x), ϕ̂(t,x′)] = 0,

[π̂(t,x), π̂(t,x′)] = 0,

[ϕ̂(t,x), π̂(t,x′)] = iδ3(x− x′),

(I .6)

where π̂ = ∂tϕ̂ is the canonical conjugate of the field. The field operator can now be
expanded in terms of the same mode basis, but the coefficients in the expansion become
operators themselves,

ϕ̂ =
∑

k

(âkuk + â†ku
∗
k). (I .7)

The operators âk and â†k are known as particle annihilation and creation operators, which
act on the Hilbert space which spans all quantum states. Thanks to the orthonormality
of the modes (I .4), the relations (I .6) translate into the simple commutation relations
for âk and â†k,

[âk, âk′ ] = 0,

[â†k, â
†
k′ ] = 0,

[âk, â
†
k′ ] = δkk′ ,

(I .8)

which are akin to those of a harmonic oscillator. We can then define the vacuum state
as the one annihilated by all the ak operators,

âk |0⟩ = 0, ∀k. (I .9)

A state of n particles with momentum k is then obtained by acting n times on |0⟩ with
the creation operator â†k. A quantum field can thus be thought of as an infinite assembly
of quantum harmonic oscillators.

Ultimately, the plane-wave basis used for the flat spacetime quantisation is, in a sense,
a natural choice, given the symmetry of the background: the total number of particles in
this quantisation is Poincaré invariant, though their momentum is of course relative. In
other words, if the whole procedure were carried out in any other set of inertial Minkowski
coordinates, the resulting vacuum state would be the same, and the momentum of particle
states would be related by a boost.
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I -1.2. Curved spacetime quantisation

If we attempt to repeat the same procedure in an arbitrary curved spacetime background,
then we quickly run into problems. In a globally hyperbolic spacetime [42], we can define
a covariant generalisation of the Klein-Gordon product,

(ϕ1, ϕ2)KG = −i

∫

Σt

ϕ1

↔
∇µϕ

∗
2 n

µ
√
−h dΣt, (I .10)

where t is any time function and Σt is again a t = const. surface, nµ is a unit vector
orthogonal to this surface, and h is the determinant of the induced metric on the sur-
face. For solutions to the Klein-Gordon equation, this product is invariant under changes
of the time function t. Any solution s therefore has a specific well-defined norm, and
orthonormal bases, such as the one used for quantisation in flat spacetime, can be con-
structed. However, there are infinitely many such bases, which generally have a different
separation into s+ and s− sectors, (which determine the separation between creation and
annihilation variables and thus define the vacuum state).

Quantising the field in a curved spacetime brings with it two difficulties. The first
is a practical one: obtaining explicit expressions for any basis of solutions to (I .2) is
generally a very challenging task. Only in a small handful of spacetimes can any basis
be written in terms of known functions. The second difficulty is a conceptual one: for
generic spacetimes, there is no a priori indication as to which one of the infinitely many
bases should be chosen for quantisation [6, 7, 43], different choices generally leading to
physically inequivalent results.

To see that this is the case, let us first write the field operator as

ϕ̂ =
∑

i

(âiui + â†iu
∗
i ), (I .11)

where uj is a set of functions which form an orthonormal basis with respect to the Klein
Gordon product, and ui and u∗

i generalise the positive- and negative-frequency subspaces
of solutions (the range of the i index would then be half of the number of elements in
the basis). The separation into these two subspaces is unique for each basis of solutions
(as defined by the associated complex structure [7, 43]) and, being directly related to
the definition of the creation and annihilation operators, defines the vacuum and particle
states. If we consider an expansion using an alternative basis,

ϕ̂ =
∑

i

(b̂iũi + b̂†i ũ
∗
i ), (I .12)

where ũj are also orthonormal, and b̂ and b̂† are our new annihilation and creation oper-
ators, then the annihilation operator of the first quantisation can be written as

âi =
∑

k

(αkib̂k + β∗
kib̂

†
k), (I .13)

where
αki = (ũk, ui)KG, βki = −(ũk, u

∗
i )KG (I .14)

are known as the Bogolyubov coefficients. When βki ̸= 0, the vacuum state of one
quantisation can appear full of particles for another, and vice versa. Therefore, some
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additional criterion appears to be needed in order to single out a particular basis and
vacuum state.

In flat spacetime, this criterion is derived from the symmetries of the background.
The free quantisation which respects these symmetries lies at the base of the standard
model of particle physics. The same criterion can be extended directly to stationary
spacetimes, where the timelike Killing vector field can be used for a unique separation
between the positive- and negative-frequency subspaces S⊕ and S⊖, and consequently to
a set of equivalent quantisations [43]. Particularly, when the temporal part of the Klein-
Gordon equation is separable, specifying a basis of solutions for this part already allows
for a separation between the two subspaces, and choosing different spatial components
for the remainder of the basis function alone cannot mix them.

Another case which allows for a natural choice of quantisation is found in spacetimes
which are stationary at least in a region large enough to define the initial conditions
of a field solution. The quantisation is then defined as the preferred one in the region
of symmetry, and then the corresponding modes are evolved through the subsequently
dynamical spacetime. For instance, this can be done in cosmology if one considers that the
scale factor of the Friedmann–Lemâıtre–Robertson–Walker geometry is initially constant
for some duration of time [44]. For asymptotically flat spacetimes, a similar approach
can be applied. Particularly, the spacetime need only be flat at past null infinity in
order to provide preferred initial conditions for the modes of a massless field. We will
refer to the vacuum state of this quantisation as the “in” state [5, 23, 45], and we will
use it throughout this thesis for calculating the RSET probing semiclassical effects in
spacetimes of gravitational collapse.

For generic dynamical spacetimes, however, the choice of modes and vacuum state
remains ambiguous. This is why much of the techniques developed for working with
quantum fields in curves spacetimes, such as the covariant renormalisation we will discuss
below, are formulated in a way which can be applied for any choice of modes. The matter
of how the ambiguity is fixed in our universe as a whole is, for the semiclassical theory,
relegated to a choice of initial conditions, which can only be determined by the observation
of cosmological deviations from classicality.

I -2. Semiclassical gravity

The physical implications of the quantisation ambiguity presented above may not appear
immediately clear, as the discussion so far has been focused on the dynamics of a single
field free of any interaction. In order to endow this field with a physical meaning, one has
to model its interactions, either with other fields or with some effective detector system.
For a field in curved spacetimes, it turns out that interaction is in fact inevitable, as the
covariant description of its dynamics already couples it (minimally) to gravity, and thus
endows it with a physical role as a source of curvature. In other words, one may define a
field with no interactions to other fields or detectors, but so long as it has energy it will
gravitate, and thus have an observable effect.

This brings with it an issue of its own: namely, after quantising the field, it would still
have to dictate how the (seemingly) classical spacetime curves. What would the gravi-
tational field of a superposition of states look like? Consistently coupling these systems
requires either the quantisation of gravity (allowing for superpositions of gravitational
fields and causalities) [46–48], or a “classicalisation” of matter when it reaches the energy
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scale at which it interacts gravitationally [49–51]. Despite the fact that, as of yet, no
approach in either direction has been fully successful, probing the interface between the
realms of gravity and quantum matter is still possible, albeit only approximately and in
certain situations.

The theory of semiclassical gravity describes the evolution of a classical spacetime
with a quantum stress-energy tensor source, which is brought to classicality by means of
an expectation value, i.e. the RSET mentioned above. This theory can be argued to be
the leading order contribution in a fully quantum system of gravity and matter [12, 52],
and in general is intuitively expected to provide a good approximation when quantum
matter is not highly delocalised (c.f. [53–56]). From a classical standpoint, it is merely
a modified version of Einstein’s theory in which source terms (the right-hand side of
the field equations) have a dependence on the derivatives of the metric of order higher
than one (unlike in GR). From a quantum standpoint, it reflects the ambiguity in the
quantisation (different choices leading to different spacetime evolutions) and the change in
the energy content of the vacuum and particle states as the background evolves, properly
encoding these characteristics in the source term [6, 7]. In practice, the RSET is usually
computed in the vacuum state of the chosen quantisation, and focus is placed on the
counter-intuitive fact that this state has an energy content even after renormalisation.

Let us explicitly see how this theory is constructed in the case of the massless scalar
seen above. Starting from the classical theory, when considering the dynamics of space-
time, the full action of the theory must include the Einstein-Hilbert term [57], becoming

S =

∫
d4x

√−g

(
R

16π
− 1

2
∇σϕ∇σϕ

)
, (I .15)

where R is the Ricci scalar (the trace of the Ricci tensor Rµν). The variation of this
action with respect to the metric gives the Einstein equations,

Rµν −
1

2
gµνR = 8πTµν , (I .16)

with the scalar field stress-energy tensor

Tµν = ∇µϕ∇νϕ− 1

2
gµν∇σϕ∇σϕ. (I .17)

Once the field is quantised, a stress-energy tensor operator can be constructed by sub-
stituting ϕ → ϕ̂ (if the field is real and the operator ϕ̂ is self-adjoint, then no additional
symmetrisation is needed).2 The resulting tensor operator, being quadratic in the field,
has a divergence in its expectation value. In flat spacetime, this is none other than the
divergence which is subtracted through “normal ordering” of the creation and annihi-
lation operators [41], equivalent to simply subtracting the expectation value in vacuum
from the ones in all other states. In curved spacetimes, rather than directly subtracting
the vacuum state value, a more involved renormalisation procedure is followed, making
use of the local geometric nature of the diverging terms [6, 7], as we will see. Once the
procedure is complete, we are left with a prescription for the RSET which sources the
semiclassical Einstein equations.

2Alternatively, the operator expectation value can be constructed from a variational principle of an
effective action [6,58], which provides alternative methods for renormalisation to the one presented below,
giving equivalent results.
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I -2.1. RSET in spherically symmetric spacetimes

To summarise, calculating the RSET of our scalar field involves finding a basis of solu-
tions to eq. (I .2) corresponding to a physically reasonable quantisation (e.g. the “in”
quantisation in asymptotically flat spacetimes [23, 45], or adiabatic quantisation in cos-
mology [59]), then using the field operator (I .11) to construct the stress-energy tensor
operator through the functional expression (I .17), and computing its renormalised ex-
pectation value in the vacuum state of the chosen quantisation. This calculation can
only be performed analytically in cases with either a high degree of symmetry, such as
a conformally coupled field in a homogeneous and isotropic cosmological model [52, 60],
or for a lower number of dimensions, such as the 1+1 case [61], or a combination of the
two, such as the 2+1 dimensional BH [62].

For BH spacetimes in 3+1 dimensions, one seems to be left with no other choice
but to attempt to calculate the RSET numerically. Indeed, tremendous progress has
been made in this direction over the past decades [63–69]. However, the trade-off for
the precision which these calculations provide lies in the fact that they can be performed
only on certain fixed backgrounds, and only in certain quantum vacuum states. The full
process of gravitational collapse and BH evolution in semiclassical gravity cannot as yet
be treated self-consistently with this approach.

A trade-off in the opposite direction can be made by sacrificing the precision of the
result (indeed, only preserving its qualitative character in certain regions) for a tool
which can be applied to calculating the RSET in a variety of dynamical geometries
which represent the formation and evolution of BHs and stellar objects: the Polyakov
approximation [23]. This approximation consists in dimensionally reducing a spherically
symmetric spacetime by integrating out the angular variables, then quantising in the 1+1
dimensional radial-temporal sector and calculating the RSET there, and finally applying
the result back to 3+1 dimensions.

The line element of a 3+1 dimensional spherically-symmetric geometry can be written
as

ds2 = hab(t, r)x
axb + r2dΩ2, (I .18)

where the indices a, b refer to the temporal and radial dimensions and hab is a 2 × 2
tensor. We can consider a field ϕ propagating on this spacetime for which the s-wave
contribution is dominant, i.e. which essentially has a dependence only on the radial and
temporal coordinates, ϕ = ϕ(t, r). As a functional of the field, the Lagrangian density Lϕ

also loses its angular dependence, and the part of the action dictating the field dynamics
can then be reduced to two dimensions by integrating out the angular variables

Sϕ =

∫
d4x

√−gLϕ(t, r) = 4π

∫
d2x

√
−h r2 Lϕ(t, r), (I .19)

where h is the determinant of hab. The relation between the stress-energy tensor in the
four-dimensional theory T

(4)
µν and the stress-energy tensor corresponding to the dimensionally-

reduced field dynamics T
(2)
ab is then

T (4)
µν =

δaµδ
b
νT

(2)
ab

4πr2
. (I .20)

We note, however, that the two dimensional theory described by (I .19) is not that of
a free field—a part of the four-dimensional kinetic term takes on the role of a potential
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after the dimensional reduction, namely the part responsible for backscattering in the
s-wave sector.

The Polyakov approximation to the RSET is obtained with two simplifying assump-
tions. The first one is that this potential in the equation of motion of the dimensionally-
reduced field can be disregarded. How well this assumption is justified varies depending
on the spacetime in question, but it is worth noting in particular that the potential is in
fact zero both at infinity and at the horizons of BHs [70]. It therefore may be expected
that horizon-related effects are captured well in this approximation; indeed, Hawking’s
result only changes slightly when one includes backscattering (correcting the black-body
spectrum with grey-body factors) [6]. The second assumption is that the two-dimensional
theory retains at least a qualitative similarity to the full four-dimensional one even after
quantisation and renormalisation. In other words, that eq. (I .20) can be applied to
relate the RSET of the two dimensional theory with an approximation to the four dimen-
sional RSET. Of course, this approximation is far from exact, as dimensional reduction
and renormalisation do not commute [71]. Additionally, the Polyakov approximation be-
comes less reliable the closer one gets to the origin of spherical coordinates r = 0, as it
tends to a non-physical divergence there. In spite of these issues, it works well in provid-
ing an analytical expression for a conserved RSET which captures some of the essential
characteristics of quantum field theory in curved spacetimes, such as the ambiguity in
the choice of vacuum and the violation of energy conditions. For the purposes of this
work, it is important to note that it does capture some well-established horizon-related
effects, such as Hawking evaporation, the Boulware state outer horizon divergence, and
the Hadamard state Cauchy horizon divergence (all of which will be explained in more
detail below) [12, 23, 26, 72]. We will therefore work with this approximation to probe
semiclassical effects near the edges of trapped regions or, more generally, in regions where
the causal structure approaches a light-trapping behaviour.

I -2.2. Quantisation and renormalisation in 1+1 dimensions

To construct the Polyakov RSET for spherically symmetric spacetimes, we need to quan-
tise our test field in 1+1 dimensions, isolate the divergence in the expectation value of
the stress-energy tensor operator, subtract this divergence in a covariant manner (i.e.
with counterterms proportional to tensor quantities), and finally plug the result into the
approximation (I .20). Luckily, in 1+1 dimensions the system is simple enough for this
whole procedure to be done analytically, even while keeping the spacetime and the choice
of quantum modes arbitrary. This fact in particular allows not only the easy calculation
of the RSET on fixed backgrounds, but also to determine the background at the same
time as the Polyakov RSET in a semiclassically self-consistent manner.

In 1+1 dimensions, a spacetime metric has only one physical degree of freedom, and
therefore takes on a conformally flat form in appropriate sets of coordinates. For the
calculation of the RSET, it is convenient to work in double null coordinates,

ds2 = −C(u, v) du dv, (I .21)

where C is the conformal factor. The Klein-Gordon equation for the minimally coupled
scalar (I .2) in this coordinate system takes the form

ϕ,uv = 0, (I .22)
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where the comma indicates partial differentiation. Note that this equation is conformally
invariant, and therefore has the same form as in flat spacetime for any function C.
Analogously to the flat spacetime case, a basis of solutions which is orthonormal with
respect to the Klein-Gordon product (I .10) is given by the right- and left-moving plane
waves

ϕω(u) =
1√
4πω

e−iωu, ϕω(v) =
1√
4πω

e−iωv, (I .23)

and their complex conjugates, with ω being a positive real number (the frequency of the
wave). Quantization can be performed by defining the field operator

ϕ̂ =
∑

ω

[
âRωϕω(u) + (âRω )

†ϕ∗
ω(u) + âLωϕω(v) + (âLω)

†ϕ∗
ω(v)

]
, (I .24)

with the creation and annihilation operators for each type of mode satisfying the non-zero
commutation relations

[âRω , (â
R
ω′)†] = [âLω , (b̂

L
ω′)†] = δωω′ . (I .25)

The vacuum state |0⟩ is defined by âRω |0⟩ = âLω |0⟩ = 0. An orthonormal basis of the
standard Fock space containing all particle states can then be obtained by applying the
creation operators (âRω )

† and (âLω)
† on the vacuum state, with appropriate normalization.

Since the field operator in eq. (I .24) is constructed to be self-adjoint, its Lagrangian
density is the same as that of the real, massless scalar field, and its corresponding stress-
energy tensor operator can be obtained directly from eq. (I .17) with the substitution
ϕ → ϕ̂. The vacuum expectation value of this tensor can be obtained by calculating the
expectation value ⟨0| ∇µϕ̂∇νϕ̂ |0⟩. With eq. (I .24) and the commutation relations in
eq. (I .25), we get

⟨0| ∇uϕ̂∇vϕ̂ |0⟩ = 0,

⟨0| ∇uϕ̂∇uϕ̂ |0⟩ =
∑

ω

ω2ϕω(u)ϕ
∗
ω(u) =

1

4π

∑

ω

ω,

⟨0| ∇vϕ̂∇vϕ̂ |0⟩ =
∑

ω

ω2ϕω(v)ϕ
∗
ω(v) =

1

4π

∑

ω

ω.

(I .26)

As the frequency ω is not bounded from above, the last two expressions are manifestly
divergent, and consequently so is the expectation value of the stress-energy tensor.

The divergence of the expectation value of operators which are quadratic in the field
is a well known problem from quantum field theory in flat spacetime. There, the standard
procedure is to perform “normal ordering” of the creation and annihilation operators or,
equivalently, to subtract the infinity of the expectation value in the vacuum state off of
the “same type of infinities” in the expectation values in other states, the result being a
finite value. This procedure works well due to the fact that, in the absence of coupling
to spacetime, only the differences between energy states are measurable, making the
absolute value of energy physically irrelevant. However, in curved spacetimes this is no
longer the case: there is no reason to believe that zero-point energy would not gravitate.
There have been arguments that instead of a full subtraction, an ultraviolet cutoff should
be put on the sums and integrals of the form (I .26), giving rise to a vacuum energy
which would manifest itself globally in spacetime as a cosmological constant. However,
putting the cutoff at the Planck scale, where the semiclassical approximation is expected
to break down, makes this type of energy much larger than the observed cosmological
constant [73]. The interpretation of this issue is still an open problem.

12



I ntroduction

Performing a full subtraction of the divergence, rather than putting in an arbitrary
cutoff, seems like the more reasonable choice. However, the construction of the counter-
terms should be done carefully. While it is possible to directly subtract the whole vacuum
expectation value in any given quantisation, resulting in zero vacuum energy and finite
expectation values in particle states, there are strong indications that this (generally
non-covariant) procedure is not the most reasonable option. Firstly, calculations of beta
coefficients (I .14) between the “preferred” (in terms of symmetry) vacuum states in
different regions of evolving spacetimes suggest the creation of particles by the gravita-
tional field [5,59], which should be taken into account energetically. Secondly, the nature
of the divergence turns out to be such that the counter-terms can be local in curvature
tensors, making them the same for any choice of vacuum state (of Hadamard type, i.e.
stemming from sufficiently regular mode solutions) [6, 7, 74]. After such a subtraction,
the vacuum expectation value of the stress-energy tensor operator is generally non-zero
(though finite) when spacetime is not flat.

One of the most used methods for isolating these divergent terms is known as covari-
ant point-splitting [74], and it consists of expressing the two-point correlation function
⟨0| ∇µϕ̂(x

ρ)∇′
ν′ϕ̂(x

′ρ) |0⟩ as a Laurent series in a geodesic distance parameter which be-
comes zero when x′ρ → xρ. The precise method used in [61], where the 1+1 dimensional
calculation was originally performed, involves symmetrically separating the two terms in
the two-point function in opposite directions along an arbitrary geodesic passing through
the initial centre point. Both covariant derivatives are translated to the tangent spaces
of the new points through parallel transport and evaluated there, leaving all terms as
functions of the original point and the derivatives of the geodesic curve, as well as the
small distance parameter. Note that this is slightly different from simply evaluating the
two-point function directly at the two final points, as it gives a covariant prescription of
how the coincidence limit is to be approached.

We have summarised the calculation of the 1+1 RSET, performed in [61], in Appendix
A. After the covariant subtraction of the divergence, the RSET of this theory becomes

⟨Tµν⟩ =
1

48π
Rgµν +Θµν , (I .27)

where the tensor Θµν is defined through its value in the null coordinates of the mode
basis as

Θµν = −
√
C

12π
diag

(
∂2
u

1√
C
, ∂2

v

1√
C

)

µν

. (I .28)

The first term in the RSET (I .27) is expressed in terms of curvature tensors, and is thus
independent of the particular choice of modes and vacuum state of the quantisation. The
second term, Θµν , is the one which encodes the information about the chosen vacuum
state, and is also the one which can become significant even in regions of low curvature.
The RSET is conserved covariantly, making it an appropriate source term for the semi-
classical Einstein equations. It also reduces to zero for the Minkowski quantisation of flat
spacetime, making this spacetime a solution of the semiclassical equations as well.

Vacuum states and thermal particle fluxes

As we discussed above, the quantisation defined in (I .24) depends on the choice of modes
(I .23), which in this case is encoded in a pair of null coordinates {u, v} in which these
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take the form of plane waves. This dependence can be seen now through the fact that
with a different pair of null coordinates {ũ, ṽ}, the metric (I .21) would take the form

ds2 = −C[u(ũ), v(ṽ)]g(ũ)h(ṽ) dũ dṽ, with g(ũ) =
du

dũ
, h(ṽ) =

dv

dṽ
. (I .29)

From here, all the above calculations follow in an analogous way, with the different
conformal factor C → C̃ = Cgh. The part of (I .27) which is written in terms of
local curvature remains the same, but the non-local part Θµν changes. In terms of
components, the relation between the RSETs in these two different vacua (written in the
same coordinate basis) is

⟨Tuu⟩0̃ =
1

24π

(
g′′

g3
− 3

2

g′2

g4

)
+ ⟨Tuu⟩0 , (I .30a)

⟨Tvv⟩0̃ =
1

24π

(
h′′

h3
− 3

2

h′2

h4

)
+ ⟨Tvv⟩0 , (I .30b)

⟨Tuv⟩0̃ = ⟨Tuv⟩0 , (I .30c)

where g′ ≡ ∂ũg(ũ) and h′ ≡ ∂ṽh(ṽ), and the subscripts 0 and 0̃ refer to the quantisations
with respect to the plane wave modes in the {u, v} and {ũ, ṽ} coordinates respectively. We
can see that a change in the vacuum state translates into the addition of right- and left-
moving radiation flux terms (which we will identify with ingoing and outgoing spherical
fluxes through the Polyakov approximation in spherically-symmetric spacetimes).

The fact that the state-dependent terms in the RSET are the ones which are non-local
in curvature brings to light an interesting observation: the difference between RSETs in
two vacuum states eliminates the terms which are local in curvature, and thus can also
remove the divergences present in the operator expectation value before renormalisation.
In other words, in situations where the counter-terms for renormalisation have not been
constructed explicitly, one can still obtain information about vacuum energy effects from
differences between RSETs in different quantisations (see e.g. [17,75]).

Apart from the RSET, a useful tool for measuring energy content in BH spacetimes
is the effective temperature function (ETF) [75,76], defined as

κu
ũ ≡ − d2ũ

du2

/
dũ

du
=

g′

g2
, κv

ṽ ≡ − d2ṽ

dv2

/
dṽ

dv
=

h′

h2
(I .31)

for the outgoing and ingoing (right- and left-moving) radiation sectors, respectively. In
the case of a spacetime representing the formation of a BH, the usual Hawking effect is
encoded in the constant value κuout

uin
= 1/2 = 2πTH between the “in” and “out” vacuum

states, where TH is the Hawking temperature in natural units. In more general terms, if
κu
ũ or κv

ṽ remains constant for a sufficiently long period of time (defined by an adiabatic-
ity condition), the vacuum state defined by the {ũ, ṽ} coordinates [through the modes
in (I .23)] will be seen by an observer with proper coordinates proportional to {u, v} as
a state of outgoing or ingoing thermal radiation respectively [76].

This function is also directly related to the outgoing and ingoing radiation fluxes which
appear in the RSET after a change of vacuum state [75]. Specifically, equations (I .30)
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can be written as

⟨Tuu⟩0̃ =
1

24π

(
dκu

ũ

du
+

1

2
(κu

ũ)
2

)
+ ⟨Tuu⟩0 , (I .32a)

⟨Tvv⟩0̃ =
1

24π

(
dκv

ṽ

dv
+

1

2
(κv

ṽ)
2

)
+ ⟨Tvv⟩0 , (I .32b)

⟨Tuv⟩0̃ = ⟨Tuv⟩0 . (I .32c)

In other words, the information about the difference between the RSETs in two different
vacuum states in 1+1 dimensions is entirely contained in their relative ETFs (and first
derivatives thereof).

For the 3+1 dimensional spherically-symmetric spacetimes we will study, we are in-
terested in calculating these quantities for two special quantum vacuum states: the “in”
and the “out” states. The “in” (“out”) state is the one defined by null coordinates
proportional to the proper time of inertial observers at past (future) null infinity in
asymptotically flat regions. In order to carry out calculations, we will want to extend
these sets of coordinates throughout the whole spacetime, if possible, and obtain the re-
lations between them. However, if there is a horizon present in the geometry, one or both
of these extensions may cover the spacetime only partially. For example, in a collapse
geometry which begins by being almost flat and ends up forming a BH, the “in” state
corresponds to the natural Minkowski vacuum at the asymptotic past which then evolves
according to the dynamics of the system. On the other hand, the “out” state corresponds
to the Minkowski-like vacuum at future null infinity, the backwards extension of which
is ambiguous (as it requires additional data at either the horizon or the singularity), but
generally exhibits a singular behaviour at the horizon [77]. This discrepancy leads to a
variety of interesting horizon-related semiclassical effects, which are the subject of the
first half of this work.

I -2.3. Semiclassical Einstein equations

The semiclassical field equations we will work with are

Gµν = 8π(T class
µν + ⟨Tµν⟩). (I .33)

Aside from the RSET described above, ⟨Tµν⟩, we also include an effectively classical mat-
ter source, T class

µν , which takes into account the bulk of the macroscopic matter responsible
for the curvature of spacetime (planets, stars, etc.). It is standard to assume that the
two stress-energy tensors should be covariantly conserved independently from each other.
In other words, the only interaction between vacuum energy and the effectively classical
matter contemplated in this theory is the one mediated by gravity itself.

Most of the spacetimes we will work with are spherically symmetric. Their line element
can be written as

ds2 = −C(u, v)dudv + r(u, v)2dΩ2, (I .34)

where u and v are radial null coordinates, r is the area-radius of the spherical slicing, and
dΩ2 = dθ2 + sin2 θ dφ is the line element of the unit sphere. The function r is positive,
and so is C if the null coordinates are regular throughout the spacetime. For the RSET,
we will use the operator expectation value derived from a massless scalar field in the
Polyakov approximation, by combining (I .27) and (I .20). If we take {u, v} to be the
coordinates in which the modes of the chosen 1+1 dimensional quantisation are written
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as plane waves (or one with an equivalent vacuum state), then the components of the
semiclassical equations can be written explicitly as

2C,ur,u
Cr

− 2r,uu
r

= 8πT class
uu +

l2p
12πr2

(
C,uu

C
− 3

2

C2
,u

C2

)
, (I .35a)

2C,vr,v
Cr

− 2r,vv
r

= 8πT class
vv +

l2p
12πr2

(
C,vv

C
− 3

2

C2
,v

C2

)
, (I .35b)

C

2r2
+

2r,vr,u
r2

+
2r,uv
r

= 8πT class
uv +

l2p
12πr2

(
C,uC,v

C2
− C,uv

C

)
, (I .35c)

2C,vC,ur
2

C3
− 2C,uvr

2

C2
− 4r,uvr

C
= 8πT class

θθ , (I .35d)

where lp is the Planck length, which we will write explicitly in these equations in order
to emphasise the suppression of the RSET with respect to the classical terms. Note that,
unlike standard classical stress-energy tensors, the RSET contains second derivatives
of the metric, changing the principal part of the evolution equations (with whichever
evolution parameter one chooses). Though no explicit proof of the well-posedness of
these equations exists as of yet, they have been used in numerical calculations with
stable results [78,79].

With exact calculations of the RSET in 3+1 dimensions (rather than the Polyakov
approximation), the situation gets even more complicated. Derivatives of up to fourth
order appear in the RSET, which, if taken at face value, can lead to the semiclassical
destabilisation of well-established classical solutions, such as Minkowski spacetime, under
arbitrary perturbations [80–82]. This issue has been subsequently formally remedied
by considering the semiclassical approximation as an expansion in ℏ, which allows an
effective reduction of the order of the derivatives through constraints obtained form the
zeroth order of this expansion (the classical limit) [83–86].

In practice, the semiclassical analysis rarely gets far enough along for the order reduc-
tion procedure to come into play. Indeed, due to the great difficulty involved in obtaining
the RSET in 3+1 dimensions, even in BH spacetimes with angular symmetries, the cal-
culation is usually only performed on fixed backgrounds without complicated (or any)
dynamics (see e.g. [14, 17, 68, 69]). The effects of backreaction are then only inferred in
certain regions of these spacetimes.

By contrast, the Polyakov approximation can be used for simple calculations of the
RSET in a large variety of dynamical spacetimes (albeit, restricted to spherical sym-
metry), often allowing analytical perturbative analyses of backreaction, and even full
self-consistent solutions when numerics are involved. In this thesis we mainly focus on
analytical studies of the magnitude of the RSET and backreaction, bringing to light the
dynamical scenarios in which semiclassical horizon-related corrections are relevant, and
thus paving the way for future numerical computations of self-consistent solutions.

I -3. Black holes in classical and semiclassical gravity

When one looks for a gravitational system in which deviations from classicality are ex-
pected to occur, the most natural candidate is the densest object in the observed universe:
the astrophysical BH [36,37]. BHs are a generic outcome of the gravitational collapse of
classical matter [87]. Their classical description involves the formation a trapped region
and, ultimately, a singularity, which is a tell-tale sign of the breakdown of the classical
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Figure 1: Left: Causal structure of the Oppenheimer-Snyder-type geometry. The red curve
represents the surface of the collapsing sphere of matter, and the shaded part is the trapped
region, delimited by the outer and inner horizons. Right: The part of the Oppenheimer-
Snyder geometry external to the matter distribution is identified with a section of the
Kruskal maximal extension of Schwarzschild spacetime.

theory. These objects therefore provide a natural testing ground for theories which model
the interface between the gravitational and quantum realms [5, 18–20, 88–96]. We will
now conclude this introduction by presenting a brief overview of what the classical and
semiclassical theories have told us so far about BH formation and evolution, comparing
in particular what these two approaches (or partial admixtures of the two) have argued
the ultimate fate of these objects might be.

I -3.1. Classical BH formation and evolution

The first solution to the Einstein equations which described the formation of a BH,
obtained by Oppenheimer and Snyder [8], involved the collapse of a perfectly spherical
distribution of a homogeneous and pressureless ideal fluid (or dust cloud). The end
result of this collapse is (the future part of) a Schwarzschild BH [97, 98], i.e. a spacelike
curvature singularity enclosed by a trapped region, as shown in fig. 1. For details on the
Oppenheimer-Snyder model, see Appendix B.

Initially it was not clear whether the BH singularity was a generic result, or rather
a consequence of the imposed idealisation of spherical symmetry [99]. The result was
subsequently shown to indeed be generic with the singularity theorems [42,87,100]: when
a trapped region forms, if certain energy positivity and causality conditions are satis-
fied [34], the collapse process necessarily continues until a singularity (in the sense of
inextendability of incomplete geodesics) forms. However, these theorems do not give
indications as to the type of singularity, nor indeed the causal structure surrounding it.

As it turns out, the inner structure of a realistic BH is rather more complicated
than that of the Oppenheimer-Snyder solution. On the one hand, it was shown that
perturbations away from spherical symmetry can make spacelike singularities develop in
a significantly different way from their symmetric counterparts [3, 101]. Particularly, it
was shown that at the singular end of a big-bang-like region of non-isotropic universes
(akin to the interior of BHs), a so-called Belinski-Khalatnikov-Lifshitz (BKL) singularity
develops, which has an unbounded oscillatory behaviour that is different in different
spatial directions, and which essentially evolves independently form the matter content
which generates it. A BKL singularity can also be found at the endpoint of gravitational
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Figure 2: Causal diagrams for the formation of a charged BH, and their analytical exten-
sions. On the left diagram matter collapses to form a singularity before crossing the Cauchy
horizon. On the right, matter crosses the Cauchy horizon before forming a singularity. The
shaded regions are the parts of the trapped regions external to the matter distribution in
each case. r+ indicates the stationary part of the outer horizon and r− of the inner and
Cauchy horizons.

collapse [102–104].
On the other hand, it was discovered that the causal structure inside realistic (spin-

ning and/or electrically charged) BHs is altogether quite different from that of the
Schwarzschild solution, and that environmental perturbations play a key role in its evo-
lution. Particularly, the Kerr-Newman solution [105–107] possesses not only an outer
apparent horizon, but also an inner one. Given that the trapped region does not go all
the way down to the singularity, the nature of this singularity becomes timelike.

The interesting causal features do not end there. Observers which approach the inner
horizon in an outgoing manner actually have their proper time slowed down with respect
to the outside universe, to the point of making their trajectories extendable beyond this
universe through a Cauchy horizon [1, 108]. Even more strangely, the matter which
forms the BH can itself cross the Cauchy horizon before collapsing all the way to form a
singularity [1,109], as shown in the right causal diagram of fig. 2 for a charged Reissner-
Nordström BH.

However, the picture changes yet again when taking into account the generic decaying
energy perturbations typically present in BH spacetimes [110]. The so-called mass infla-
tion instability is triggered [2, 111, 112], wherein the small perturbation to the position
of the inner horizon caused by the external energy fluxes leads to an exponential growth
of the energy contained in the matter sector in the core of the BH, and consequently of
the spacetime curvature. Though this does not affect how the BH is perceived from the
outside (the core region of the BH being causally disconnected from the outside universe),
its inner structure does change significantly: the inner horizon plummets to the origin
(possibly forming a spacelike singularity at a finite time [113]), and the Cauchy horizon
is substituted by a (weak) curvature singularity [32], which in the case of a rotating BH
has an oscillating structure [9] not unlike the BKL singularity. In part II of this work,
we will present a particular geometric model which captures the essential characteristics
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of mass inflation, and we will discuss in more detail the properties of the internal BH
region.

All this said, for observers outside the BH outer horizon the Oppenheimer-Snyder
model, or indeed even the Schwarzschild solution itself, may be considered sufficient for
modelling the causal properties of a BH: a region of spacetime from which nothing, not
even light, can escape. One may then wonder whether this more precise study of the
inner structure of BHs is worthwhile, given the lack of causal contact and the consequent
impossibility of observational corroboration (at least, for those of us not willing to leap
into BHs ourselves). However, as we will now see, this study becomes quite relevant when
semiclassical effects are considered.

I -3.2. Semiclassical BHs: the standard picture and beyond

Vacuum states on static BH backgrounds

One of the most frequently analysed problems in quantum field theory in curved space-
times is that of the vacuum energy present in BH geometries. If we take the simplest BH
solution, the Schwarzschild BH, the most direct way of quantising a field in the region
exterior to the horizon would be to take advantage of the timelike Killing vector to sep-
arate the mode solutions into positive and negative frequencies. The resulting quantum
vacuum, commonly referred to as the Boulware state [26], turns out to have non-regular
properties at both the past and future horizons (of the Kruskal maximal extension, rep-
resented in fig. 1). This is directly related to the fact that the time coordinate in the
direction of symmetry becomes singular at the horizons, these being Killing horizons be-
yond which the BH is no longer static. The unbounded oscillatory behaviour of the modes
(with respect to any physical time parameter) as they approach the horizons translates
to singular energy expectation values for the field.

In fact, if one looks for a semiclassically self-consistent vacuum solution in spherical
symmetry compatible with staticity, one finds something which looks like a Schwarzschild
BH at large radii, where backreaction is small, but close to the would-be horizon one
finds instead a wormhole throat, which opens up into a strange high-curvature region
not hidden by horizons [27, 28]. The large backreaction around the would-be horizon
has in fact sparked a search for static objects with classical (positive-energy) matter and
semiclassical vacuum energy, with the latter compensating the tendency for collapse of
the former, resulting in potentially stable ultra-compact configurations [21,22]. It is also
the inspiration for the work presented in part I of this thesis, where effects related to
how the dynamical “in” vacuum state can approach the high-energy levels of the static
Boulware state in the vicinity of would-be horizons are studied.

In objects with actual trapped regions, the Boulware state is of course considered non-
physical. Eternal BHs are idealised objects, whereas realistic BHs are expected to form
dynamically from regular initial conditions, both classically and semiclassically. The main
argument against the physicality of the Boulware state is the fact that if a quantisation
is initially renormalisable (i.e. divergences of quadratic operator expectation values are
of Hadamard type), then it continues as such throughout the Cauchy evolution of the
initial data [114]. Thus, the “in” state of gravitational collapse can never evolve into the
Boulware state if a closed trapped region is formed.

If one attempts to change the vacuum state to one which gives a regular RSET at
either the past or future horizons (or both), one finds an inevitable introduction of energy
fluxes at infinity [77]. In the case of regularising only the future horizon, the resulting
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Figure 3: Causal diagram of BH formation and its subsequent Hawking evaporation.
Unlike in the classical case, the outer horizon area decreases, until it reaches r = 0. The
point p represents the so-called thunderbolt event, where the singularity meets the outside
universe, leading to an ambiguity in the future evolution.

flux is none other than that of thermal Hawking radiation. This vacuum is known as the
Unruh state [115], and it reproduces the general characteristics of the “in” state after BH
formation, independently of the details of the collapse. It is therefore useful for studying
the behaviour of quantum fields in evaporating BHs.

If we take a state which is regular at both past and future horizons, the presence of
fluxes at both past and future null infinity translates into a time-invariant thermal bath in
the bulk of the spacetime. This vacuum is known as the Hartle-Hawking state [116,117],
and due to its time invariance it is useful for a variety of semiclassical calculations (see
e.g. [64, 118,119]).

BH formation and evaporation

In order to study semiclassical backreaction on BHs, it is useful to work with the “in” state
of gravitational collapse. As mentioned earlier, this state is defined from the Minkowski
quantisation in the past region of asymptotically flat spacetimes. When a BH forms,
this state behaves much like the Unruh state, giving a flux of outgoing thermal radia-
tion at future null infinity, and also a compensatory negative ingoing energy flux at the
horizon [72].

When backreaction on dynamically formed BH was studied, it lead to one of the
most striking results of modern physics: the BH outer horizon, classically seen as a one-
way barrier from which nothing escapes, actually tends to gradually reduce in size, and
eventually lets out all that was trapped inside—a process known as Hawking evaporation
[5, 88]. Though it is not clear what happens at the very end of this process, where the
central singularity comes into contact with the outside universe at the same moment
in which it disappears due to the depletion of its mass, the qualitative features of the
typically expected causal structure of an evaporating BH are represented in fig. 3.

Remarkable though this result may be, it actually opens the door to a plethora of
problems for the consistency of BH solutions. For instance, it makes it hard to sweep
singularities under the rug, as is usually done in the classical theory, formally through the
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well-known Cosmic Censorship Conjecture [120]. In the semiclassical theory, the issue of
the high-curvature central region has to be dealt with eventually, but the question turns
into how long this can be avoided for.

One may believe that this evaporation picture is perfectly valid and free of inconsis-
tencies up until the outer horizon shrinks to a Planck size, from where a quantum theory
of gravity would resolve the issue. However, one important observation bring this into
question. The thermal nature of the Hawking radiation flux, if continued throughout the
whole evaporation process, becomes incompatible with a unitary evolution of the field
involved. However, as mentioned above, this flux is necessary for the regularity of the
RSET at the outer horizon, and modifying it leads to a resurgence of an energetic fire-
wall at this horizon reminiscent of the Boulware state divergence [89]. While a transient
Hawking evaporation phase can be compatible with unitarity, if it is continued until the
horizon reaches a region of Planckian curvature (as the Hawking picture suggests), one
would be left with an extremely small region keeping the correlations which can purify
the whole seemingly thermal external region of the vacuum state. In other words, a
Planck-sized region would have to contain an amount of information regarding the field
which is well beyond what can be intuitively expected no matter what the quantum grav-
ity theory which describes this region might be. This issue is commonly referred to as
the information paradox of BHs, and it has been a central part of semiclassical gravity
research for several decades [10,11,89,121–125].

Note that the assumptions underlying this discussion have been that the classical
BH formation scenario to be corrected is the one shown in fig. 1, and that the RSET
only produces notable backreaction at the outer horizon. However, neither of these
assumptions is actually justified. As discussed above, the inner structure of a classical
BH is notably more complex than this, and backreaction from the RSET in this region
has only been studied partially.

Backreaction at the inner horizon

Studies of BHs are permeated by the idea that nothing can escape from these objects.
Though this is justified when working with classical matter, the intuition has been ex-
tended even to semiclassical analyses. The Hawking effect is indeed best seen as a conse-
quence of effectively negative energy falling into the BH, rather than something coming
out, hence the information loss problem. However, the modification of the causal struc-
ture of the BH produced by this negative energy intake does imply that causal geodesics
which were once inside the trapped region can subsequently escape to the outside uni-
verse. Although the amount of actual matter which could feasibly escape the BH in this
manner in a scenario like the one represented in fig. 3 is miniscule (due to the time scale
of Hawking evaporation), this need not be the case in scenarios with a more complex
inner structure. Even more crucially, the idea that backreaction from the RSET can
change the fate of classical matter by altering the causal properties of the spacetime has
far-reaching implications. For instance, these modifications to the light-cone structure
may not be limited to the vicinity of the outer horizon.

Particularly, there is an obvious place where curvature may still be small (making the
semiclassical approximation valid), but where effects non-local in curvature may lead to
significant backreaction from the RSET: the inner horizon. As discussed above, the inner
horizon is classically believed to be unstable, making the Cauchy horizon it generates
weakly singular. As an add-on to the study of this instability, semiclassical analyses
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have been performed in the vicinity of BH Cauchy horizons [12–17]. What is found is
that the RSET diverges in all initially renormalisable (Hadamard-type) quantum states.
This divergence is completely analogous to the one present in the Boulware state at
the outer horizon: the modes of the quantum field attain a divergent behaviour with
respect to the physical distance parameters at the Cauchy horizon. The conclusions
drawn from this behaviour are typically that semiclassical effects would produce a stronger
curvature singularity at the Cauchy horizon and definitively prevent the extendability of
the geometry into another asymptotic region.

The fact that the RSET tends to be larger than the classical matter source in the
vicinity of the Cauchy horizon, which is the asymptotic limit of the inner horizon, is indeed
an interesting result. However, the conclusions drawn thus far regarding backreaction in
this region are, at the very least, incompatible with the evaporation of the outer horizon,
as a Cauchy horizon only tends to form in these geometries if a trapped region continues
to exist indefinitely (as seen from the outside). Scenarios involving Cauchy horizons in
the framework of semiclassical gravity can only be consistent either if the BH is extremal,
or if Hawking evaporation ceases for some other reason (in which case the RSET would
also tend to a divergence at the outer horizon [77,89]).

A fully consistent semiclassical analysis of the evolution of a generic trapped region
formed dynamically from gravitational collapse involves the study of backreaction at
both the outer and inner horizon at finite times. In part II of this thesis we perform
this analysis using the RSET in the Polyakov approximation. We recover the result
for Hawking evaporation of the outer horizon, and we find that the inner horizon has
a tendency to move outward, reducing the size of the trapped region from the inside.
Although our results do not describe the evolution of the trapped region in its entirety,
they are highly suggestive of a process by which this region disappears from the inside-out
on a fairly short timescale, as will be discussed in detail.
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Semiclassical effects near the outer
horizon
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When quantising a field on a spherically-symmetric Schwarzschild spacetime, there
are three particular choices for a vacuum state which illustrate the relation between the
quantisation and the symmetries of the spacetime. If one focuses on the staticity of the
Kruskal maximal extension and quantises with respect to the timelike Killing vector, one
obtains the Boulware state [26]. This state is well behaved at infinity, having an energy
content which goes to zero there. However, its energy becomes divergent at the past and
future horizons, making it inconsistent with full semiclassical description of a BH. If one
attempts to regularise the state at both horizons while retaining a stationary behaviour,
one obtains the Hartle-Hawking state [116], in which there are fluxes of Hawking radiation
at both past and future null infinity, resulting in an overall thermal bath in the bulk of
the spacetime. However, these eternal fluxes at infinity make this state incompatible
with asymptotic flatness when the semiclassical Einstein equations are considered. It
thus appears that eternal BHs are disallowed in semiclassical gravity.

A more physically reasonable scenario is that of an asymptotically flat (ignoring cos-
mological backgrounds) spacetime with an initially dispersed distribution of matter, which
eventually collapses to form a BH. In it, we can choose an asymptotically Minkowskian
quantisation in the asymptotic past, which can be extended to the whole spacetime (i.e.
the “in” vacuum state). This is in fact the state for which the Hawking radiation result
was obtained [5]. In it, observables are regular at the horizon, and the future asymptotic
structure is made consistent through the evaporation process, allowing for a (nearly)
complete semiclassically self-consistent description.

When using the “in” vacuum, the overall resulting picture is that any stellar-mass
object which collapses rapidly toward the formation of a horizon generates extremely
small RSETs. It is important to stress that “rapidly” here corresponds precisely to the
standard situation one would expect when working in the framework of general relativity
(defined by the Einstein field equations coupled to matter satisfying the standard energy
conditions [34]) and taking into account the forces that are known to play a role in stellar
evolution. In these situations, semiclassical effects appear so small that the collapse can
be expected to proceed in almost exactly the same manner as in classical general relativity,
forming a trapped surface and thus a BH (see e.g. [72,78] for the first treatments of this
problem and [24, 126] for modern retakes). The crucial hypothesis of “rapid approach
toward the formation of a horizon” is, therefore, perfectly sensible in most scenarios,
even semiclassically. However, the possibility of modifications to the geometry which
begin inside BHs and propagate outwards (see e.g. [24, 93, 127, 128] and part II of this
thesis) might lead to situations in which this hypothesis is questionable. For instance, the
divergent behaviour of the Boulware vacuum may be taken as a hint of the possibility that
even in a physical vacuum, the surroundings of a black-hole outer horizon may be a region
where semiclassical corrections become large enough to be relevant to the evolution of
the system. Indeed, as we will show, the hypothetical formation of ultracompact objects
sustained very close to horizon formation (an alternative to BHs [22,129–132]) appears to
require at least a semiclassical treatment. Generally, if the RSET contribution overcomes
its suppression by Planck’s constant and becomes comparable to the classical stress-
energy tensor, then a complete, non-perturbative semiclassical treatment of the problem
is in order.

In this first part of the thesis we study the values of the RSET for the “in” vacuum
of a free massless scalar field in spherically symmetric geometries which approach the
formation of a horizon in different ways. Previous works with the same motivation have
checked some of the semiclassical effects produced by a collapse of matter which quickly
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decelerates just before reaching the formation of a horizon [133,134]. Our present goal is
to more generally identify the precise geometric characteristics of the dynamical situations
which would cause large backreaction close to horizon formation. We will use the ETF
introduced above, as well as the RSET, to measure these effects.

For our geometric setup, we will mainly use a thin shell model with a Schwarzschild
exterior and a Minkowski interior, moving radially along some timelike curve; in chapter
3, in the interest of analysing a larger variety of causal structures and thermal effects,
we will also generalise this setup to arbitrary exterior and interior geometries. We will
use trajectories for the shell surface suitably chosen to represent scenarios in which the
formation of a horizon is approached in different ways. We note that the use of the term
“horizon” throughout this part of the thesis must be identified with the local notion of
an outer apparent/trapping horizon [135, 136], and not with the global (and generally
unobservable) event horizon [42, 137], unless explicitly stated. Let us briefly make some
comments on this.

While in some of the geometries analysed below the position of apparent/trapping
horizon and event horizon are coincident, this should not be taken as an indication that
our results are tied in any way with the formation of event horizons. In fact, it is
always possible to deform these geometries in a way that event horizons are removed
completely, but the local geometric conditions that eventually lead to their formation
in the undeformed geometries are maintained for arbitrarily long times (for geometries
in which apparent/trapping horizons are formed in finite time, this would imply that
they remain present for a large, but finite, amount of time), which would yield the
same results except for arbitrarily small deviations. One of the shortcomings of these
(quasi-)local definitions of the boundaries of BHs (with respect to the notion of event
horizon) is their non-uniqueness [138]. This issue disappears in practice when dealing
with spherically-symmetric backgrounds, as one can focus on trapping horizons that are
spherically-symmetric as well, the location of which turn out to be determined by the
quasi-local Misner-Sharp mass [139] that measures the overall energy enclosed in a given
sphere [140]. When the external geometry to the shell is the Schwarzschild geometry, the
location of the horizon defined this way is simply the Schwarzschild radius.

In this work, “close to horizon formation” will therefore mean that the shell has
trajectories exploring the surroundings of the Schwarzschild radius. There, we expect
to find interesting semiclassical effects, and we want to understand their dependence on
the precise dynamical properties of the spacetime as it approaches this point. To this
end, we have chosen three types of shell trajectories, the study of which will be sufficient
to provide a general intuition for judging the magnitude of semiclassical effects in a
much larger variety of geometries. The first type of situation, studied in chapter 1, is
that of a shell oscillating between two radii, outside but near the Schwarzschild radius.
This situation models in a simple way the effects of an ultracompact horizonless object
undergoing small pulsations. Varying the characteristics of this oscillation will allow us
to explore a wide range of short-time dynamical behaviours.

For the second type of dynamical situation (chapter 2), we look at the case in which a
shell forms a horizon while moving at an arbitrarily low speed (relative e.g. to stationary
observers in its interior). Our analysis here, which is an extension to [24], allows us to
clearly see how the strength of semiclassical effects depends crucially on the collapsing
velocity at horizon formation. This will provide a counterpoint to the already well-known
results for a shell collapsing at high velocities or even light speed (see e.g. [23,126]).

The third type of situation (chapter 3) will explore the consequences of a long-term
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monotonous dynamical behaviour, particularly one which we expect (both a priori and
based on results of chapter 1) to present interesting semiclassical effects—a shell ap-
proaching the Schwarzschild radius asymptotically in a regular time coordinate. In this
study, we will even go beyond the simple scenario of a thin shell in vacuum and attempt
an exhaustive analysis of all possible spherically symmetric geometries which present
an asymptotic tendency toward the trapping of outgoing light rays. This asymptotic ap-
proach can be stopped at any time, so that these configurations could model, for example,
a relaxation phase towards an ultracompact object. On the other hand, if the asymp-
totic process is continued indefinitely, the spacetimes present the interesting feature of
generating an event horizon without having any trapped surfaces formed at finite time.

It is worth mentioning at this point that our analysis will be purely geometrical,
and thus goes beyond the Einstein equations. In other words, we will be exploring the
effects of a geometry on semiclassical quantities without being concerned with how the
geometry itself is generated. We will not require that the evolution of the geometry be
governed by the Einstein equation with a stress-energy tensor which satisfies some energy
conditions (with the exception of chapter 3, where we consider energy conditions in the
generalisation of the thin shell model on either side of the object surface). The goal of our
geometry-based analysis is to point the way toward the configurations which should be
analysed in further detail in future works with fully self-consistent semiclassical evolution
in mind.
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Chapter 1

Oscillating shell model and radiation
emission

The first type of geometry we will look at is that of a spherical thin shell of mass M
oscillating between two radii at high frequencies. The lower of the radii will be close to
(but above) the Schwarzschild radius 2M , such that the effect the geometry has on light
rays and modes of quantum fields is close to what a horizon would produce. Particularly,
it is this closeness to a horizon-like behaviour combined with the wide range of dynamics
produced during an oscillation that is worth a close examination through a semiclassical
lens. Aside from gaining a general intuition on effects produced on backgrounds close to
horizon formation, this model may also be useful for analysing the (potentially observable)
bursts of particle creation in perturbations of semiclassically sustained horizonless BH
mimickers [21,22].

1.1 Spherical thin-shell geometries

The thin-shell geometries that we will analyse consist of an internal Minkowskian region
matched to an external Schwarzschild region of mass M through a moving timelike shell.
In the interior region one can write the metric as

ds2− = −du−dv− + r2−dΩ
2, (1.1)

where the subscript “−” refers to the interior region, and the radial null coordinates are
related to the Minkowski time t− and radius r− through

u− = t− − r−, v− = t− + r−. (1.2)

Equivalently we can construct natural null coordinates in the Schwarzschild region as

ds2+ = −|f(r+)|du+dv+ + r2+dΩ
2, (1.3)

where f(r) = 1− 2M/r is the redshift function, and in this case the null coordinates are
related to the Schwarzschild time t+ and radius r+ through

u+ = sign [f(r+)] (t+ − r∗+), v+ = t+ + r∗+. (1.4)

Here r∗+ is the tortoise coordinate obtained by integrating dr∗+ = dr+/f(r+). The u+

coordinate goes from −∞ to +∞, that is, between past null infinity and the Schwarzschild
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radius (if the exterior region reaches that far in). Inside the Schwarzschild radius (but
outside the shell) we must define a different coordinate ui

+, given by the same relation to
t+ and r∗+ as u+ above, and which goes from −∞ at the horizon, until it reaches some
point of the spacelike singularity at some finite value. On the horizon itself, relations
with this variable can only be obtained as a limit from either side. The sign of f(r+)
ensures that u+ and ui

+ advance in the same direction as u−, both outside and inside
the horizon. Though the shells we will use in this chapter will not cross the horizon, we
define these more general expressions to set up the formalism which will also be used in
the next chapter.

The two geometries are connected by a thin spherical shell of mass M . In general, this
matching is only possible if the shell’s radial position follows a spacetime curve of the same
causality type as seen from either side. In our case, we will require that this be a timelike
trajectory, parametrised by v− = T−(u−) from the inside and by v+ = T+(u+) from the
outside. Of course, given one of these curves the other is also fixed. For convenience we
will also define the velocity parameters

α− ≡ dv−
du−

∣∣∣∣
shell

, α+ ≡ dv+
du+

∣∣∣∣
shell

(1.5)

(which are simply the derivatives of T±), both of which take values in (0,∞) for a timelike
trajectory. For an ingoing shell to approach the speed of light would imply approaching
the limit α± → 0. On the other hand, for an outgoing shell reaching the speed of light
α± → ∞. A static shell has α± = 1.

In order to complete the definition of this geometry, we must require that the metric
be continuous at the shell. This will allow us to determine the trajectory of the shell as
seen from one side if it is defined on the other. It will also allow us to extend the “+”
coordinates into the “−” region and vice versa.

From matching the null part of the line elements we obtain the functions,

g =
du+

du−
=

√
α−

|f |α+

∣∣∣∣
shell

, h =
dv+
dv−

=

√
α+

|f |α−

∣∣∣∣
shell

, (1.6)

which can be expressed in either the “+” or “−” variables. From matching the radial
parts we get the relation between the velocity parameters of the shell from either side,

α+ = sign(f) +
1

2|f |
(1− α−)2

α−
− 1

2|f |
1− α−
α−

√
4α−f + (1− α−)2. (1.7)

Thus if we define the trajectory in terms of T−, we can obtain T+ by integrating α+ from
the same initial radial position. We can also obtain the relations u+(u−) and v+(v−) by
integrating the functions g and h.

From the square root in (1.7) we deduce a condition for the continuous matching
of the geometries, namely that the α− parameter which defines the movement of their
separation surface must be such that 4α−f +(1−α−)2 remains positive. In other words,
α− must tend to zero (the infalling shell must approach light-speed) if the shell goes
below the Schwarzschild radius, in such a way as to compensate the increasingly negative
value of the redshift function. The parameter α− which satisfies

4α−f |shell + (1− α−)
2 = 0 (1.8)

defines the slowest possible collapse below the Schwarzschild radius as seen from the
(rapidly disappearing) Minkowski region.
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θ

u− v− u+ v+θ′

Figure 1.1: Change in angle with respect to the shell of on outgoing light ray, as measured
by static observers on either side.

1.1.1 Interpretation of the terms in g and h

Let us focus on the function g outside the Schwarzschild radius,

g =
du+

du−
=

1√
f

√
α−
α+

. (1.9)

The presence of the term 1/
√
f is to be expected, as it represents the redshift experienced

by an outgoing light ray. This can be seen most clearly in the case of a static shell (which,
of course, would sit outside the horizon), for which α± = 1. There, this term is necessary
for a rescaling of the coordinates compatible with a matching of the angular parts of the
geometry.

The α−/α+ term has a purely dynamical origin. The velocity of the shell seen by a
static observer on one of its sides is different from the one seen by a static observer on the
other. In their respective null coordinates this can be seen as a change in the slope of the
line tangent to the shell trajectory, namely α− → α+ (see fig. 1.1). From the perspective
of the shell, which can use the appropriate coordinates for each side, this looks something
like a spacetime refraction phenomenon. If a light ray incides with an angle θ with respect
to the shell trajectory from the inside, it exits with an angle θ′ related to the first by

tan θ′

tan θ
=

α−
α+

. (1.10)

For the angles formed by an ingoing ray, the relation is the inverse of the above.
Another way to interpret the α−/α+ term is as a kind of Doppler effect. Even though

technically there is no interaction between the matter in the shell and the light ray
crossing it which could cause absorption and reemission, the similarity with the Doppler
effect can be seen clearly with the following. If we define

R(t±) ≡ r|shell(t±) and Ṙ = dR/dt−, R′ = dR/dt+, (1.11)

then

α− =
1 + Ṙ

1− Ṙ
, α+ =

1 +R′/f(R)

1−R′/f(R)
. (1.12)

That is, the quotient α−/α+ represents the Doppler shift for a ray that is “absorbed”
at one side by a shell moving at a velocity Ṙ and “reemitted” on the other by a shell
moving at a different velocity, R′/f(R). If the geometry on both sides were the same,
there would be no net effect, as these velocities would be the same.

It is worth mentioning that there may be a difficulty in interpreting the above expres-
sions at the Schwarzschild radius, since the coordinate t+ used for the derivative in the
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second equation in (1.12) is not regular there. To see the behaviour of α+ more clearly
we can switch to a regular time coordinate, say the Painlevé-Gullstrand τ+ defined as
the proper time of a free-falling observer from infinity in the Schwarzschild region [141],
which satisfies

dτ+ = dt+ +

√
1− f(r+)

f(r+)
dr+. (1.13)

We can then define the radial velocity R,τ ≡ dR/dτ+, which is regular at the horizon.
Then the second equation in (1.12) becomes

α+ =
1 +R,τ/(1 +

√
2M/R)

1−R,τ/(1−
√

2M/R)
, (1.14)

from which we can see that at r = 2M , α+ = 0 and the function g in (1.9) diverges.
In light of these results, we will call the 1/

√
|f | terms in the functions g and h the

“redshift” terms, and the ones with a quotient of α’s the “Doppler” terms. Combining
equations (1.6), (1.12) and (1.14) we can write the functions g and h as

g(u) =
1√
f

√
1 + Ṙ

1− Ṙ

√
1−R,τ/(1−

√
2M/R)

1 +R,τ/(1 +
√
2M/R)

, (1.15a)

h(v) =
1√
f

√
1− Ṙ

1 + Ṙ

√
1 +R,τ/(1 +

√
2M/R)

1−R,τ/(1−
√
2M/R)

, (1.15b)

in which all quantities are evaluated at the points where the lines u = const. and v =
const. intersect the shell trajectory respectively. We could work directly with these ex-
pressions instead of (1.6) by defining the trajectory through the velocities Ṙ and R,τ ,
which must satisfy a relation similar to (1.7). However, throughout this work we will
keep using the α± parameters, as they are more natural and simple when dealing with
the relations between null coordinates needed for the calculation of semiclassical quanti-
ties.

1.2 Oscillating shells and semiclassical effects

In this section we will study the behaviour of the functions g and h, which relate the
“+” and “−” coordinates, when the shell gets near the formation of a horizon, but does
not reach it. We will then use equations (I .30)-(I .32) and the properties of the static
Boulware state to directly obtain conclusions regarding the nature and magnitude of
semiclassical effects in geometries with this kind of light-bending behaviour.

The shell trajectories we will look at cover a wide range of dynamical configurations, in
which both the redshift and Doppler effects have significant contributions to the values
of these functions and their derivatives. Namely, we will consider a high-speed radial
oscillation about a point just above the surface with radius rs = 2M (in the following,
we will always take rs = 1 for numerical evaluations). We will use three parameters to
describe this movement: the distance d of the centre of oscillation to the gravitational
radius rs, the amplitude A and the frequency ω. Then, the radius at which the shell is
located will follow the spacetime curve (see fig. 1.2)

R(t−) = rs + d+ A sin(ωt−). (1.16)
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Figure 1.2: Oscillatory radial trajectory of the shell (with parameters d = 0.1, A = 0.099
and ω = 10). The dashed line represents the r = 2M (= 1) surface, and the diagonal lines
represent a light ray entering and exiting the interior region. Although not perceived in the
figure, the thick oscillatory curve does not touch the r = 2M line.

In order to avoid the formation of a horizon and maintain a timelike trajectory, the
parameters must satisfy the relations

A < d and Aω < 1. (1.17)

We stress once again that the purpose of this study is to gain a better understanding of
the relation between dynamical regimes close to horizon formation and the magnitude of
semiclassical effects, and not to provide a self-consistent solution with a classical matter
content which satisfies some energy conditions. Thus we only impose that the shell be
causal, with no further restrictions to its trajectory.

Since the trajectory is described in terms of the interior coordinate system, we can
obtain the simple expression for the interior velocity parameter

α− =
rs + Aω cos(ωt−)

rs − Aω cos(ωt−)
, (1.18)

while for α+ we must use eq. (1.7). To evaluate these quantities on the points where
the shell trajectory intersects the lines of constant u or v we must solve a transcendental
equation, which we will do numerically. First we will obtain the individual values of the
functions g and h, which represent the change in the coordinate description of outgoing
and ingoing radial light rays respectively. Then we will calculate the quotient g/h with h
evaluated at a point of entry v− of a light ray into the Minkowski region and g evaluated
at the point of exit u−, which carries information of how light rays suffer a temporal
dispersion by passing through this region. With the convention fixed in eq. (1.2) we
can see that an ingoing ray v− connects with an outgoing ray through u− = v−, so the
quotient we are looking for is g(v−)/h(v−). This quantity will also describe the evolution
of the “in” quantum vacuum state, defined at the asymptotically flat region at past null
infinity, and its comparison with the “out” vacuum state, defined at future null infinity.

In figure 1.3 we observe the values of the functions g and h evaluated at u− and
v− = u−, representing the dispersion of a light ray when it is exiting and entering the
interior region respectively. The net effect, given by g/h, reduces to nearly unity when
g(u−) ≃ h(u−), which occurs when the shell is oscillating very slowly (at low ω) compared
to the time it takes for light to cross it (in the static limit, g/h = 1). At higher frequencies
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Figure 1.3: Functions g and h for an oscillation with parameters d = 0.1, A = 0.099
and three different frequencies: ω = 10, ω = 0.5 and ω = 0.1. The peaks are produced
when the shell is nearly at the closest point to the horizon, as will be discussed below.
We observe that at low frequencies the functions practically coincide since the light rays
enter and leave the interior region in a time much smaller than ω−1, so the in-crossing and
out-crossing dispersion effects would almost cancel out (i.e. g(u−)/h(v− = u−) ≃ 1). At
somewhat larger frequencies the light rays enter and exit at appreciably different points
of the oscillation and the functions attain a relative displacement. Finally, at frequencies
which make the shell move at nearly light-speed the displacement is greater still, and the
peaks become somewhat tilted to one side for each function, due to the fact that the peaks
of the sine function in t− become tilted when seen in the u− and v− coordinates (in opposite
directions).
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the light rays enter and exit at completely different points of the oscillation, as in the
case represented in fig. 1.2, and the net effect becomes appreciable. It is easy to notice
that there are some special cases for this net effect corresponding to different resonances
between the oscillation frequency and the crossing time of the light ray: say, when it
enters crossing a maximum and also exits crossing one, or crossing a minimum, and a few
other such situations. These will be studied in more detail in the following subsection.

1.2.1 Resonance between in-crossing and out-crossing effects

From equations (1.6) we can obtain the expression for the total temporal dispersion
suffered by a light ray entering the shell at a point “in” and exiting at a point “out”,

du+,out

dv+,in

=
g|out
h|in

=

√
f |in√
f |out

√
α−
α+

∣∣∣∣
out

√
α−
α+

∣∣∣∣
in

, (1.19)

where in the first step we have made use of the fact that for rays reflecting at the origin
dv−|in/du−|out = 1, as can be seen from eq. (1.2). We can see again that for a static
shell, for which the surface redshift function would be constant and α± = 1, this quotient
reduces to unity. For a moving shell the effects can cancel out again only in one special
case, which occurs when not only the in and out redshift functions are the same, but
also when α− = 1 (and therefore α+ = 1 as well, as can be seen from eq. (1.7)) at both
points. For the case of an oscillating shell this can occur only when a light ray exists such
that it both enters and exits at a minimum or at a maximum of R(t−). Then the effects
cancel out locally, but they continue being non-trivial for the rest of the light rays. These
local resonances are possible only when the frequency, amplitude and distance from the
horizon satisfy the relations

ω =
nπ

rs + d− A
, with n integer less than

rs + d− A

aπ
, (1.20)

for a ray entering and exiting at a minimum, and likewise

ω =
nπ

rs + d+ A
, with n integer less than

rs + d+ A

aπ
, (1.21)

for a maximum. These expressions are obtained simply by comparing the ray crossing
time and the oscillation periods in the coordinate t−. The upper bound on the values of
n comes from the causal restriction Aω < 1. For a shell following an arbitrary (known)
radial motion such cases can be found just as easily.

On the other hand, if we want to see when a maximisation of du+,out/dv−,in in eq.
(1.19) takes place (which will be related to the largest bursts of radiation in the RSET,
as we will see), a more detailed analysis is necessary. First, we may notice that when a
light ray enters at a maximum of R(t−) and exits at a minimum, the total redshift effect
is maximised. For such a ray to exist, the relation between the parameters must be

ω =
π

2

2n+ 1

rs + d
, with n integer less than

rs + d

Aπ
− 1

2
. (1.22)

In fig. 1.4 we observe the three terms of the right-hand side of eq. (1.19) plotted (without
the square roots) for this case. The peaks of the redshift term, which correspond to
precisely the light rays described, reach their highest possible values for the parameters
A and d used.
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Figure 1.4: Left: total redshift and Doppler terms plotted separately (the square root of
their product gives duout/dvin) for on oscillation with parameters d = 0.1, A = 0.099 and
ω ≃ 9.996, given by (1.22) with n = 3. We see that even though the shell reaches 99% of
the speed of light (as seen in the Minkowski coordinates) and the Doppler terms become
quite large, the redshift term clearly gives the dominant contribution around its maxima.
Right: in-crossing and out-crossing Doppler terms plotted separately. We observe that the
peaks and valleys are completely out of phase between the two.

Also in fig. 1.4, we observe that the individual Doppler terms have distinct maxima.
For the in-crossing term the maximum is produced for a ray which enters slightly after
the one which maximises redshift (which enters at a maximum of R), during the in-fall
of the shell. For the out-crossing term it is produced for a ray which exits slightly before
redshift maximising one (which exits at a minimum of R), so again during an in-fall of the
shell. Guided by this result, we can look for the conditions which maximise the individual
Doppler terms, and also see whether there is a frequency for the shell at which the two
peaks coincide to make a maximum net effect. In fig. 1.5 we can directly see the values
which α−/α+ takes at different redshifts f and velocity parameters α−.

At the very minimum of the oscillation of the shell (the closest point to r = rs),
α−/α+ = 1 and there is no Doppler effect for any redshift f . When the shell is moving
outward (α− > 1) but is still close to the horizon (f ≪ 1), from eq. (1.7) we get

α−
α+

≃ α2
−

(1− α−)2
f, (1.23)

that is, at a constant velocity the Doppler term has a linear dependence on the redshift
function, with a slope which grows rapidly as α− → 1+ and which tends to 1 as α− → ∞.
On the other hand, when the shell is falling in, the function close to the horizon can be
expressed as

α−
α+

≃ (1− α−)2

f
, (1.24)

which grows parabolically as α− → 0 (as the in-fall speed increases) and hyperbolically
as f → 0 (as the formation of the horizon is approached).

With the above equations and fig. 1.5 we can see that the point of the shell trajectory
where the Doppler effect reaches a maximum appears in the α− < 1 region, and that its
precise position is influenced by two factors: at a constant f it is maximum at the highest
velocity (lowest α−), increasing parabolically as α− decreases, while at a constant velocity
it is maximum at the lowest f , with a hyperbolic divergence at f = 0. If α− approaches
1 while f approaches 0, that is, if the shell tends to a full stop just before the formation
of the horizon, then, when f is sufficiently small, the hyperbolic divergence dominates
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Figure 1.5: Values of the Doppler term α−/α+ as a function of f and α−. The axes of
α− and α−/α+ have been rescaled with a function at(x) = 2

π tan−1(x) to scale down their
whole range into (0, 1). The curve drawn on top of the surface on the left represents the
values taken during a period of oscillation with parameters d = 0.1, A = 0.099 and ω = 10,
and the curve on the right during an oscillation with parameters d = 10, A = 9.99 and
ω = 0.1. The region with a sharp gradient close to the horizon (f = 0) is produced around
α− = 1 (1/2 in the graphic), corresponding to the transition from falling inward (during
which time α− < 1) to going outward (during which α− > 1). At f → 1 the value of the
Doppler term tends to 1 smoothly, as the interior and exterior geometries become the same.

over the parabolic tendency to zero and the maximum is reached at a point very close to
the minimum value of f , just before the region of very large gradient observed in fig. 1.5
is entered. If, on the other hand, the shell oscillations are produced far away from the
Schwarzschild radius rs, the maximum Doppler effect is reached closer to the point of
maximum in-fall velocity (minimum α−).

As an example, in fig. 1.6 we can see the almost-coincidence of the two Doppler peaks
(it looks exact in the figure) for an oscillation which bounces at d − A = 10−3rs, with a
frequency ω which allows rays which enter at a minimum of R to also exit at a minimum.
The rays which maximise the in-crossing and out-crossing Doppler effects almost coincide
with the ones which cancel out the redshift effect, and even more so with each other. Even
when the peaks do not exactly coincide, due to their widths the net Doppler effect given
by their product can be very close to its maximum possible value.

To conclude, these resonant cases have allowed us to understand the behaviour of
the quotient g/h around its highest values, and relate it to specific dynamical regimes
of the shell. As we will see, the observed regions of rapid increase or decrease will have
significant influence on the behaviour of semiclassical effects.

1.2.2 Semiclassical effects

So far we have studied the dispersion of light rays (or analogously, of modes of the massless
scalar field) which cross the oscillating shell and pass through the interior Minkowski
region. From these results we can directly calculate the semiclassical quantities discussed
earlier, namely the ETF and the RSET. The behaviour of these quantities will be similar
to that of the dispersion functions described above, as the former are constructed simply
from derivatives of the latter. The structure of peaks and plateaus for each period of the
oscillation will merely become more exaggerated for these new functions. For reference,
the structure of the ETF due to a single interval of deceleration during collapse has
been previously studied with some detail in [134]. Our study is based on quite different
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Figure 1.6: Left: total redshift and Doppler terms plotted separately (the square root
of their product gives duout/dvin) for an oscillation with parameters d = 0.1, A = 0.099
and ω ≃ 9.42, given by eq. (1.20) with n = 3. In this case we see the Doppler term
clearly dominates. Right: in-crossing and out-crossing Doppler terms plotted separately.
We observe the almost-coincidence of the two Doppler peaks, produced for two very close
rays passing through the shell slightly before the one which enters and exits at a minimum
of the oscillation. This near-coincidence results in the dominance of the net Doppler term
in the left graph.

dynamics, but the results are qualitatively similar.
In fig. 1.7 we can see the ETF κuout

uin
, which contains information of the flux of particles

seen in the “in” vacuum state by an inertial observer at future null infinity, calculated
with the relation between the “in” and “out” coordinates given by the product of the
functions plotted in fig. 1.4 through eq. (1.19). As can be guessed by observing the
curves in fig. 1.4, the smaller peaks in κuout

uin
are produced around the maxima of the

Doppler effect contributions. On the other hand, the largest negative and positive peaks
are produced in the regions of large gradient on either side of the maximum of the redshift
contribution (keep in mind that the horizontal axes of the two plots are rescaled versions
of each other). Between each set of peaks there is a region of smoothly decreasing EFT,
with values around the Hawking temperature of a BH with the same mass.

In fig. 1.8 we have plotted the outgoing radiation flux at future null infinity, defined
as the difference between ⟨Tuoutuout⟩ evaluated for the “in” and “out” vacuum states.
From equations (I .32) we see that this quantity depends on κuout

uin
and its derivative,

explaining the somewhat similar, but amplified, characteristics. This quantity alone is
representative of the highs and lows of the RSET during the oscillation, since the term
which is missing is simply the Boulware vacuum polarisation, which maintains low values
in the uout coordinate (outside the horizon it is below the Hawking flux value in fig. 1.8).
It is the uout coordinate itself which tends to become non-regular, leading to a general
amplification of both terms (tending to a divergence at the horizon if they do not perfectly
compensate each other).

In fig. 1.9 we observe the ETF for the oscillation which maximises the net Doppler
effect. The two most notable differences with respect to the case which maximises redshift
are the somewhat cleaner large peaks, caused by a better overall coincidence in the aspects
of the in-crossing and out-crossing effects around the minima of the oscillation, and a less
clean intermediate region, caused in turn by a worse coincidence there.

In order to give a more general picture of the semiclassical effects produced by this
type of shell trajectory, we can study the consequence of changing the order of magnitude
of each of the oscillation parameters. First, in fig. 1.10 we see the behaviour of the ETF for
an oscillation with the same proximity to the horizon (between 0.001 and 0.201 times rs)
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Figure 1.7: ETF κuout
uin

produced by an oscillating shell with the same parameters as the
ones used for fig. 1.4, for which the net redshift effect is maximised. The small plot inside
the main one is a magnification of the plateau region, along with a comparison with the
value κH of the function in the case of Hawking radiation.

uout

〈Tuu〉in − 〈Tuu〉out

Oscillation

Hawking

Figure 1.8: Difference between the uoutuout components of the RSET in the “in” and
“out” vacuum states, corresponding to the outgoing flux of radiation which appears at
future null infinity. As in the case of the ETF, we observe periodic peaks, which correspond
to the rays which enter at a maximum of the oscillation and exit at a minimum, which
maximises the redshift effect, and a more flat intermediate region of values near that of
the Hawking radiation flow produced after the formation of a horizon, superimposed in the
right zoomed-in rectangle.
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Figure 1.9: ETF in the outgoing radiation sector, for an oscillation which maximises the
net Doppler effect, obtained with the functions plotted in fig. 1.6.
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Figure 1.10: ETF in the outgoing radiation sector, for an oscillation at a low velocity
(less then or equal to 0.15% the speed of light) and with a radial proximity to the horizon
between 10−3rs and 0.2rs (the same as in all the cases seen so far). Compared to the cases
with higher velocities, we observe a significant decrease of its values and a smoothing of its
derivative.

but with a much lower velocity, reaching at most about 0.15% of the speed of light. In
this case all semiclassical fluxes are greatly diminished, approaching the static shell limit
in which the radiation temperature and flow become zero.

Another possibility is to maintain the maximum proximity to the horizon (10−3rs)
and the large maximum speed (∼ 99% the speed of light), but to vary the amplitude of
the oscillation. Decreasing the amplitude leads to a qualitatively similar result for the
ETF: each period contains a cluster of large peaks (larger as the amplitude decreases)
surrounded by a region of values close to the Hawking temperature. On the other hand,
increasing the amplitude to above 0.1rs leads to a general decrease in the values at both
the peaks and the intermediate regions. While the shell still gets close to the would-be
horizon, the more gradual changes in velocity which come with the larger amplitude make
this case more similar to the slow approach toward the Schwarzschild radius which will
be discussed in detail in chapter 3. Let us only briefly mention that while the flux at
infinity may be small in these cases, the RSET close to rs still tends to become very large.

The last parameter we can vary is the proximity to the horizon. Understandably, if
the shell oscillates very far from the horizon, the ETF and its first derivative become very
small, even if the maximum velocities are large. On the other hand, if the shell is close to
the horizon, around 10−3rs or closer at the minimum of the oscillation, and its amplitude
is not very large, then the closer it is, the larger the peaks become, but the intermediate
region again remains at values around the Hawking temperature on average.

1.3 Summary and discussion

In this chapter we have seen how a thin spherical shell oscillating just above its own
Schwarzschild radius can produce bursts of radiation from the quantum vacuum. De-
pending on the frequency and amplitude of the oscillations and how these resonate with
the light-crossing time of the object, the profile of the radiation flux in time can have
more pronounced peaks and/or long periods of nearly thermal emission. The bursts of
non-thermal emission in fact correspond to the parts of the dynamics in which the shell
gets the closest to its Schwarzschild radius, slows down, and bounces back before crossing
it; the mismatch between the ETF and the thermal flux necessary to cancel the Boulware
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divergence in (I .32) for these regions already implies large values of the RSET near the
shell surface, a fact further exacerbated by the height of the emission peaks.

As far as the emission goes, although for an object of astronomical size these bursts
have a significant suppression due to the Planck constant in the RSET (e.g. the flux
terms should be multiplied by l2p/r

2
s ), this may well be compensated by the height of the

peaks if the surface gets very close (e.g. a Planck length away) to rs at its minimum
radius. While this toy model of a shell with an empty interior is far from a complete
model of an ultracompact astrophysical object, it does offer a light-bending behaviour
which one expects of such objects and thus a qualitatively robust model for the relation
between the “in” and “out” sectors.

Perhaps the most striking result is the large gradient region in fig. 1.5. It clearly
points to a set of configurations in which semiclassical corrections can become extremely
large due to both Doppler and redshift effects: namely, ones in which the matter surface
approaches its Schwarzschild radius at low velocities. We will now explore the magnitude
of semiclassical effects in a new set of dynamical scenarios which pass through this region
of configuration space, particularly when the shell actually reaches zero redshift and forms
a horizon.
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Chapter 2

Horizon formation from slowly
collapsing matter

The next step in our study is to see exactly what happens when the Schwarzschild radius
is crossed at a finite regular time. Particularly, it is a well established fact that the
asymptotic ETF is always 1/2rs = 1/4M in this case (corresponding to the Hawking
temperature in natural units [5]), and that this provides an additional term in the RSET
with respect to its Boulware vacuum value that precisely regularises the divergence at
the horizon [23,72]. We will also see this explicitly in the next chapter.

In this chapter we will be interested in semiclassical effects produced in a finite time
interval around the formation of a horizon by a shell collapsing at different velocities
lower than the speed of light at the moment of crossing the horizon. Past studies in
this direction, although detailed, have usually involved only a shell collapsing at light-
speed (e.g. [142]), justified by the fact that during astrophysical black-hole formation,
the velocity of falling matter is expected to be high when crossing the horizon. By
contrast, as mentioned earlier, the goal of this part of the thesis is to thoroughly study
the semiclassical effects produced in more general dynamical situations.

Since in this case the asymptotic solutions for both the ETF and RSET are known, we
will be more interested in short-term dynamical effects. At horizon formation, large values
of the RSET are to be expected if the “in” vacuum approximates the static Boulware
vacuum in some way (say, in the case of a very slow collapse). Therefore, it is at the
horizon itself where we might expect the most clear estimate of how large semiclassical
effects can become. We will thus be interested in obtaining the total values of the RSET
components there. To give them a more physical interpretation, we will also calculate
the corresponding values of the vacuum energy density and the radial pressure measured
by free-falling observers.

2.1 Conformal factor at the horizon

In order to obtain the values of the RSET in the “in” vacuum, we need to calculate
the conformal factor C(uin, vin) which allows us to write the part of the metric (I .34)
restricted to the time-radius subspace in the uin, vin null coordinates,

ds2(2) = −C(uin, vin)duindvin. (2.1)

Just as a reminder, the “in” vacuum state of the dimensionally reduced problem is defined
by the plane waves in the asymptotic Minkowski region at past null infinity, which is
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entirely within the asymptotic region of the exterior Schwarzschild geometry if the shell
never reaches the speed of light in the past. The ingoing modes, labelled by vin, either
fall directly into the singularity or are reflected at the origin r− = 0 and from there either
escape before the formation of the horizon and reach future null infinity, or fall into the
singularity. If they reach future null infinity, they can be labelled by the coordinate uout,
the value of which is a function of the previous label vin. Any point in the geometry
outside the event horizon (both on the exterior and interior of the shell) can be labelled
by a pair (uout, vin). In the notation introduced in eqs. (1.1) and (1.3), vin is simply v+
and uout is u+. The dispersion of the light rays between past and future null infinity is
given by

duout

dvin
=

du+

du−

dv−
dv+

∣∣∣∣
v−=u−

=
g(u−)

h(u−)
, (2.2)

where we have made use of the relation du− = dv− for the reflection of light rays at the
origin, and where u− is a function of vin through the inverse of the integral of h(u−).
Studying the values of g(u−) and h(v−), defined in (1.6), from −∞ until the formation
of the horizon for different trajectories of collapse, one can see that h is of order one
throughout. On the other hand, g always has a divergence at the horizon since u+

reaches an infinite value while u− is still finite. The contrast in this behaviour implies
that the approximation

dv−
dvin

≃ 1, (2.3)

that is, the approximation of considering our vin coordinate as the Minkowski v−, captures
well the magnitude of the physical effects produced in the dynamics around the formation
of the horizon. This approximation, apart from simplifying the calculations which follow,
also allows us to obtain results while only fixing the trajectory of the shell in an arbitrarily
small region around the point of horizon-crossing.

From this point on we will drop the subscripts from the two null coordinates we will
use for the most part: v ≡ v+ and u ≡ u− (we will not use uout since it is divergent at
the horizon). Also, we will mostly use the radial coordinate in the exterior region, so r
will always refer to r+.

From equations (1.3) and (1.6) we see that the conformal factor of the dimensionally
reduced geometry as a function of u and v is

C(u, v) = |f(r(u, v))|g(u). (2.4)

Since we are interested in calculating the RSET at the horizon, where large values might
be expected for it, we must evaluate the above quantity and at least its first two derivatives
there. A minor inconvenience in that process is the fact that the explicit form of r(u, v)
is not generally available, and numerical calculations cannot be relied upon either, since
at the horizon f is zero and g diverges. To handle this difficulty, we will use an expansion
for r(u, v) around the line corresponding to the horizon, where u = uh = const.,

r(u, v) = q0(v) + q1(v)(u− uh) +
1

2
q2(v)(u− uh)

2 + · · · , (2.5)

where qi is the i-th derivative of r with respect to u evaluated at uh, namely, qi =
∂ir/∂ui|u=uh

. In order to calculate the RSET components, we will need up to second
derivatives of the conformal factor in u. To evaluate them we must use the expansion of
r(u, v) in u up to third order, due to the 1/(u− uh) divergence generally present in g(u).
This means that we need only q0, q1, q2 and q3.
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Let us now see how to calculate these coefficients. The lowest order one q0(v) is just
the value of r at the horizon, namely,

q0(v) = 2M. (2.6)

The rest of them can be obtained through the relations

∂r

∂u
= −1

2
g(u)f(r),

∂r

∂v
=

1

2
f(r), (2.7)

as we show in the following. The first of these equations evaluated at uh gives q1(v), but
its right-hand side is just as difficult to evaluate as the conformal factor itself. However,
we can make use of the second equation to write the cross-derivative

∂

∂v

∂r

∂u
= −1

2
g(u)f ′(r)

∂r

∂v
= −1

2
g(u)f ′(r)

1

2
f(r) =

1

2
f ′(r)

∂r

∂u
. (2.8)

Taking into account that f ′(r) evaluated at the horizon is just 1/rs, the evaluation of this
equation at uh gives us a first order differential equation for q1(v), namely q′1(v) = q1(v)/(2rs).
Using this method recursively allows us to write analogous equations for all the coefficients
qi(v) in (2.5). For the ones relevant to our calculation of the RSET we obtain

q′1(v) =
1

2rs
q1(v),

q′2(v) =
1

2rs
q2(v)−

1

r2s
q21(v),

q′3(v) =
1

2rs
q3(v)−

3

r2s
q2(v)q1(v) +

3

r3s
q31(v).

(2.9)

Initial conditions for these equations can be found by fixing the zero of the v coordinate
at the point of horizon formation, and considering the relation r+ = r− at the surface of
the shell.

For a shell which crosses the horizon with an approximately constant radial velocity
as seen from the inside (α− = dv−/du− ≃ const.), from equations (1.2) and (1.5) we get
the relation

r− ≃ rs +
α− − 1

2
(u− uh) (2.10)

at the shell surface, which gives us the initial conditions q1(0) = (α− − 1)/2, q2(0) = 0
and q3(0) = 0 (these last two are approximate if α− is only approximately constant, but
the important aspects of our final results do not change if they have different values). We
solve the above equations to get

q1(v) = −1− α−
2

ev/2rs ,

q2(v) =
(1− α−)2

2rs
ev/2rs(1− ev/2rs),

q3(v) = −3(1− α−)3

8r2s
ev/2rs(1− 4ev/2rs + 3ev/rs).

(2.11)
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2.2 RSET at the horizon for the “in” vacuum

We now have everything prepared to calculate the RSET components at the horizon.
Substituting the solutions (2.11) into the series expansion (2.5), we see how f depends
on u and v up to third order in (u−uh). As for resolving the dependence of g in r (which
appears through α+), we must remember the definition of this function (1.6) which tells
us that it is evaluated at the shell surface. Therefore, close to the horizon, we can simply
use the expression for r given in (2.10). With these functions we can obtain C(u, v) up
to second order in (u− uh) [remember g has a leading term 1/(u− uh)],

C(u, v) = (1− α−)e
v/2rs +

[(
−α2

− +
3

2
α− − 1

)
ev/2rs + (1− α−)

2ev/rs
]
u− uh

rs

+
ev/2rs

8(1− α−)

[
3− 10α− + 12α2

− − 10α3
− + 3α4

−

−4(1− α−)
2(3− 5α− + 3α2

−)e
v/2rs + 9(1− α−)

4ev/rs
] (u− uh)

2

r2s
+ · · · .

(2.12)

Finally, we can use the expression (I .27) to obtain the components of the RSET at the
horizon:

⟨Tuu⟩ =
1

24πr2s

(−6α4
− + 16α3

− − 27α2
− − 16α− − 6

8(1− α−)2

+
α−
2
ev/2rs +

3

4
(1− α−)

2ev/rs
)
,

(2.13a)

⟨Tuv⟩ = − 1

24πr2s

1− α−
2

ev/2rs , (2.13b)

⟨Tvv⟩ = − 1

24πr2s

1

8
. (2.13c)

Their behaviour can be read easily, except perhaps for the first constant term in the
parenthesis in ⟨Tuu⟩, which has been plotted as a function of α− in fig. 2.1. The following
observations can be made:

• Firstly, the components seem to grow exponentially on the horizon as time passes.
This, however, turns out to be a consequence of the coordinate system in which they
are expressed. In a system more appropriate for the static Schwarzschild region, say
the Eddington-Finkelstein advanced coordinates (v, r), this behaviour is suppressed
by factors of 1/C arising from the relation ∂u/∂r. A more detailed analysis of the
energy density and flux perceived by a free-falling observer will follow shortly.

• The second thing one might notice is that ⟨Tvv⟩ is constant and therefore completely
independent from the dynamics of the collapse. This is a consequence of the fact
that we have chosen the Eddington-Finkelstein v coordinate, which is not affected
by the interior Minkowski region. We also note that this ingoing flux term is
negative, and can thus be identified with the negative energy which drives Hawking
evaporation locally at the horizon [72]. In Part II of this thesis we will explicitly
calculate the backreaction on the geometry stemming from this term in a simpler
collapse scenario.
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Figure 2.1: Plot of the constant part in the parenthesis of eq. (2.13a) as function of α−
in its domain of possible values. It has negative values throughout and a divergence at
α− = 1.

• Finally, we note that the ⟨Tuu⟩ component diverges as α− → 1, that is, as the col-
lapse becomes slower, approaching the static limit. As we will see, the 1/(1− α−)n

terms are then exponentially suppressed in time (in the regular Eddington-Finkelstein
coordinates), but they play an important role near the point of horizon formation.
The large values of this component for a configuration approaching staticity is
reminiscent of the Boulware state divergence of the RSET [23], and of a firewall
configuration [89]. The subsequent suppression of these terms can then be seen as
a direct consequence of thermalisation.

2.3 Energy density, flux and pressure perceived by a

free-falling observer at the horizon

Let us consider the four-velocity w of a free-falling observer in the Schwarzschild geometry
expressed in (u, v) coordinates, evaluated at the moment of horizon crossing. It has the
form

wρ =

(√
2

β0

1

C
,

√
β0

2
, 0, 0

)
, (2.14)

where β0 is related to the radius r0 from which the free fall was initiated through

β0 =
1

2

1

1− rs/r0
. (2.15)

Let us also introduce the space-like unitary vector perpendicular to this four-velocity and
pointing in the outward radial direction,

zρ =

(
−
√

2

β0

1

C
,

√
β0

2
, 0, 0

)
. (2.16)
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We now define the effective energy density ρ, flux Φ and pressure p perceived by this
observer as

ρ ≡ ⟨Tµν⟩wµwν =
2

β0C2
⟨Tuu⟩+

1

C
⟨Tuv⟩+

β0

2
⟨Tvv⟩ , (2.17a)

Φ ≡ −⟨Tµν⟩wµzν =
2

β0C2
⟨Tuu⟩ −

β0

2
⟨Tvv⟩ , (2.17b)

p ≡ ⟨Tµν⟩ zµzν =
2

β0C2
⟨Tuu⟩ −

1

C
⟨Tuv⟩+

β0

2
⟨Tvv⟩ . (2.17c)

As an aside, we note that the conformal factor at the horizon,

C(uh, v) = (1− α−)e
v/2rs , (2.18)

is not equal to 1 when v = 0, where the geometry must match with the interior Minkowski
region, because we are not using the Minkowski v− coordinate. If we were, we would have
to multiply C by h = dv+/dv−, which at the point of horizon formation has the value
h = 1/(1− α−).

We thus see that the growing exponentials appearing in eqs. (2.13) do not show up in
the scalar quantities in (2.17). In fact, these turn out to have constant, finite asymptotic
values that depend on the initial condition β0 of the free falling observer

ρ −−−→
v→∞

1

24πrs

(
−1

2
− β0

16
+

3

2β0

)
, (2.19a)

Φ −−−→
v→∞

1

24πrs

(
β0

16
+

3

2β0

)
, (2.19b)

p −−−→
v→∞

1

24πrs

(
1

2
− β0

16
+

3

2β0

)
. (2.19c)

When these values are approximately reached, the system can be said to have thermalised,
as all other terms are suppressed exponentially. A measure of the time it takes to do so,
in the v coordinate, for a slow collapse (when α− is close to 1) is given by the value

vtherm = 4rs log

(
1

1− α−

)
. (2.20)

In fig. 2.2 we see plots for ρ, Φ, and p for two different values of β0, which make the
asymptotic values of ρ and p have different signs. Except for the case of extremely small
values of β0, the asymptotic values of the previous quantities are always negligibly small
due to the suppression of the RSET by Planck’s constant (which has been omitted in the
choice of units). However, this smallness can be compensated during the transient phase
of the collapse. Near the point of horizon formation we have 1/(1−α−)4 terms, originating
from the 1/(1−α−)2 term in ⟨Tuu⟩ in (2.13) and from the 1/C2 term evaluated from (2.18).
These terms can be made arbitrarily large if α− is very close to 1, compensating the
suppression by Planck’s constant.

With these results we see that the RSET approaches a physical divergence in the
static limit α− → 1. At the limit itself this divergence is hardly surprising, as for a static
shell the “in” vacuum essentially becomes the Boulware one. What is interesting is the
fact that this limit can be approached through the single velocity parameter α− of the
shell when it crosses the horizon, without imposing any conditions on its past evolution.
This seems to indicate that during the formation of a BH, if by some mechanism the
collapse of matter were to be slowed down just before it forms a horizon, its subsequent
evolution would become a problem which requires a full semiclassical treatment.
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Figure 2.2: Perceived energy density, flux and pressure at the horizon, as a function of the
Eddington-Finkelstein v coordinate, for β0 = 0.5 (free fall from r0 → ∞) and for β0 = 30
(free fall from r0 ≃ 1.017rs), in the Schwarzschild region of a collapse with parameter α− =
0.9 (vtherm ≃ 9.2rs). The point v = 0 marks the formation of the horizon. Immediately after,
we observe these function have very large (negative) values. This is a direct consequence of
the proximity of the parameter α− to 1, as discussed in the text. On the other hand, the
asymptotic values are always small (except for observers which start their free fall very close
to the horizon, where β → ∞). The sign of the asymptotic energy density and pressure
depend of the velocity of the observer (they are negative for slower observers), while the
outgoing flux is always positive, in accordance with the evaporating black-hole scenario.
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2.4 Summary and discussion

In conclusion, a shell forming a horizon at a very low speed can produce arbitrarily large
values of the RSET, tending to a divergence in the static limit. This divergence can be
seen as a combination of both a Boulware-state-like behaviour, and the purely dynamical
Doppler-like terms discussed in the previous chapter. If backreaction on the geometry is
ignored, these large values are quickly suppressed as the BH thermalises, after which the
standard evaporative evolution may be expected. However, if backreaction is taken into
account sooner, then the dynamics of the collapse itself may be altered before a horizon
ever forms.

Combined with the existence of semiclassically sustained static ultracompact ob-
jects [21, 22], this result strongly suggests that in a more realistic collapse scenario, if
the initial conditions are such that the classical matter moves “slowly” when it is about
to cross its own horizon, backreaction may instead lead it to a horizonless equilibrium
state. A possibility as to how these initial conditions may come about will be discussed
in Part II of this thesis.
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Chapter 3

Asymptotic horizon formation

The final type of geometric configuration we will analyse in this part of the thesis is one in
which the formation of a horizon is approached only asymptotically in time, resulting, as
we will see, in light-trapping behaviour without the presence of actual trapped surfaces.
We find that these geometries cause an emission of thermal Hawking radiation, confirming
the fact that no strict trapped surface is required for the geodesic peeling which results
in this emission [76,143–145].

In this chapter we will fully explore the properties of these particular geometries. We
will work with a more general setup than the thin-shell model of the previous chapters,
presenting an exhaustive catalogue of spherically-symmetric geometries with this light-
trapping behaviour. Before going into an analysis of their semiclassical properties, we
will first present a thorough study of their causal features. We will begin by briefly
presenting the geometries in section 3.1, then analysing their distinctive causal structures
in section 3.2. As we will see, the interesting feature of these spacetimes from a purely
geometric perspective is that they contain no trapped surfaces, and yet they form an event
horizon. Initially we will once again present them as geometric ad hoc constructions,
although later in the chapter (in section 3.3) we will analyse in detail whether they
could be obtained as solutions of Einstein’s equations for some plausible matter content,
discussing the energy conditions that can be satisfied around the trapping region while
supporting these configurations. Finally, we will look at their semiclassical characteristics.
We will show how their thermal emission is generally at a temperature lower than that
of the final (asymptotic) horizon’s surface gravity, and how this causes the RSET in the
vicinity of their would-be horizon to grow exponentially quickly in time.

3.1 The geometries

We start with a generic family of spherically symmetric metrics written in advanced
Eddington-Finkelstein coordinates,

ds2 = −f dv2+2g dv dr+r2 dΩ2, (3.1)

where f and g are generally functions of v and r, or just of r in static cases. We
use the advanced null coordinate v because we are interested only in the future part
of the causal structure of these spacetimes (for the past region we assume that they are
asymptotically flat, such that we can construct an “in” vacuum). We will also assume that
the geometries are regular at r = 0. We use this simplifying assumption to avoid causal
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aspects associated with singularities and concentrate just on those due to the presence
of horizons. However, we note that our analysis can be generalised straightforwardly to
geometries with singularities, so long as they do not overlap with the region of light-ray
trapping that we will study. We restrict our analysis to this local region, which can
easily be inserted into a spacetime with a different global structure with much the same
consequences.

We will work with two types of geometries, both of which trap outgoing light rays,
but are otherwise quite different from one another. Let us present these two cases by
first looking at two static configurations, which will later become the asymptotic limit in
time of our dynamical models discussed in section 3.1.2.

3.1.1 Static configurations

The two types of configurations which we will study in this chapter originate from a
simple consideration. From the line element (3.1) with f and g depending only on r, the
equation which governs the paths of the outgoing light rays is

dr

dv
=

1

2

f(r)

g(r)
. (3.2)

From this equation, it is apparent that these null trajectories do not distinguish between
a situation in which f is zero (as occurs for certain values of the radial coordinate in
Schwarzschild, Reissner-Nordström, or similar spacetimes) and one in which g diverges.
Needless to say, the two situations are physically quite different in spite of this.

In these static configurations we will assume that in either case the right-hand side
of (3.2) is zero at some radius rh and that it can be expanded in a power series around
this point approaching both from the inside r < rh,

1

2

f(r)

g(r)
= k1(rh − r) + k2(rh − r)2 + · · · , (3.3)

and from the outside r ≥ rh,

1

2

f(r)

g(r)
= k̃1(r − rh) + k̃2(r − rh)

2 + · · · . (3.4)

Since we want the only zero of these expressions to be at rh and we want to avoid creating
a trapped region of finite volume, we require that the first non-zero coefficients ki and
k̃j of both series be positive. If g(r) ≃ const. around rh, then we have a BH which
allows ingoing causal trajectories across rh but not outgoing ones. On the other hand,
if f(r) ≃ const., then g(r) diverges as the inverse of a polynomial, which results in the
same behaviour for outgoing light rays as before (since f/g is the same), but for ingoing
ones there is a difference: they are actually unable to cross the surface r = rh either.
This can be deduced from the expressions which describe their paths in this coordinate
system, namely the geodesic equations for their radial trajectory (v(σ), r(σ)),

v = const, r̈ = −∂rg(r)

g(r)
ṙ2 ≃ m

r − rh
ṙ2, (3.5)

where the dot denotes the derivative with respect to the affine parameter σ, and m is the
order of the first non-zero term in the expansion (3.4). Integrating this equation allows
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Exterior

Interior

l

r

Figure 3.1: A qualitative representation of the relation between the radial coordinate r
and the proper length in the radial direction l for a geometry in which g diverges at some
radius rh. This divergence corresponds to an infinite stretching of l which completely severs
the interior and exterior geometries.

one to see that the affine parameter reaches an infinite value when the ingoing ray gets to
rh (e.g. for m = 1, r − rh ∝ e−cσ, with c > 0), indicating that, as seen from the outside,
this surface is actually an asymptotic region (i.e. a separate future null infinity). The
interior region r ≤ rh is therefore entirely separated from the exterior spacetime.

To understand this situation better, we remind the reader that there is a more well-
known spacetime in which g diverges: that of a traversable wormhole. Particularly,
this same configuration would be a standard spherical wormhole [146] if the expansion
(3.4) had a leading term of order (r − rh)

k, with 0 < k < 1, as can be seen by cal-
culating the proper radial length l in slices of constant Schwarzschild time (defined by
dt = dv − (g/f)dr) and expressing the radial coordinate r as a function of l around rh.
On the other hand, when the leading order in the series is 1 or greater, as in our working
case, the proper length diverges and space becomes infinitely stretched around the neck of
the wormhole, akin to an infinite tube. Therefore, the static geometry we are considering
here actually consists of two disjoint spacetimes, both having one infinite tubular ending
(see fig. 3.1).

3.1.2 Including time-dependence

Having discussed these static spacetimes, we will now include a time-dependence in
the metric functions f and g in order to push the formation of the apparent hori-
zon/asymptotic region at rh out to the limit v → ∞. We will start with some definitions.
First, we will call the right-hand side of eq. (3.2) the generalised redshift function F ,

F (v, r) ≡ 1

2

f(v, r)

g(v, r)
. (3.6)

We will assume that this function has a minimum in r at a moving point Rh(v), and that
it can be approximated by a series expansion on either side,

F (v, r) = ∆(v) + k1[Rh(v)− r] + k2[Rh(v)− r]2 + · · · (3.7)

for r < Rh(v), and

F (v, r) = ∆(v) + k̃1[r −Rh(v)] + k̃2[r −Rh(v)]
2 + · · · (3.8)

for r ≥ Rh(v) (see fig. 3.2). ∆(v) is a function of v which decreases and tends to zero
in the limit v → ∞. The function Rh(v) tends to a point rh in the same limit. Our
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r

F (v = const, r)

k1 6= 0

k1 = 0

k̃1 = 0

k̃1 6= 0

Rh(v)

Figure 3.2: Slice at constant time (v = const.) of the generalised redshift function F (v, r)
around Rh(v). There is a discontinuity in the first derivative of this function at Rh(v) if
either k1 ̸= 0 or k̃1 ̸= 0, which through the Einstein equations can translate into either a
thin shell of matter, or into a discontinuity in pressure, depending on how the two individual
degrees of freedom (f and g) of the geometry which comprise F (v, r) behave.

only simplifying assumption will be that the first non-zero coefficients ki and k̃j of the
expansion on either side, aside from being positive, are approximately constant at large
times (or, equivalently, that they tend to a constant at least as quickly as Rh(v)).

It is worth mentioning that if either or both k1 or k̃1 are non-zero, then the function
F is continuous but not smooth at rh. Through equation (3.6) we see that this translates
into a sharp peak in either f or g (or both) in slices of constant v. The Einstein tensor for
the metric (3.1) only has a second partial derivative of f with respect to r (in its angular
components), meaning a peak in f corresponds to a spherical thin shell of matter. If the
peak is in g, the tensor is only discontinuous, and so are the matter density, flux and
stress seen by any observer. We note that the geometry is perfectly regular in spite of this
discontinuity, unlike what one might expect in e.g. a static stellar configuration, where a
jump in pressure leads to a singularity.

Regardless of the presence of the non-smooth peak (and its corresponding non-zero
surface gravity), we will call all geometries in which F has one zero, or an appropriate
tendency to produce one zero (see the discussion below), and is positive everywhere else,
extremal configurations. We use this name because of a shared characteristic they have
with the standard extremal BH solutions: the presence of an outer and inner horizon
which degenerate to the same radial position. We extend the standard definition of
extremality by allowing for a non-zero surface gravity on either side of the horizon, and
characterising this horizon purely by its light-ray-peeling properties (such that either f
can tend to zero or g to a divergence).

To recover the shell model with a Schwarzschild exterior used in the previous chapters,
we would simply have to impose ∆(v) = 1 − 2M/Rh(v) at leading order, with Rh then
being the shell position, tending to the Schwarzschild radius 2M asymptotically. In the
interest of generality, in this chapter we will assume that the two functions ∆(v) and
dh(v) ≡ Rh(v)− rh decay to zero independently, and that the function g can be different
from 1 in the exterior region.

If both ∆(v) and dh(v) tend to zero sufficiently fast, it turns out that after some point
in time some of the light rays which are inside the sphere of radius rh will remain trapped
inside, the outermost of which defines the event horizon. This can be seen by analysing
the large v limit of the solutions of eq. (3.2) for r < Rh. With the series (3.7) we can
write this equation as

dr

dv
= ∆(v) + k1[Rh(v)− r] + k2[Rh(v)− r]2 + · · · . (3.9)
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Let us first see the case in which k1 ̸= 0. At leading order the equation then becomes

dr

dv
≃ ∆(v) + k1dh(v)− k1(r − rh). (3.10)

From the functions ∆(v) and dh(v) on the right-hand side we only need to consider the
one which decays more slowly for the asymptotic solution. For example, if the slower of
the two decays as b e−αv (with b and α some positive constants), then we can ignore the
other one and obtain solutions of the form

r − rh ≃ − b

α− k1
e−αv +c e−k1v, (3.11)

where c is an integration constant. There are trapped solutions, which approach rh
asymptotically from below, only if k1 < α: they correspond to the values c < 0. On the
other hand, if the slower of the two functions ∆(v) and dh(v) goes to zero more quickly
than an exponential, then we again have a solution with a leading-order term c e−k1v

and corrections which decay much faster, asymptotically recovering the same solutions
as above for any value of k1. Finally, if the slower of the two functions goes to zero more
slowly than an exponential, e.g. as 1/vn, then there are no trapped solutions at all.

Now let us see the case in which k1, . . . , km−1 = 0 and km ̸= 0. Equation (3.9) becomes

dr

dv
≃ ∆(v) + kmdh(v)

m + k2(rh − r)m + · · · , (3.12)

where we have omitted the cross-terms in the leading order. If we assume the (rh − r)m

term dominates the right-hand side, we obtain solutions of the type

r − rh ∼ − 1

(v − c)
1

m−1

, (3.13)

where c is again an integration constant, and we have omitted a positive constant multi-
plying factor. These solutions are consistent with the assumption used above to obtain
them (such as ignoring the cross-terms of the m-th power) as long as both ∆(v) and
dh(v)

m decay at least as quickly as 1/vn, with

n− 1 >
1

m− 1
. (3.14)

On the other hand, if we assume one of the terms ∆(v) or dh(v)
m dominates the right-hand

side of eq. (3.12), then we get a solution of the type

r − rh ∼
∫ v

dv′Dmax(v
′), (3.15)

where Dmax(v
′) = max[∆(v′), dh(v′)m], with the maximum taken at sufficiently large v to

be in the asymptotic regime of the two functions. This solution is again only consistent
with the assumption for the right-hand side of the differential equation (3.12) if the larger
of the two functions decays at least as quickly as 1/vn, with n satisfying (3.14).

In summary, light trapping occurs if the following rules are satisfied by Dmax(v) (or
equivalently by both ∆(v) and dh(v)

m):

• If Dmax ∼ 1/vn, then light rays are trapped if the power n and the order of the first
non-zero coefficient in (3.7), which we will call m, satisfy (3.14).
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Figure 3.3: Conformal diagram of the spacetime with g ≃ 1 and f given by (3.7) satisfying
the appropriate conditions for light-ray trapping. The dashed line is the event horizon,
corresponding to the first trapped outgoing light ray. The dash-dotted line is the surface
r = rh, which is described by a timelike curve and the Cauchy horizon. The curves to the left
of rs correspond to surfaces of r = const. < rh, while to the right they are r = const. > rh.
The lines outside the conformal triangle indicate the need to extend the spacetime.

• If Dmax ∼ e−αv, then we can have any m ≥ 1. If m = 1, there is the additional
condition α > k1.

• If Dmax decays more quickly that an exponential, then there are no restrictions to
the series (3.7).

In these cases, the fact that the confined light rays do not reach the exterior future null
infinity indicates the presence of an event horizon. This horizon’s surface is described
by the trajectory of the first trapped light ray, which can be seen to correspond to
the solution (3.15). Any outgoing rays which are outside it reach the asymptotically
flat exterior region, and their dispersion is related to the presence and temperature of
Hawking radiation. As for those on the inside, they must go to a different asymptotic
region. How they end up depends on whether the asymptotic approach to zero in F is
due to a zero in f or a divergence in g, as we will now see.

3.2 Causal structure

3.2.1 Causal structure for finite g

Let us first assume that any light-ray trapping is due to an approach to zero in f of the
form (3.7), and that g remains finite (we will in fact assume g = 1 for simplicity). The
causal structure of the spacetime in this case almost always ends up being the same as
that of an extremal (regular) BH, shown in fig. 3.3. In the limit v → ∞, the surface
r = rh becomes a Cauchy horizon, beyond which the geometry is extendable.

To show this, we can turn to one of the geodesic equations for a radial trajectory
(v(σ), r(σ)) in our metric,

v̈ +
∂rf

2
v̇2 = 0. (3.16)
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If the first non-zero coefficient in (3.7) is k1, then the solution to this equation close to
Rh(v) is

k1v̇0(σ − σ0) ≃ 1− e−k1(v−v0), (3.17)

where the subscript 0 refers to initial values. Since k1 must be positive, when the affine
parameter σ reaches the finite value

σh = σ0 + 1/(k1v̇0), (3.18)

the geodesic has reached the limit v → ∞ and, in the absence of singularities, can be
extended past this point. Of course, this is the case only if the geodesic stays close enough
to Rh(v) so as to keep the approximation (3.7) valid.

As mentioned earlier, if k1 ̸= 0 then for light rays to be trapped below rh the functions
∆(v) and dh(v) must both tend to zero at least as quickly as an exponential. For example,
if

∆(v) = e−αv, dh(v) = e−βv, (3.19)

with α and β some positive constants, then the solution for the trajectories of outgoing
null geodesics is asymptotically

r(v) ≃ rh −
1

α− k1
e−αv − k1rh

β − k1
e−βv + ce−k1v, (3.20)

where c is an integration constant. There are trapped null solutions if min(α, β) > k1
(and the leading order of the solution is only the exponential with the smallest coefficient
in absolute value). They correspond to the values c ≤ 0 for the integration constant
(c = 0 for the horizon itself). The approximation resulting in eq. (3.17) is valid for these
trajectories (since they approach Rh), and they are therefore extendable past the v → ∞
limit. At this limit they reach r = rh, making this surface a Cauchy horizon, as shown
in fig. 3.3.

As for spacelike and timelike geodesics, the equivalent of eq. (3.2) is

dr

dv
= F (v, r)± 1

2g(v, r)v̇2
, (3.21)

with + for spacelike and − for timelike ones. Since we are interested in the region around
rh at large v, we only look for geodesics which stick close to this radius asymptotically.
Using this as an assumption for the solutions, for g(v, r) = 1 it is easy to check that with
eq. (3.17), v̇ diverges quickly enough for the new term in (3.21) (with respect to the null
case) to become negligible at leading order in the asymptotic expansion. Thus, for every
null geodesic of the type (3.20) there are also a spacelike and a timelike geodesic with
the same approximate expressions. From the signs of the additional term in (3.21) it can
be seen that corrections to the leading order would reveal that in terms of radius the
spacelike geodesics are actually slightly above the null ones, while the timelike ones are
slightly below (moving inside the light-cones). Eq. (3.17) is also a valid approximation
for the affine parameter of these geodesics, meaning that they are also extendable.

The same occurs even when k1 = 0: geodesics which try to escape from the interior
region reach the v → ∞ limit in finite affine parameter. For example, if k2 ̸= 0 we can
solve eq. (3.16) in the vicinity of rh and see that the value this parameter reaches when
v diverges is

σh = σ0 +
1

v̇0k2(rh − r0)
. (3.22)
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There are only two exceptions to this scenario of extendable geodesics. The first one
is the case in which the function f is constant in r, making all coefficients ki in the
expansion (3.7) zero; equation (3.16) then implies v ∝ σ and there is no Cauchy horizon
for trapped geodesics. The second exception is, in a sense, a generalisation of the first: it
is the case in which the function f in non-analytical in the r direction about its minimum,
and all its derivatives in this direction are zero there. In other words, we can generalise
from the case of constant f in r and maintain the non-extendibility by sacrificing the
analytic nature of the function. Let us provide an example: suppose we have

F (v, r) ≃ e
− 1

(r−rh)2 +
1

vn
, (3.23)

where r and v are expressed in units of some arbitrary length scale. Then the asymptotic
solutions for trapped outgoing light rays are

r ∼ rh −
1√

log(v − c)
, (3.24)

where c is an integration constant and aside from the asymptotic condition v ≫ 1, the
range of validity of each solution is v > c+1. Along these trajectories eq. (3.16) becomes

v̈ =
2

(v − c)[log(v − c)]3/2
v̇2, (3.25)

the asymptotic solution of which is again v ∝ σ (we have confirmed this both analytically
and numerically).

In summary, the requirement on f for the geometry to be non-extendable is that all
derivatives at its minimum in the direction of decreasing r be zero, either by making
the function constant in r or non-analytical. These cases seem rather unphysical, but
they do highlight the fact that the presence of a Cauchy horizon depends entirely on
the knowledge of the derivatives of f about a single radial point. It is therefore a case
in which an arbitrarily small region of the geometry, the description of which may be
expected to change in a complete microscopic theory of gravity, affects our picture of the
global causal structure of the spacetime.

3.2.2 Causal structure with non-vanishing f

If, on the other hand, light rays are trapped not due to a tendency to zero of f but
because of increasing values in g at Rh(v), tending to a divergence in the limit v → ∞,
the situation is quite different. The geodesic equation relating v to the affine parameter
σ is in this case

v̈ +
∂vg

g
v̇2 = 0. (3.26)

For simplicity, we will consider Rh(v) ≡ rh, since not doing so does not lead to any
qualitative changes in the causal structure we will obtain (so long as light-ray trapping
is maintained). If k1 ̸= 0, then we can take ∆(v) = e−αv, with α > k1, as it is the
slowest allowed approach to zero. The trajectories of trapped outgoing null geodesics are
described by (3.20) without the e−βv term. Then, for large values of v equation (3.26)
takes the form

v̈ = − 2α

k1|c|
e−(α−k1)vv̇2. (3.27)
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l

r

Figure 3.4: Relation between the radial coordinate r and the proper length in the radial
direction l for a geometry in which g tends to a divergence at rh. Outgoing light rays
become trapped in this infinitely stretching region, while ingoing ones pass right through
it.

The solution for the affine parameter σ is an exponential integral function with argument
proportional to e−(α−k1)v, and at large values of v is approximated by the relation

σ = a1 + a2v, (3.28)

with a1 and a2 being integration constants. Thus in this case the affine parameter of
these geodesics reaches infinity at the same time as v, meaning that the rh region does
not become a Cauchy horizon but a (disjoint) part of future null infinity. If k1 = 0, there
is no change in this behaviour. In fact, eq. (3.28) is still the approximate solution relating
v to the affine parameter for trapped geodesics at large values of v [e.g. if k2 ̸= 0 and we
take again ∆(v) = e−αv, the term approximating v on the right-hand side of eq. (3.28) is
in this case

∫ v

1
exp(x2 exp(−αx)) dx].

This case of diverging g can be interpreted geometrically from these results for null
geodesics: space becomes stretched in the radial direction at rh as the proper radial
length l approaches a divergence along with g. This stretching is sufficiently quick so as
to asymptotically freeze these light rays in their approach toward rh (see fig. 3.4). But
the key difference with respect to the previous case is that this occurs without the low
values of the redshift function f , which results in proper time not being slowed down and
observers reaching the asymptotic region v → ∞ in infinite time.

As this situation approaches the static case discussed above, one might wonder if
ingoing rays would also be affected in a similar manner, becoming unable to cross the
rh surface. This turns out not to be the case. The geodesic equation relating the affine
parameter to the radial coordinate in v = const. sections is the same as the second
expression in eq. (3.5) in terms of g, but in this case, close to rh it takes the form

r̈ = −∂rg

g
ṙ2 ≃ mk̃m(r − rh)

m−1

k̃m(r − rh)m +∆(v)
ṙ2, (3.29)

where m is again the order of the first non-zero term in the series expansion of F , and
∆(v) is a (small) constant. In contrast to the static case, the right-hand side is not
divergent due to the finite ∆(v) term. Consequently, the affine parameter is finite when
crossing rh (e.g. for m = 2, r− rh ≃

√
∆(v) tan[c1

√
∆(v)(σ− c2)], with c1, c2 integration

constants; crossing occurs at σ = c2).
Outgoing light rays become trapped due to the fact that they are moving in a direction

in which g increases and ∆(v) decreases, and actually see space stretching as they go.
On the other hand, ingoing rays only see a snapshot of a partially stretched geometry,
through which they can easily pass given enough time.
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Figure 3.5: Conformal diagram of the spacetime in which g tends to a divergence. Left:
the divergence is reached in infinite time at the surface r = rh (the dash-dotted line), which
becomes a separate part of future null infinity for outgoing light rays. This interior null
infinity is denoted by I +

(1), while the exterior one (for escaped light rays) is I +
(2). Right:

the divergence at r = rh is reached at a finite moment v = v0 (and remains thereafter),
making r = rh a future null infinity I +

(1) for ingoing light rays with v ≥ v0. The symbols i+(1)
and i+(2) indicate future timelike infinities for two different sets of observers (for the diagram

on the right this is conditional; see discussion below). In general, this latter geometry is
extendable past the surface v = v0 for r < rh, marked as a Cauchy horizon. The diagram
includes what the extension may look like, indicating that to be fixed it requires initial data
from another surface, which is effectively another Cauchy horizon in the past of the region.

The two future null infinities in this spacetime are separated by an event horizon, as
shown in fig. 3.5 (left). The exterior one we assume is in an asymptotically flat region
at r → ∞, while the interior one (at r → r−h ) has a matter content all the way through,
which we will briefly analyse in the next section.

3.2.3 Diverging g in finite time

In fig. 3.5, the diagram on the right represents a case in which the point in time at which
g diverges is brought down to a finite value v = v0 (i.e. ∆(v) = 0 for v ≥ v0). The
spacetime in this case becomes a combination of the static and asymptotically formed
cases, and can help shed light on both.

The infinite tube from the static case is now formed dynamically, i.e. space stretches
in the radial direction and breaks into two at a point (v0, rh). For v > v0 and r > rh the
spacetime is part of the exterior region of the static case, in which the surface r = rh is
a future asymptotic region for geodesics which approach it. As for the interior r < rh
region, from the moment v = v0 on the evolution is no longer determined by any initial
conditions set at any past spacelike 3-surface, making the surface v = v0 for r < rh a
Cauchy horizon. The conditions needed to fix a particular extension will generally be
determined at a surface which can be thought of as a second Cauchy horizon in the past
of the extended region (beyond which the spacetime could again be extended), as shown
in fig. 3.5.

The only thing left to analyse in order to complete our picture of this geometry is
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the point (v0, rh). The first thing to note is that there is no curvature singularity there.
Considering that it is the point after which r = rh becomes an asymptotic region, one
might initially think of it as part of this region. Then all geodesics which approach it
would have an affine parameter which tends to infinity there. We can easily check if this
is the case with the geodesic equations.

As it turns out, the answer is not that straightforward. Whether this point is part of
an asymptotic region for geodesics or not actually depends on how the divergence in g
is approached, i.e. how quickly space is stretched. This is encoded in how ∆(v) reaches
zero. The details of this calculation are deferred to appendix C, but the summary is the
following: if we have

∆(v) ∝ (v0 − v)n, (3.30)

then for all geodesics to have their affine parameters diverge when they reach this point,
the inequality

n− 1 ≥ 1

m− 1
(3.31)

must be satisfied, where m is the lesser of the two numbers corresponding to the orders
of the first non-zero coefficients ki and k̃i in the expansion of F . If this inequality is
not satisfied, then some geodesics will reach this point in finite proper time and will
be extendable beyond it. For timelike geodesics, the extensions will be into the interior
region beyond the v = v0 Cauchy horizon.

On the other hand, in the case in which the divergence in g is reached in infinite
time, i.e. the limit v0 → ∞, all geodesics which approach this point have their affine
parameter reach an infinite value at the same rate as v [eq. (3.28)]. To understand how
the transition from the right to the left diagram in fig. 3.5 occurs, we can think of the
fact that in this limit all ingoing light rays make it through rh, are reflected at the origin
and then become trapped in an approach toward what is essentially the point (v0, rh)
from the inside. The point is then stretched to become a future null infinity region for all
these rays, as well as a future timelike infinity for geodesics which may approach it from
below [i+(1)] or above [i+(2)], as seen in the left diagram in fig. 3.5. These timelike infinities
are also the ones for geodesics which approach the asymptotic region with radii r < rh
and r > rh respectively.

3.3 Energy conditions

The physical picture behind the spacetimes of type f → 0 is roughly that of a collapse of
matter which slows down progressively, tending to a halt, while also approaching crossing
its own gravitational radius. On the other hand, the g → ∞ type seems to describe a
stretching of space in the radial direction in a manner similar to cosmological expansion.
These are unusual situations, to say the least, so it is interesting to see whether some of
them can be associated with the dynamics of classically reasonable matter, i.e. whether
their stress-energy tensors can satisfy any of the energy positivity conditions.

We will suppose that wµ is any timelike or null vector, and without loss of generality
we will suppose its angular component is in the θ direction, resulting in the inequality

−f(wv)2 + 2gwvwr + r2(wθ)2 ≤ 0. (3.32)

The only region in which we have needed to fix the spacetime geometry so far is around
Rh(v), so we will analyse how matter behaves there, using the expansions (3.7) and (3.8).
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Let us again start with the case g ≃ 1. To test the weak (and null) energy condition,
we contract the Einstein tensor of (3.1) twice with wµ and see whether the resulting
scalar is positive for all wµ satisfying (3.32). Since we will only analyse this condition
in the region where we have fixed the geometry, i.e. around the minimum in F , we can
omit some terms which will not give leading-order contributions and write

Gµνw
µwν ≃ 1− r∂rf

r2
[
f(wv)2 − 2wvwr

]
− ∂vf

r
(wv)2 +

(
r∂rf +

r2

2
∂2
rf

)
(wθ)2. (3.33)

This quantity can be shown to be positive in many cases with some simplifications (we
will not attempt to derive the most general conditions for positivity). Particularly, let us
assume that ∂vf is negative [for which ∆(v) must decrease more slowly than dh(v)]. Then
the term with this partial derivative will be positive and can safely be ignored. With the
inequality (3.32), the sufficient conditions for the rest of the terms on the right-hand side
of (3.33) to be positive turn out to be

rh∂rf < 1 and
r2h
2
∂2
rf > −1, (3.34)

which can be satisfied or violated with an appropriate choice of coefficients in (3.7) and
(3.8). If they are satisfied, then any timelike observer around this region of “slowed down
gravitational collapse” will see a matter distribution with positive energy density.

With a similar analysis, it can be shown that the strong energy condition (Rµνw
µwν ≥ 0)

can be satisfied around rh (the asymptotic position of the minimum of f) at late times if

∂vf < 0 and
r2h
2
∂2
rf ≥ max(−rh∂rf,−1). (3.35)

As for the dominant energy condition (that is, requiring that the momentum flux −T µ
νw

ν

be causal and future-pointing), it can be satisfied if the weak energy condition is, and

(1− rh∂rf)
2 ≥

(
rh∂rf +

r2h
2
∂2
rf

)2

, (3.36)

which can again be achieved with an appropriate choice of coefficients in (3.7) and (3.8).
This result implies that it is not necessary to violate energy conditions locally in order

to generate the f → 0 type geometry, but it does not guarantee that for the whole of our
spacetime construction. Indeed, if the interior of this geometry (r < rh) is singularity-
free, then it resembles that of a regular BH, in which some energy conditions are typically
broken around the origin r = 0 [30,31,147,148].

In the local region where energy conditions can be satisfied, it may also be interesting
to see what form the energy density and pressure perceived by an observer can take. Let
us consider an observer freely falling in the radial direction, who has a four-velocity wµ

and, for simplicity, at the moment of crossing rh is moving in the v-direction with wv ≃ 1.
Then, taking again g ≃ 1, the energy density seen by this observer when approaching
from the outside is approximately

ρ ≃ 1

8πG

(
1

r2h
− ∂rf

rh

)
(3.37)

Note that the condition for ρ to be positive coincides with the first condition in (3.34)
(the second condition there is necessary for tangentially moving observers). The radial
pressure seen by this observer is

pr ≃ −ρ, (3.38)
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and the tangential pressure is

pθ ≃
1

8πGr2h

(
rh∂rf +

r2h
2
∂2
rf

)
. (3.39)

One may note that this expression is positive if the second inequality in (3.35) is satisfied
along with the one for ρ > 0. From all this we see that, although the energy conditions
can be satisfied, the corresponding matter content is classically rather strange: it has a
pressure which is generally anisotropic, and in some cases the sign of its radial component
is opposite to that of its tangential component.

However, if our question is whether these geometries are physically reasonable, even
locally, this analysis is incomplete. Due to the causal structure involved, additional
considerations must be taken into account. On the one hand, it is well-known that the
presence of a Cauchy horizon in a solution of the Einstein equations generally indicates
that this solution is unstable under perturbations [2]. And even if we ignore the possibility
of classical perturbations, if we define a quantum field on this spacetime, an analysis based
on semiclassical gravity reveals an even greater instability around Cauchy horizons [13].
We will explore the potential dynamical effects of these instabilities in Part II of the
thesis.

On the other hand, as we saw in the previous two chapters, the RSET tends to have
very large values at and around the outer horizon when the latter forms in dynamical
regimes in which the matter content moves “slowly” enough. The two effects can be
distinguished by whether they are primarily related to the accumulation of trapped light
rays tending toward the inner horizon, or to the peeling of escaping light rays off of the
outer horizon, the latter of which we will analyse in the next section. Either way, a
geometry of the type we are studying here will certainly have considerable semiclassical
corrections. Therefore, even if it satisfies classical energy conditions, it may not be a self-
consistent solution of the semiclassical Einstein equations, due to the negative energies
typically present in the RSET [149]. Conversely, if the stress-energy needed to generate
it were not sensible on a purely classical level, this would not be enough to discard it as a
solution in semiclassical gravity. A complete analysis of the self-consistency of this type
of geometry is, however, beyond the scope of this work.

As for the geometries in which g tends to a divergence, it turns out that they generally
violate even the weak energy condition. To see this we can write down

Gµνw
µwν =

(
1

r2
+ · · ·

)[
f(wv)2 − 2gwvwr

]

+

(
∂rg∂vg

g3
+ · · ·

)
r2(wθ)2+

+
2f∂vg

rg2
(wv)2 +

2∂rg

rg
(wr)2.

(3.40)

The first three terms can be made positive for all wµ with a particular choice of g, but
with the last term it is no longer possible. Particularly, if the last term is negative
(which it is for r > rh), then any attempt to compensate it with the other terms fails for
some choice of vector wµ. From a more physical perspective, this implies that observers
moving sufficiently fast in the radial direction (which becomes increasingly difficult as
space stretches, i.e. it requires them to approach the speed of light) may see a negative
energy density content. Thus it appears these spacetimes are not ones we may expect to
form from the dynamics of exclusively classical matter.
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3.4 Hawking temperature

If a field is quantised on top of these horizon-approaching spacetimes, the magnitude
of its RSET can be related to the presence of Hawking radiation and the value of its
temperature, as discussed in the Introduction [see e.g. eq. (I .32)] and in ref. [75]. In
this section we will present a general method for calculating the asymptotic effective tem-
perature function (ETF) of the Hawking radiation generated by these geometries, while
only requiring knowledge of the approximate asymptotic solutions for the trajectories of
outgoing null geodesics in a neighbourhood of their event horizons (the “peeling” of the
last escaping light rays). We will then use this to estimate the values of the RSET at
and above the asymptotic horizon position rh.

To recapitulate, the ETF was introduced in [76], and its expression for the outgoing
radiation sector is given by

κuout
uin

≡ − d2uin

du2
out

/
duin

duout

, (3.41)

where the “in” and “out” indices refer to the asymptotically flat regions at past and future
null infinities: the coordinates are proportional to the natural Minkowskian coordinates
at these regions, and the indices of κ refer to the difference between the two natural
Minkowskian vacuum states (particularly, how the “in” region vacuum state is seen as
a flux of particles when it evolves and reaches the “out” region). If this function is
approximately constant for a long enough period of time [76], then during this period the
geometry will create particles with a Planckian spectrum with temperature κuout

uin
/2π in

natural units.
This function depends only on the quotient f/g, so the calculation is the same for the

two types of geometries we have considered. We will assume k1 and k̃1 are non-zero, as
the case in which either one is zero can be obtained as a limit from the final result. We
will also assume that ∆(v) and dh(v) both decrease as exponentials, since it is the slowest
allowed approach to zero for light-ray-trapping to occur in this case, and also because
the case of a faster approach can again be obtained from the same result.

To calculate the ETF, we need to obtain the trajectories of outgoing null geodesics
in a small region around the spatial minimum of F . For this we can make use of the
solution (3.20) for r < Rh and its analogue with k1 → −k̃1 for r > Rh. We will take the
small region (rh − ϵ, rh + ϵ̃), with ϵ and ϵ̃ arbitrarily small positive constants (with the
condition that time has advanced enough for Rh to be inside this radial interval). We
call vϵ the time at which a particular ray crosses rh − ϵ, vh the time when it crosses Rh,
and vϵ̃ the instant it crosses rh + ϵ̃. For our purposes, the labels vϵ and vϵ̃ represent the
uin and uout ones respectively.

From the solutions (3.20), a straightforward calculation leads to the asymptotic (in
v) result

dvϵ
dvh

∼ βrhe
−(β−k1)vh + e−(α−k1)vh , (3.42)

where we have omitted a proportionality constant. From here on we must decide which
of these two exponentials dominates at large time, i.e. which one decays slower. If
α < β, then the first one dominates, and we also obtain from the exterior solutions the
asymptotic relation

dvh
dvϵ̃

∼ k̃1

α + k̃1
. (3.43)
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On the other hand, if β < α, then the second exponential in (3.42) dominates and the
result is the same as (3.43), only substituting α for β. Defining γ = min(α, β) we can
proceed with integrating (3.43) in generic terms. Doing so and substituting into (3.42)
we obtain the asymptotic relation between the labels

dvϵ
dvϵ̃

∼ e
−k̃1

γ−k1
γ+k̃1

vϵ̃ . (3.44)

The ETF is simply minus the coefficient multiplying vϵ̃ in the exponential,

κuout
uin

∼ k̃1
γ − k1

γ + k̃1
. (3.45)

If either ∆(v) or dh(v) decays quicker than an exponential, then the limit α → ∞ or
β → ∞ can be taken, respectively. Eq. (3.45) still applies if both α and β are taken
to ∞, i.e. if γ → ∞, giving simply k̃1 for the ETF. If the slope on either side of the
minimum of F is zero, then the corresponding limits k1 → 0 and k̃1 → 0 can also be
taken, the latter resulting in a zero ETF.

It is worth observing that the (asymptotic) surface gravity of these objects at rh is
given by

κ =
1

2

∂rf

g
, (3.46)

meaning that when g diverges, the surface gravity always tends to zero. More generally,
when g ̸≃ const., there is no longer a direct relation between the surface gravity and the
temperature of Hawking radiation corresponding to the horizon. The latter is instead
associated with the slope ∂r(f/g), i.e. the coefficient k1 of the series (3.3).

Another interesting observation is that the result in eq. (3.45) has a clear dependence
not only on k̃1, but also on k1, which is the asymptotic surface gravity of the inner
horizon. The reason for this is the fact that the light ray which describes the event
horizon (3.15) of these spacetimes travels outward in the r < rh region, and light rays
which are slightly above it can still be below rh but end up escaping to infinity. They thus
carry information of the inner region k1 out to the asymptotic region. This is also the
reason why the ETF is not simply k̃1 (though it still reduces to this value if the dynamics
are too quick for the inner region to have an effect on the outward peeling).

This modification in the peeling of the escaping light rays also has a considerable effect
on the RSET. To see this, let us look at the simple case in which the exterior geometry is
the Schwarzschild vacuum solution. This can be recovered at leading order if the matter
surface has a trajectory Rh(v) by imposing

∆(v) ≃ Rh(v)− rs
rs

, k̃1 ≃
1

2rs
, (3.47)

with rs = 2M the Schwarzschild radius. Then, if one considers eq. (I .32) applied to
the Boulware and “in” (or Unruh) vacua for the exterior region r > Rh(v), it can be
seen that the Boulware state divergence when Rh(v) → rs can only be avoided if the
ETF corresponds exactly to the Hawking temperature value. In other words, when the
fraction in eq. (3.45), which alters the Hawking temperature given by the surface gravity
k̃1, is different form 1, a Boulware-like divergence is approached in the RSET. Particularly,
in the Boulware state the RSET of a BH has a 1/f(r−rs) divergence (with f(r) = 1−rs/r
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being the Schwarzschild redshift function) [26, 149], so if e.g. Rh(v) ≃ rs(1 + e−αv), then
there is an exponential growth in the RSET for the exterior region r > Rh(v), since

1

f

∣∣∣∣
surface

≃ rs
Rh(v)− rs

≃ eαv.

It is therefore likely that the full dynamics of a spacetime with a transient period akin
to these geometries would have considerable deviations from classicality.

3.5 Conclusions

In summary, we have seen that there are spherically symmetric geometries which, through
their particular asymptotic evolution in time, can behave like BHs and even have event
horizons, without ever having formed any trapped surface. While having this charac-
teristic in common, the family contains various distinct causal structures and different
behaviours in terms of energy conditions and production of Hawking radiation. The
family of geometries is divided into two categories. The first one is characterised by its
similarity with a spacetime in which a standard BH is formed, but with the formation
of its first trapped surface pushed to the future asymptotic region. In other words, the
strict formation of a trapped surface is replaced by an appropriately quick tendency to
its formation, quick enough that although outgoing radial light rays always have a posi-
tive expansion, some move out slowly enough to be trapped inside a finite spatial region
until the advanced time v reaches infinity. Analysing the causal structure of this first
category of geometries, we find that aside from an event horizon (described by the first
trapped outgoing light ray) in almost all cases there is also a Cauchy horizon, beyond
which the trapped geodesics are extendable, giving the same causal structure near the
future horizons as an extremal charged BH.

The second category of geometries in which outgoing light rays are trapped has a
very different physical picture behind it. Instead of a decreasing redshift function f ,
what results in the slow-down of the radial escape of the light rays is an actual stretching
of space in the radial direction. The proper length becomes vastly greater that the radial
length, tending to a divergence in their relation. One can think of it as an attempt at
opening a wormhole with an infinitely long neck. To simulate the asymptotic formation
of a trapped surface, this divergence only needs to be reached asymptotically as well.
Meanwhile, because the stretching increases in the v direction, ingoing geodesics can enter
the trapped region after traversing a long, but finite tube-like structure. The difference
with the first category of spacetimes is most clearly manifest in the causal structure:
outgoing geodesics which are trapped below some finite radius are now not extendable
beyond the v → ∞ border, i.e. their affine parameter also reaches infinity.

This separation into two categories can be seen as due to the fact that requiring for
outgoing null trajectories to be trapped defines only what we call the generalised redshift
function F (v, r), which amounts to just one of the two degrees of freedom of spherically
symmetric geometries. However, the geodesic equations, from which we deduce the causal
structure, see both of these degrees of freedom. Thus, different ways of imposing the same
behaviour in F result in different behaviours of the geodesic affine parameter.

Having studied the causal structure of these spacetimes, we then looked at the matter
content which they require as a source in order to be considered solutions of the Einstein
equations. The geometries of the first category can be sustained by a matter content
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which satisfies any of the energy positivity conditions, that is, at least locally around the
point of asymptotic horizon formation, where the geometry is specified. On the other
hand, the cases of the second category appear to violate even the weak energy condition.
They would thus lose their physical significance in a purely classical theory, but we
should keep in mind that the grounds for this study are semiclassical effects in geometries
with appropriate null geodesic peeling for non-local quantum effects to manifest. The
semiclassical contributions to the stress-energy content are known to violate all energy
conditions as well, which calls for a broadening of our physical criteria.

We then looked at the thermal flux of Hawking radiation that these geometries pro-
duce. Calculating the ETF, we found that there are three distinct quantities of interest,
which degenerate to the same value in the standard Schwarzschild BH formation. First,
there is the surface gravity of the horizon in the asymptotic limit (where spacetime tends
to staticity). The second is the actual slope of F near the horizon, which governs the
peeling of outgoing geodesics in static configurations. The third quantity is the actual
ETF. The first two quantities only coincide when g = 1, such as in the Schwarzschild and
Reissner-Nordström BHs. The second and third quantities only differ when the asymp-
totic horizon formation is slow enough for peeling of the escaping light rays to be affected
by the interior region of the geometry, modifying the ETF. This change in the ETF then
affects the RSET in a way which triggers an approach toward a Boulware-state-like diver-
gence, suggesting that the source generating such a geometry must be analysed through
the semiclassical dynamical equations.
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Inner horizon: instabilities and
evolution
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As discussed in the Introduction, it is generally accepted that within the semiclassical
theory BHs should evaporate. More precisely, this means that their trapped region should
gradually reduce in size from the outside-in, eventually revealing what is at their core,
where the simplest, spherically symmetric model tells us that there is either a singularity,
or some nucleus which can only be described with a complete theory of quantum gravity.
However, this picture is missing an essential ingredient, one which is present whenever
the BH structure is considered with sufficient generality: the inner horizon, i.e. the inner
bound of the trapped region, below which some causal observers are free to stop their
descent.

When a trapped region forms during gravitational collapse, it usually has an outer
and inner boundary, defined by two apparent horizons. Classically the outer one only
moves outwards, doing so as more matter is accreted, while the inner one moves inwards,
typically tending to a final position at a finite radius (if e.g. the BH has any angular
momentum or electric charge, or forms a regular core by violating the strong energy
condition). An inner horizon appears in all realistic BH configurations, and one may
therefore wonder whether there is some semiclassical effect associated with its presence,
just as the Hawking effect is related to the presence of the outer horizon. Models of
evaporation of trapped regions with an inner horizon have indeed been considered, but
they take evaporation as an ad hoc ingredient, implicitly assuming that it still mainly
occurs from the outside, and that the inner horizon just waits around for the outer one to
eventually come to it (see e.g. [31, 45]). On the other hand, calculations of the RSET in
the vicinity of static inner horizons have been performed [12–17], but without analysing
backreaction at finite times (usually due to the nature of the stationary backgrounds
considered, where the only inner horizon present is also a Cauchy horizon).

In classical general relativity, a well-known result is that long-lived inner horizons lead
to the so-called “mass inflation” instability, wherein small perturbations in the matter
content of the geometry result in a highly non-linear response in the increase of curva-
ture [2]. For the charged BH and many other models, this increase in curvature can be
related to a growth of the Misner-Sharp mass [150], hence the name “mass inflation”.
For an initially static geometry with an inner horizon which is then perturbed, the region
where mass is “inflated” begins close to the initial position of this horizon and extends
below it. Marking the beginning of this large-curvature region is a shockwave [4] located
on a null hypersurface which remains in the vicinity of the initial inner horizon position.
Meanwhile, the inner horizon moves inside this region along a timelike hypersurface,
tending toward the origin. If it reaches the origin before reaching the Cauchy horizon, a
spacelike singularity is formed, as observed in the numerical analysis in [113], in addition
to the null weak singularity at the Cauchy horizon itself [9, 32, 151,152]. We will discuss
the details of this inner structure in the following chapter.

Given this classical instability, one may expect that within semiclassical gravity, if
backreaction form the RSET at the inner horizon is taken into account at finite times,
an equally non-linear process may take place, possibly with sufficient amplification to
lead to significant deviations from classicality in spite of the ℏ suppression. It is the goal
of this part of the thesis to explore this possibility. In chapter 4 we begin by revisiting
the classical problem, using a simple geometric model of a spherically-symmetric BH
with an inner horizon to study how perturbations can trigger mass inflation, and how
the peculiar causal structure of the resulting spacetime comes about. In chapter 5 we
then turn to perturbations of semiclassical origin, namely backreaction from the RSET
on static and dynamical BH backgrounds. In chapter 6 we take a small detour to look at
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how the tools used in the analysis of BH stability can also be applied to another spacetime
with somewhat similar causal features: the superluminal warp drive. Finally, in chapter
7 we go back to BHs, and look at what the combination of classical and semiclassical
perturbations may lead to for the evolution of the trapped region.
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Chapter 4

Classical inner horizon instability: a
model of mass inflation

In this chapter we will work with a model of a spherical BH undergoing classical mass
inflation. The perturbations which trigger the instability will take the form of ingoing
and outgoing null thin shells, allowing for an analytical description of the evolution of the
geometry through the junction conditions at each of the shell surfaces. We will first look
at what the conditions on the infalling mass and the response of the geometry are for the
instability to be triggered. Then, we will focus on the evolution of the inner apparent
horizon in these spacetimes, analysing the resulting causal structure, and preparing the
stage for the combined classical and semiclassical analysis of chapter 7.

4.1 Mass inflation with thin shells

The model we will work with is a spherically symmetric geometry with a line element

ds2 = gttdt
2 + grrdr

2 + r2dΩ2, (4.1)

where dΩ2 is the line element of the unit sphere. The simplicity of our construction lies
in considering that this geometry is static, i.e. that the metric components gtt and grr
are functions of r only, in patches separated by spherical null shells.

To begin with, consider that there are two null shells, one outgoing and one ingoing,
which intersect at a point p1 = (t1, r1). Continuity of the metric imposes the relation
(see [153–155]) ∣∣∣∣

f2
f1

∣∣∣∣ =
∣∣∣∣
F2

F1

∣∣∣∣ at p1, (4.2)

where the functions F and f are the grr component of the metric in different patches,
with upper (lower) case letters referring to the interior (exterior) of the outgoing shell
and the subscript “1” (“2”) referring to the interior (exterior) of the ingoing shell, as
shown schematically in fig. 4.1.

Now consider that this geometry has a trapped region (i.e. a region where gtt becomes
positive and grr negative, which directly relates to the expansion of outgoing null geodesics
congruences becoming negative [140]). For simplicity, consider also that −gtt = grr in
the static coordinates of each patch in the vicinity of the shells (as would be the case
for e.g. the charged BH, and many regular BH models [30, 31]). We will refer to this
metric component as the redshift function, this being the previously defined f (and F ,
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Figure 4.1: Static BH with outer and inner horizons perturbed by an outgoing shell and a
series of ingoing shells with decreasing mass, represented in advanced Eddington-Finkelstein
coordinates. The trapped region is shaded in grey. The ingoing shells are located at vn, with
n = 1, 2, . . . ; mn refers to the Bondi mass in the asymptotic region before the corresponding
ingoing shells (outside the outgoing one); fn is the grr metric component in each of these
regions down to the outgoing shell, while Fn is the same metric component on the inside
of the outgoing shell. ri,n are the zeros of the fn functions extended to the region below
the outgoing shell (they are the radii which this shell approaches exponentially in v in each
patch).

except for a factor 1/2).1 We take the outgoing shell to be travelling inside the trapped
region, between the outer and inner horizons. Once we specify some aspects of the initial
conditions in the patches of F1, f1, and f2, which amounts to choosing the mass and
charge carried by each shell, eq. (4.2) will tell us how the redshift function in the future
of the innermost region of the BH, F2, behaves. We will then repeat the process by
adding more ingoing shells, as shown in fig. 4.1, representing an ingoing perturbation of
decreasing amplitude [110], and see when and how mass inflation is triggered.

In advanced Eddington-Finkelstein coordinates we can write the line element in the
f1 patch as

ds21 = −f1(r)dv
2 + 2dvdr + r2dΩ2. (4.3)

We note that the same coordinate v can be used for all static representations of the
patches external to the outgoing shell, due to the null nature of the ingoing shells (the
same applies for the patches on the inside of the outgoing shell, where we will use a null
coordinate V for the static description). This outgoing shell is travelling along a null
geodesic for both the geometries in the f1 and F1 patches. For now, we will describe its
dynamics and its intersections with the ingoing shell(s) in the coordinates of the external
f1 patch, while in the next section we will go into more detail regarding its description
from the point of view of the interior patches. Being inside the trapped region of (4.3),
its movement is described by the equation

drshell
dv

=
1

2
f1. (4.4)

1Throughout the text, it should be recalled that the properties we require from this function are
related to both gtt (which often bears the name redshift function by itself) and grr; the former has more
to do with the trajectories of null geodesics, while the latter has to do with the junction conditions which
drive the dynamics of the spacetime.
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Since f1 is negative inside the trapped region, the solution for its radial position rshell
decreases in v, eventually tending toward the inner gravitational radius of the f1 patch,
ri,1, where the redshift function can be approximated by

f1(r) = −2κ1(r − ri,1) +O[(r − ri,1)
2], (4.5)

with κ1 being the absolute value of the surface gravity of this inner radius (i.e. −1
2
∂rf1|r=ri,1).

To clarify, ri,1 is the position the inner horizon would have if the f1 patch were continued
to below the outgoing shell (i.e. the zero of the f1(r) function when extended to below
rshell). We note that since below rshell the geometry is described by the F1 function, the
position of the actual inner apparent horizon of the geometry is in fact the zero of F1.
This position will be denoted by Ri,1 later on.

The solution which describes the tendency of the shell toward ri,1 at sufficiently large
values of v can be obtained from the linear order in the above expansion,

rshell(v) = ri,1 + (r0 − ri,1)e
−κ1v +O

(
e−2κ1v

)
, (4.6)

where r0 is a positive constant representing the position of the shell at v = 0. Substituting
(4.6) into (4.5), the redshift function on the shell is then approximated by

f1|shell = −2κ1(r0 − ri,1)e
−κ1v +O

(
e−2κ1v

)
. (4.7)

Now consider that this outgoing shell is intersected by the ingoing one. If the latter
is assumed to have positive mass (more generally, satisfies the null energy condition),
the inner horizon can only be displaced inward, i.e. ri,1 ≥ ri,2, following a timelike
trajectory, in the same way as the outer horizon can only be displaced in an outward
(spacelike) direction.2 Let us also assume that this mass which the shell carries to the
BH is small (compared to the total BH mass), as one may expect from perturbations in
an astrophysical scenario. The redshift function after this shell can then be approximated
by

f2|shell = −2κ2(rshell − ri,2) +O[(rshell − ri,2)
2]. (4.8)

Particularly, the smallness of the mass carried by the shell is meant to ensure that the
order (rshell − ri,2)

2 remains negligible (in units of the characteristic length scale of the
BH, i.e. the initial inner horizon radius), in the same way as the higher order terms in
(4.5) are, which amounts to a requirement that the displacement (ri,1 − ri,2) be small
(which we will impose explicitly later on). At the intersection point p1, we can insert
(4.6) for rshell into eq. (4.8) which, together with eq. (4.7), gives us the expression for one
of the two quotients from eq. (4.2):

f2
f1

∣∣∣∣
r=r1

=
κ2

κ1

+
κ2

κ1

ri,1 − ri,2
r0 − ri,1

eκ1v1
[
1 +O

(
e−κ1v1

)]
, (4.9)

where v = v1 corresponds to the position of the ingoing shell, and is thus also the
intersection time. The exponential in this expression, along with eq. (4.2), already
indicates that the value of redshift function F2 can become much greater than F1, in a
manner suggestive of mass inflation. Particularly, one can easily see how this growth of
F2 relates to an increase of mass in e.g. the Reissner-Nordström geometry (which we will
use as an illustrative example throughout this work), where Fn = 1 − 2Mn/r + Q2

n/r
2.

2This is simply an extension of Hayward’s theorem for continuous matter [140] to the case of shells.

70



Part II – Chapter 4: Classical inner horizon instability: a model of mass inflation

If the redshift function (which is negative, r1 begin inside the trapped region) increases
in absolute value, it translates into an increase in the only negative term it contains:
the mass of the BH. Assuming this term is already large from previous shell crossings
and dominates the behaviour of the redshift function F1 close to the shell, we have the
relation

F1|r=r1 = −2M1

r1
+O

(
M0

1

)
, (4.10)

where M1 is the mass on the inside of the outgoing shell before v1. With the same
assumption for the region after the ingoing shell, i.e. that the mass term dominates in
the redshift function, we get the inflated mass of the charged BH

M2 = M1
f2
f1

∣∣∣∣
r=r1

+O
(
M0

1

)
. (4.11)

However, as the reader may have already noticed, the exponential in (4.9) has a prefactor
which must also be carefully analysed. For example, if the ingoing shell is considered to
have a particular charge and mass which make the displacement of the inner gravitational
radius (ri,1 − ri,2) sufficiently small, the exponential growth could be cancelled. We will
discuss this in more detail in the following.

Let us make the perturbation by ingoing shells an iterative process: we represent an
ingoing, polynomially decreasing flux of radiation (which is usually the source of mass
inflation [2, 32] stemming from the decay of perturbations on the geometry [110, 156])
with a sequence of ingoing shells of progressively smaller mass,

δmn =
a

vqn
, (4.12)

where δmn refers to the change of the exterior mass (i.e. the Bondi mass [157] related
to past null infinity) produced by a particular ingoing shell located at v = vn, the power
q is positive,3 and a is a positive constant with appropriate dimensions. We also impose
that there be infinitely many shells and that limn→∞ vn = ∞.

One of the key ingredients necessary for mass inflation is that this increase in the mass
(as seen from outside the object) is itself related polynomially to the change in position
of the inner gravitational radius δri,n, i.e.

δri,n = − β

vpn
, (4.13)

where the power p is again positive (though it can be different from q), and β is again a
positive constant (at least asymptotically in v). We stress that eq. (4.13) is an assumption
about how the geometry responds to the ingoing perturbation (4.12). For example, in
the Reissner-Nordström case, where one has

δri,n =
1√

m2 −Q2
(−ri,nδmn +QδQn), (4.14)

the assumption (4.13) restricts the amount of (same sign) charge the ingoing shells can
carry. One can easily imagine a case in which the relation between δmn and δQn is

3q has a lower bound which depends on the spacing of the shells, needed to guarantee that the total
mass thrown into the BH is finite. For example, for a linear distribution of shells in v, q > 1. If the
shells become more spread-out, then q can be smaller, while if they become more concentrated it must
be larger.
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such that e.g. δri,n = 0, which would lead to an absence of mass inflation. This is not
limited to the Reissner-Nordström case: (4.13) generally avoids the suppression of the
exponential in (4.9) by its prefactor, allowing mass inflation to take place.

This can be seen by looking at the evolution of the redshift function in the interior of
the outgoing shell after the nth ingoing shell has crossed it, Fn. From eqs. (4.2), (4.9),
and (4.13) we get the asymptotic relation at the nth intersection point

Fn = Fn−1
fn
fn−1

= Fn−1
κn

κn−1

(
vn−1

vn

)p

eκn−1∆vn
[
1 +O

(
e−κn−1∆vn

)]

= Fn−1e
κ∆vn

[
1 +O

(
e−κ∆vn ,

∆vn
vn−1

)]
,

(4.15)

where ∆vn = vn − vn−1 and in the last line we have directly substituted the asymptotic
value of the surface gravity of the fn geometries, κn → κ. We have also used the fact
that the differences vn − vn−1 become negligible when compared to the absolute value of
vn asymptotically (for any distribution of infinite shells which covers an infinite range in
v), and that eκ∆vn > 1, leaving only the dominant contribution as leading order. If we
use this relation iteratively from an initial time v = 0 when the interior redshift function
was F0 < 0, we get the asymptotically exponential increase (of the absolute value of) the
redshift function at the shell

Fn|shell ∼ F0e
κvn . (4.16)

The result is independent of the spacing between the ingoing shells: increased spacing
only leads to a higher jump in Fn when a shell eventually falls. This tendency continues
for as long as more shells are thrown in. Returning to the Reissner-Nordström case,
we can once again easily associate this with a proportional increase of the mass term
through eq. (4.11). In more general geometries, it can be related to an increase of the
Misner-Sharp mass given by [140,150]

MMS =
1

2
r(1− F ), (4.17)

for this interior region. Let us recall that the Misner-Sharp mass provides a quasi-local
characterization of gravitational energy in spherical symmetry [140].

Eq. (4.16) captures the main result of mass inflation: the exponential growth of
the redshift function (more generally, the grr metric component) below a certain radius,
associated with a corresponding growth of the Misner-Sharp mass. In our model it can
be physically interpreted in terms of the exchange of mass between the outgoing and
ingoing shells. The outgoing shell, being inside the trapped region, can be seen as having
a negative asymptotic mass. At the intersection points, the ingoing shells can therefore
take away positive mass by making the negative one of the outgoing shell increasingly
more negative. This exchange is mediated by the dynamics of the gravitational field, and
in particular the exponential runaway effect is only triggered if the outgoing shell is taken
from an initial proximity to the inner gravitational radius of the fn geometry patches, to
subsequently (after the interaction) end up deeper inside the trapped region due to the
inward displacement of this inner gravitational radius (4.13).

It is interesting to note that this process is independent of the particularities of the in-
falling matter shells, the only requirement being that the infalling perturbations alone in-
duce a polynomially decreasing response in the inner gravitational radius position (4.13).
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If the shift in its position were instead to decrease, e.g., exponentially,

δri,n = −β̃e−σv, (4.18)

where β̃ and σ are positive constants, then one can observe from (4.9) and the corre-
sponding equivalent of (4.15) that the outcome would depend on the difference between
the surface gravity κ and the coefficient σ. Particularly, mass inflation would only take
place if κ > σ, as has been shown in the case where σ is the surface gravity of a cos-
mological horizon in asymptotically de Sitter spacetimes, governing the decaying tail of
infalling radiation [158,159].

It is worth noting that this shell-based model has some characteristics in common
with the case in which a continuous power-law flux of radiation is present, but there are
also some differences. For example, the exponential which appears in the mass inflation
of this model is directly related to the exponentially decreasing separation between the
outgoing shell and the inner gravitational radius ri (as seen from the outside) in each step
represented in fig. 4.1. Although the average of this distance taken over several steps
has the same inverse-polynomial decrease as is expected from a continuous matter case
(that is, if ri had a position evolving as a continuous version of (4.13)), taking the limit
to a continuous ingoing distribution of matter is not at all straightforward. Although the
outgoing shell seems to be a good model for the shockwave which generally appears in this
region even with continuous matter [4], the ingoing shells offer qualitatively new features.
This may also be inferred by the fact that a generalisation of Ori’s model [160], in which
the ingoing flux is continuous, leads to a larger variety of asymptotic outcomes, unlike
the single exponential behaviour observed here. The question of whether the continuous
or the discrete model (or some combination of the two) fits best the behaviour of small
(possibly quantised) infalling perturbations may thus turn out to be an important one
for a better understanding of the singularity at the Cauchy horizon, though we will not
address it here.

4.2 Geometry inside the mass-inflated region

This shell-based construction captures (albeit a simple variant of) the mass inflation
process and it can give us some additional insights into the behaviour of the geometry
inside the BH at finite times. In particular, to set up our subsequent semiclassical analysis,
we want to see how this model answers two questions about the depths of the mass-inflated
region. The first one is whether a stream of outgoing radiation below the initial outgoing
shockwave may also give rise to an effect similar to mass inflation, which would further
increase the rate of growth of mass in the innermost region of the geometry, in the vicinity
of the origin. The second one is what particular path the inner apparent horizon actually
follows in this whole process, and whether it collapses to the origin to give rise to a
spacelike singularity at a finite time v, as suggested in the numerical analysis of [113].

To answer these questions, we must first get a better understanding of the global
structure of the geometry corresponding to the above construction with just a single
gravitating outgoing shell. The metrics on the outside and inside of the outgoing shell
respectively can be written as

ds2 = −f(v, r)dv2 + 2dvdr + r2dΩ2, (4.19)

dS2 = −F (v, r)dV 2 + 2dV dr + r2dΩ2

= A(v)
[
−A(v)F (v, r)dv2 + 2dvdr

]
+ r2dΩ2,

(4.20)
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where lower and upper case letters are once again used for quantities in the regions outside
and inside the shell, respectively, and A(v) = dV/dv = f/F |shell is a positive function
which allows us to switch between the Eddington-Finkelstein coordinates of these two
regions, as expressed on the right-hand side of the latter equation.

For simplicity, we will take a smoothed-out average of the metric functions from the
previous section (particularly, their dominant behaviour at late times). The redshift
function on the shell evaluated on the inside (4.16) is then

F |shell = −|F0|eκv, (4.21)

and, from eq. (4.13) and the shell trajectory in each patch, the redshift function on the
outside satisfies

f |shell = −κ [rshell − ri(v)] = − b

vp
, (4.22)

with b a positive constant which depends on the average spacing between ingoing shells
(i.e. the average of the quantity eκ∆vn), into which κ (the outside region’s inner grav-
itational radius’s surface gravity) and the constant β from eq. (4.13) have also been
absorbed. The function which relates the outside and inside times, v and V , then be-
comes

A(v) =
b

|F0|
e−κv

vp
. (4.23)

The results we have obtained thus far are valid for any redshift function, but if we
want to analyse the deeper regions of the geometry we have to be more specific. Let
us therefore first focus on the particular example we have used previously, namely the
Reissner-Nordström geometry. If we assume that the ingoing and outgoing shells carry
no electrical charge, we can take the evolution of F to be solely due to a change in the
mass term. Then, from eqs. (4.21) and (4.23), and with the Reissner-Nordström redshift
function, we get the geometry for the mass-inflated interior region (4.20) written in the
v coordinate

dS2 =
b

|F0|vp
e−κv

[
− b

|F0|vp
e−κv

(
1− 2M0e

κv

r
+

Q2

r2

)
dv2 + 2dvdr

]
+ r2dΩ2, (4.24)

where M0 is a positive constant which represents the initial mass of the BH. Using this
metric we see that the equation for outgoing null geodesics (which we can later relate to
trajectories of additional gravitating outgoing shells) then takes the form

dr

dv
=

b

|F0|vp
[
−h0(r) + h1(r)e

−κv
]
, (4.25)

where h0(r) = M0/r and h1(r) = (1 + Q2/r2)/2 are positive functions. Due to the
exponential suppression of the h1 term, it is clear that the term with h0 is dominant on
the right-hand side of this equation, except in a progressively smaller region around the
origin, where the inner apparent horizon is shrinking toward zero radius. In relation to
this, we will be able to distinguish between two types of outgoing geodesics in the trapped
region: ones whose dynamics is predominantly determined by the h0 term, and ones for
which the two terms are comparable. The former exist up to v → ∞ only if p > 1, which,
given eq. (4.14), is directly related to the mass thrown into the BH from the outside being
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finite (for our current example of Reissner-Nordström).4 If this condition is met and the
h0 term continues to dominate, equation (4.25) generally integrates asymptotically to

r = rc +
h0(rc)

|F0|(p− 1)

b

vp−1
+O

[(
b

vp−1

)2
]
. (4.26)

The integration constant rc represents the final radial position of each light ray when it
reaches the Cauchy horizon at v → ∞, which is different for each geodesic depending
on initial conditions. In other words, between the outgoing shell and the inner apparent
horizon (which is rapidly shrinking toward r = 0) there are null geodesics which are
trapped in a tendency toward a finite radial position which is different from the asymptotic
position of this horizon. To see how this journey is perceived from the point of view of
an observer in the interior region itself, we can look at the relation between the v and
V coordinates, the latter of which, for observers not tending toward the inner apparent
horizon, is proportional to the geodesic affine parameter. As we have seen, this relation
is given by

dv

dV
=

F

f

∣∣∣∣
shell

=
1

A(v)
, (4.27)

which asymptotically integrates to

V = Vc −
b

|F0|κ
e−κv

vp
+O

(
e−κv

vp+1

)
. (4.28)

These geodesics therefore reach the Cauchy horizon at a finite time parameter V = Vc,
corresponding to the integration constant of the equation. This gives us an interpretation
for the behaviour seen in (4.26): outgoing null geodesics are trapped in a tendency toward
these different finite radial positions rc because the function A acts to quickly freeze the
proper time, and consequently the movement, of observers in this region. Because of this
freezing function A, most of the outgoing radiation in the trapped region would in fact
reach the Cauchy horizon before getting close to the inner apparent horizon. This tells
us that interactions between the ingoing shells with additional outgoing shells travelling
along these geodesics would not have time to produce any sort of amplification of the
mass inflation effect, as this would require proximity to the inner gravitational radius Ri

of this internal region (which in the absence of such shells is in fact the inner apparent
horizon position).

The region where eqs. (4.26) and (4.28) are valid begins on the inside of the outgoing
shell and increases in size toward the origin as the mass tends to infinity due to its
unbounded growth following eqs. (4.17) and (4.21). The radii rc at which null geodesics
freeze can then vary continuously from ri (the inner gravitational radius of the external
geometry) to zero, as is observed in the analytical study of the Cauchy horizon in [151].
However, this does not imply that all outgoing null geodesics are trapped in this way and
are unaffected by the shrinking inner apparent horizon. Due to the growing mass, the
radial position of this apparent horizon Ri can be approximated by a series expansion
of the lower of the two roots of the Reissner-Nordström redshift function in 1/M(v),

4It is interesting to note that it is quite easy to imagine a geometry in which e.g. due to a relation
δri ∝ −(δm)1/2, p ends up being 1 or smaller for a finite accretion of mass. The absence of solutions
of the type (4.26) would then imply a lack of a Cauchy horizon below the outgoing shell, leaving just a
trapped region with a tendency toward the formation of a spacelike or null singularity.
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revealing its tendency to zero

Ri(v) =
Q2

2M(v)
+O

(
1

M(v)

)3

=
Q2

2M0

e−κv +O
(
e−3κv

)
, (4.29)

with a surface gravity (in absolute value)

Ki(v) =
b

vp
2M3

0

|F0|Q4
e2κv +O

(
1

vp

)
. (4.30)

There are indeed many outgoing null geodesics which are sufficiently close to this horizon
to approach it asymptotically, i.e. to tend to zero from above it. These are the second-
type geodesics we mentioned before: the ones for which the h0 and h1 terms of eq. (4.25)
are comparable, with the right-hand side of this equation being close to zero, i.e. r being
close to Ri. Their movement can be described by expanding the right-hand side of this
equation around Ri,

dr

dv
≃ −Ki(v)[r −Ri(v)]. (4.31)

With the rapidly growing value of Ki, it can be readily checked that this equation has
a family of solutions for which r → Ri. These geodesics also reach v = ∞ with a finite
affine parameter, where they converge to r = 0 along with Ri, falling into a (strong)
curvature singularity.

If an additional mass inflation effect can take place, pushing the position of the inner
apparent horizon to below the one given by (4.29), it would be triggered by placing an
outgoing shell precisely on one of the geodesics described by (4.31) which tend toward
Ri from above. To keep the label Ri for the zero of the F function (4.29), i.e. the inner
gravitational radius of the F patch, we will now call the actual inner apparent horizon
R̃i. Also, instead of working with the v coordinate, here it will be more convenient to use
V , with which we can directly apply the relation (4.9) for the junction conditions on the
intersection points with the ingoing shells. The position of the inner gravitational radius
Ri and its surface gravity (taken as the absolute value of ∂rgvv/(2gvr) in each coordinate
system)5 in the V coordinate system KV

i evolve as

Ri = ξ1(Vc − V ) +O[(Vc − V )3], (4.32)

KV
i =

ξ2
(Vc − V )3

+O
(

1

Vc − V

)
, (4.33)

where ξ1 and ξ2 are some positive constants which depend of the asymptotic mass, the
charge and the initial conditions. In the shell model we once again consider that these
functions actually have discrete jumps at a set of points in V , corresponding to the
positions of the infalling shells. If we take these shells to be either equispaced in v, or
at most distributed with a density polynomially dependent in v, then their spacing in V
decreases as

∆Vn = Vn − Vn−1 ∼ Vc − Vn (4.34)

as Vn tends toward the Cauchy horizon Vc. The jumps in the position of the inner horizon
between shells also decrease as

∆Ri,n ∼ Vc − Vn. (4.35)

5In other words, KV
i is not just Ki with a coordinate change, due to the A(v) factor which multiplies

the redshift function after the coordinate change, as can be seen in (4.24).
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Eq. (4.9) can be applied directly here because the outgoing shell has enough time between
each iteration to get exponentially closer to Ri,n, as can be seen by the fact that

e−KV
i,n∆Vn ∼ e−1/(Vc−Vn)2 → 0, as Vn → Vc.

The quotient of surface gravities in (4.9) once again tends to a constant in the limit of
interest, and so does the quotient of the differences between radial positions in front of
the exponential.6 This leaves the redshift function below this new outgoing shell with an
increase given by a multiplicative factor

eK
V
i,n∆Vn

after each iteration, which diverges as eξ2/(Vc−V )2 toward the Cauchy horizon. In terms
of v, this new mass inflation increases the Misner-Sharp mass in the vicinity of the origin
as an exponential of an exponential. One can then imagine that each time we repeat this
whole process considering the new displacement of the inner horizon caused by this effect,
we would get an additional exponential in v to the chain.

We can now tackle answering the second question posed at the beginning of this
section: what is the actual path followed by the inner horizon, and what causal structure
does this movement give rise to. It is hardly surprising that in the case of continuous
matter the chain effect just described could produce a spacelike singularity at finite v, as is
observed numerically in [113] and commented on in later works [4,151]. Even if the exact
analytical solution were to only result in a very quick tendency toward the formation of
this singularity (i.e. a quick approach of the inner apparent horizon toward the origin,
though still asymptotic in v), this approach would in fact be so quick that it would
likely be numerically indistinguishable from a singularity at a finite time v; at any rate,
the curvature would become Planckian very fast, making a classical description of the
geometry-matter interactions inadequate. However, it is interesting to note that within
the classical description, this seemingly small difference between a singularity forming at
strictly finite v and having just a tendency toward its formation, however quick, and only
forming it at v → ∞, results in two different asymptotic structures, represented in the two
diagrams of fig. 4.2. In fact, the former case results in the formation of a Schwarzschild-
type spacelike singularity, while the latter ends in a (strong) null singularity, both of which
are at r = 0 and are attached to the weak null singularity which spans the Cauchy horizon,
where r takes values up to ri. To clarify, we use the same criterion for distinguishing strong
and weak singularities as the one described in [32, 161]: both have diverging curvature
scalars, but the distortion suffered by an observer of finite size remains bounded when
crossing a weak singularity, while it diverges when crossing a strong one. One can readily
check that the curvature blow-up of the geometry we use close to the Cauchy horizon
[see eq. (4.24)] is the same as in refs. [32, 113], RµνρσR

µνρσ ∼ 48M2
0 r

−6e2κv, leading to
the same type of weak singularity there.

Up to here, all we have said regarding these questions has been based on the Reissner-
Nordström background. For other geometries besides Reissner-Nordström, the inner
structure of the mass-inflated region depends on how the geometry reacts to the increase
in mass provided by the infalling null shells, particularly on the trajectory followed by
the inner gravitational radius. The relation from the charged BH δri ∝ (−δm) is also

6This can be seen explicitly by solving the outgoing null geodesic equation between each infalling
shell and matching the solutions. The calculation is completely analogous to the one performed in the
vicinity of ri.
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Figure 4.2: Future part of the causal diagram of the mass inflation geometry. The shaded
part is the trapped region and the dashed line is the Cauchy horizon (and a weak singular-
ity). The null shell shown is the upper outgoing one which tends to ri and is responsible
for the first mass inflation effect. Left: the inner apparent horizon reaches r = 0 at finite v
and forms a Schwarzschild-type spacelike singularity. Right: the inner horizon only tends
to r = 0 asymptotically in v, resulting in a strong null singularity at v → ∞ and r = 0, at
a finite affine distance for geodesics which fall into it.

satisfied in the case of a rotating BH, but in regular BH spacetimes this tendency may
be modified, depending on how the regularisation of the origin is achieved in the first
place. One may expect there to exist trapped geodesics of the type (4.26), but the struc-
ture toward the origin may differ, possibly avoiding the formation of a strong singularity
altogether by preventing the inner horizon from getting too close to r = 0.

It is also interesting to note that in general, the explicit divergence of the mass at
v → ∞ depends on the ever-smaller ingoing perturbations also continuing up to infinity.
Classically it is perfectly natural to consider this to be the case, but one may imagine
that a quantum description of the interaction between the BH and infalling matter may
have a lower bound on the energy which can actually affect the BH. For example, we can
consider that this lower bound is given by the energy of a single photon with a wavelength
of the order of the BH external mass m (in geometric units). Then, we can relate this
energy to a mass and to a cutoff time vcut through (4.12), and for simplicity we can take
the polynomial tail in (4.13) to be the same as in (4.12), i.e. p = q. The result is that

by vcut the mass in the interior region would have increased by a factor e(M/lP)
2/p

from
just the first exponential mass inflation effect around ri, given by eqs. (4.16) and (4.17).
Needless to say, the exponent in this number is generally very large. For a solar mass
BH and a polynomial decay with p = 12 (as considered in [2]) the mass grows by a factor
larger than e10

6
, making a classical description of this region inadequate.

4.3 Summary and conclusions

In this chapter we have constructed a simple geometric model which captures the classical
inner horizon instability. It consists of a series of ingoing and outgoing null shells per-
turbing an otherwise static BH configuration. Matching the mass carried by the ingoing
shells with the expected tail of ingoing radiation in astrophysical scenarios [2, 110], we
find that mass inflation is triggered if the inner horizon position has a power law relation
to the BH mass, akin to the case of charged and spinning BHs. On the other hand, BHs
with a particularly stiff inner core, which does not shrink as quickly (or at all) when more
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mass is introduced, would not experience mass inflation.
For charged BHs, and by extension for rotating ones as well, where an analogous shell-

based construction can be made [155], the instability occurs as long as the perturbations
falling in do not carry enough charge or angular momentum to keep the inner horizon
still enough, which is unlikely to occur in an astrophysical scenario over long periods of
time. The causal structure of these spacetimes is therefore modified: the inner horizon
approaches the origin, while outgoing light rays which cross it are frozen in approaches
toward finite radial positions slightly below where they enter the trapped region. These
rays reach v → ∞ in finite affine parameter, creating a Cauchy horizon there. The
curvature divergence at this horizon is weak enough for the metric to be continuously
extended beyond it.

For the purposes of the semiclassical analysis of chapter 7, the important part of the
evolution is the period between the formation of the BH and the time when its inner
apparent horizon reaches a region of Planckian curvature. As it turns out, this initial
period may be susceptible to semiclassical modifications, halting the classical tendency
toward singularity formation.
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Chapter 5

Semiclassically corrected inner
horizon evolution

In this chapter we will present a perturbative analysis of backreaction on an inner horizon
from the RSET of a quantum scalar field. We will begin by calculating the RSET in the
Polyakov approximation on spacetime backgrounds containing dynamically formed BHs.
Then we take the RSET as a source of dynamical perturbation and see how the trapped
region tends to evolve semiclassically. On the one hand, we recover the evaporative
tendency of the outer horizon. On the other, we find a tendency for the inner horizon to
move outward, reducing the size of the trapped region from the inside.

5.1 Backreaction on a BH with a static inner horizon

We begin by presenting a toy model for the geometry of the formation of a spherical BH
with an inner horizon, which captures the main characteristics with sufficient generality,
but is simple enough to allow analytical calculations with the semiclassical perturbations
caused by the RSET. After its formation, we impose that this BH be classically static
(with a timelike Killing vector outside its trapped region). It can be either of a Reissner-
Nordström type, with a timelike singularity at the centre, or of a regular type, with a de
Sitter or approximately flat core region [30, 162]. In the interest of avoiding ambiguities
in the propagation of the quantum field modes, we will work with the assumption of a
regular core, although our results on semiclassical evolution are also applicable to the
former case, for a small but finite time period.

5.1.1 Geometric model and RSET

We start with a Minkowski spacetime, which has a line element

ds2 = −dv2 + 2dvdr + r2dΩ2 (5.1)

in advanced Eddington-Finkelstein coordinates. The simplicity of our construction lies
in assuming that after a point in time vf the geometry becomes a regular, spherically
symmetric static BH,

ds2 = −f(r)dv2 + 2dvdr + r2dΩ2. (5.2)

The surface which separates the flat and BH regions can be seen as a collapsing null
shell, a model often used when calculating semiclassical effects near the outer horizon
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r

f

ri re

Figure 5.1: Redshift function f(r) of our schematic regular BH. For the inner horizon
rh = ri and for the outer one rh = re.

(see e.g. [142]), though in this case it does not stem from a simple classical solution and
is more of a geometric construct. The peeling of null geodesics, and consequently of modes
of massless quantum fields, away from the outer horizon makes long-term semiclassical
effects exhibit a certain universality there [76]. Thus a null shell is as good as any model
of collapse if we want to study late-time Hawking evaporation. However, as we will see,
at the inner horizon null geodesics behave in the opposite way to those at the outer
one, i.e. they are accumulated, so the result is the exact opposite: late-time behaviour
of semiclassical effects is highly sensitive to the characteristics of the collapse, and to
conditions from the past of the spacetime in general. In the face of this complexity, the
collapsing shell model can be used as a simple geometric method for obtaining reasonable
initial conditions for the quantum modes entering the BH region, without resorting to
the numerical computations which would be required in more generic collapse scenarios.
This method is also unique in the sense that it makes the quantum modes acquire the
least amount of “noise” from the collapse and serves to isolate the effects coming purely
from the quantum field finding itself in the BH geometry. Due to its simplicity, it is also
an excellent example in which we can follow the origin and consequences of semiclassical
effects by means of analytical expressions, as we will see.

For the redshift function in the BH region f(r) we will use a series expansion around
each horizon of the form

f(r) = 2k1(r − rh) + 2k2(r − rh)
2 + 2k3(r − rh)

3 + · · · , (5.3)

where rh denotes the position of either the internal or external horizon and ki are con-
stants, k1 corresponding to the surface gravity of the horizon (negative for the internal
and positive for the external horizon; note the simplification of the notation with respect
to chapter 3, where we used the absolute values of each surface gravity). Sufficiently close
to each horizon, these two expansions are a valid representation of the redshift function,
the global structure of which we assume is qualitatively of the form represented in fig.
5.1. We note that throughout this work, when we construct a series assuming that a
quantity with dimensions of length l is “small”, we of course mean comparatively to the
scale of the problem, i.e. that the sets of quantities {k1l}, {k2l2, (k1l)2}, and subsequent
orders, are progressively smaller.

We are thus treating an arbitrary BH geometry of the form (5.2). We use only
one of the two degrees of freedom of the spherically symmetric spacetime for simplicity,
given that the redshift function itself is enough to generate the causal structures we are
interested in. The simple dynamical model for the formation of this structure, along with
a focus on the areas around each horizon, will make analytical calculations of backreaction
tractable. We can now proceed to construct the quantum “in” vacuum state for this
geometry, necessary for calculating the RSET. This vacuum state is defined from the
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Minkowski region at past null infinity, and its evolution is determined by the evolution
of the spacetime. In particular, for the 1+1 dimensional approximation we will be using,
its modes can be obtained from the behaviour of the radial null geodesics, represented in
fig. 5.2. The ingoing ones simply satisfy

v = const. (5.4)

For the outgoing ones we must solve the equation

dr

dv
=

1

2
f(r). (5.5)

For v < vf , f(r) = 1 and the solution is simply

r(v) =
1

2
(v − v0), (5.6)

where v0 is an integration constant, identified as the time at which the light ray passes
through the origin r = 0. The “in” vacuum is constructed from a pair of null coordinates
(vin, uin), which in this case are in fact vin = v and uin = v0 (i.e. in the uin = const.
outgoing null trajectories the value of uin is the value of v when said trajectories meet the
origin). We have conveniently expressed the integration constant in terms of v0, and we
need to do the same with all solutions for outgoing light rays from here on, i.e. we need
to trace them back to the origin. For the region in which the BH has formed (v > vf),
we are only interested in analysing the vicinity of each horizon, where (5.3) is sufficiently
accurate. There, the solutions of (5.5) can be expressed in a series around df = 0, a
parameter corresponding to the distance of the null ray from the horizon at vf ,

df = r(vf)− rh =
vf
2
− v0

2
− rh, (5.7)

the second equality coming from matching with (5.6) at said time. For the purposes of
the present calculation, it is sufficient to express the solution of (5.5) up to order d3f ,

r(v) ≃ rh + ek1(v−vf)df +
k2
k1

[
−ek1(v−vf) + e2k1(v−vf)

]
d2f

+

[(
k2
2

k2
1

− k3
2k1

)
ek1(v−vf) − 2

k2
2

k2
1

e2k1(v−vf) +

(
k2
2

k2
1

+
k3
2k1

)
e3k1(v−vf)

]
d3f .

(5.8)

At the outer horizon, where the surface gravity is positive, the coefficients of this series
increase exponentially, making it a bad approximation for any finite df after sufficient
time has passed. The reason for this can be seen in fig. 5.2: outgoing light rays diverge
away from the outer horizon, thus away form where the expansion (5.3) is valid. The
reverse happens at the inner horizon, where the surface gravity is negative, as light rays
converge toward this horizon. However, this will translate inversely to the accuracy of
the RSET approximation in each region, as this quantity will depend on how the rays
evolve backwards in time.

To switch from (v, r) to (uin, vin) ≡ (u, v) coordinates, we use the relation

dr =
∂r

∂v

∣∣∣∣
v0=u

dv +
∂r

∂v0

∣∣∣∣
v0=u

du, (5.9)
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Figure 5.2: Representation of the trajectories of outgoing radial light rays. The BH
geometry begins at v > vf . The shaded regions around each horizon are a qualitative
representation of the regions where our approximation for the RSET is valid.

and note from (4.25) that ∂r/∂v|v0=u = f(r)/2, which means that the term proportional
to dv2 in the metric cancels out. We are then left with the line element for the BH region

ds2 = 2
∂r

∂v0

∣∣∣∣
v0=u

dudv + r2(u, v)dΩ2 = −C(u, v)dudv + r2(u, v)dΩ2, (5.10)

where C = −2∂r/∂v0|v0=u is the conformal factor of the reduced 1+1 dimensional space-
time. From (5.8) and (5.7) we obtain the expansion for this quantity up to order d2f ,

C ≃ ek1(v−vf) + 2
k2
k1

[
−ek1(v−vf) + e2k1(v−vf)

]
df

+ 3

[(
k2
2

k2
1

− k3
2k1

)
ek1(v−vf) − 2

k2
2

k2
1

e2k1(v−vf) +

(
k2
2

k2
1

+
k3
2k1

)
e3k1(v−vf)

]
d2f .

(5.11)

With this we are ready to calculate the components of the RSET in the Polyakov
approximation, given in “in” coordinates by the standard expressions [see eq. (I .27)]

⟨Tuu⟩ =
1

96π2r2

[
∂2
uC

C
− 3

2

(
∂uC

C

)2
]
, (5.12a)

⟨Tvv⟩ =
1

96π2r2

[
∂2
vC

C
− 3

2

(
∂vC

C

)2
]
, (5.12b)

⟨Tuv⟩ =
1

96π2r2

[
∂uC∂vC

C2
− ∂u∂vC

C

]
. (5.12c)

Calculating these quantities and switching back to (v, r) coordinates we obtain the leading
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order of the local expressions around each horizon

⟨Tvv⟩ = − 1

96π2r2h

k2
1

2
+O(r − rh), (5.13a)

⟨Trv⟩ = − 1

96π2r2h
2k2 +O(r − rh), (5.13b)

⟨Trr⟩ =
1

96π2r2h
3
k3
k1

[
1− e−2k1(v−vf)

]
+O(r − rh). (5.13c)

There are several things to note here. The first one is that we can actually obtain one
additional order in the expansion of ⟨Trv⟩, and two in the expansion of ⟨Tvv⟩, from just
the terms in (5.11), as only deriving with respect to u reduces its order. This will be
useful later in our calculation.

The second thing to note is the exponential in ⟨Trr⟩. Such time-dependent coefficients
are also present in higher-order terms in the remaining RSET components, and they affect
the distance from rh for which the truncated series expansions are a good approximation.
In particular, due to the C in the denominator of (5.12) and the subsequent change
of coordinates, they will be exponentials of positive multiples of (−k1v). This means
that for k1 > 0 (outer horizon) the coefficients in the series quickly tend to constants,
while for k1 < 0 (inner horizon) they grow exponentially. This is the inverse effect on
precision we alluded to earlier, which can be understood easily by observing fig. 5.2.
The light rays converge toward the inner horizon ri so that determining the RSET in a
region around it requires past information from larger and larger regions, where (5.3) is
no longer valid. On the other hand, the diverging light rays away from the outer horizon
imply that the approximation breaks down only when said rays are sufficiently far away
from this horizon for (5.3) to cease being precise, and not due to incoming information.
The latter case can be seen as a manifestation of the universality of quantum effects
around the external horizon of a BH at late times, analysed in [76], while the former
shows the reverse being true for the inner horizon, making its long-term semiclassical
dynamics more difficult to pin down. Still, the fact that ⟨Trr⟩ evaluated at the inner
horizon itself grows exponentially makes it clear that semiclassical effects are not to be
ignored there, as they can overcome their Planck-scale suppression very quickly.

The third thing to note is the negative ingoing flux at both horizons, which can be
seen directly in the ⟨Tvv⟩ component. This term is clearly non-local in curvature and is
there solely due to the presence of each horizon, being determined by their respective
surface gravities. At the outer horizon it is this negative flux which drives Hawking
evaporation, compensating the positive thermal flux at infinity, as discussed originally
in [72]. At the inner horizon one may therefore expect that this term would lead to a
similar, classically forbidden behaviour of the spacetime, such as increasing the radial
position of this horizon and reducing the size of the trapped region from the inside. This
indeed seems to occur, as we show below.

Finally, it is worth making some remarks regarding the approximation which we use for
the RSET (5.12). As discussed in the Introduction, one of its most obvious drawbacks
is the divergence it generally has at r = 0. If either horizon in our model were close
to the origin (in units of the Planck length), we would have to regularise this tensor
(see e.g. [27, 78]) or use a different approximation. However, we can simply restrict our
geometric models to ones in which rh ≫ lp, which, for BHs, is also a requirement for the
semiclassical approximation itself to be valid.1

1This assumption is also valid for the dynamical cases studied in the next section, perhaps with the
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As stated above, the reason why we use the Polyakov approximation is twofold. First,
there is as yet no method to compute the exact 3+1 dimensional RSET for the “in”
vacuum with such generality; and second, this approximation seems to be enough to
capture horizon-related effects, that is, at least when it comes to Hawking evaporation.
However, it is easy to see that the terms local in curvature would differ from the exact
RSET by just looking at the trace anomalies in 1+1 and 3+1 dimensions. The former is
directly proportional to the ⟨Trv⟩ term (5.13b), which depends only on the coefficient k2
from (5.3), while the latter, calculated with the expression given in e.g. [6], is at zeroth
order in (r − rh) a completely different function of the coefficients k1, k2 and k3. We
therefore do not exclude the possibility that an exact 3+1 dimensional calculation of
backreaction may lead to different dynamics. In what follows it is shown, however, that
the first perturbations on the position of either horizon are driven by the non-local flux
term in ⟨Tvv⟩, making the resulting initial dynamics a robust result whenever such a flux
is present.

5.1.2 Perturbed Einstein equations

In order to see the dynamical implications of backreaction near the two horizons, we will
perturb the metric (while maintaining spherical symmetry) and source the first order
perturbation with the RSET. Without loss of generality, the perturbed metric can be
written as

ds2 = − [f(r) + δf(v, r)] dv2 + 2 [1 + δg(v, r)] dvdr + r2dΩ2. (5.14)

Since we have expanded the RSET in powers of (r− rh), we must do the same with these
perturbations:

δf(v, r) = δf0(v) + δf1(v)(r − rh) + · · · ,
δg(v, r) = δg0(v) + δg1(v)(r − rh) + · · · . (5.15)

It is worth noting that since the RSET we are using is fixed entirely by the background,
the matter side of the Einstein equations may also require that a perturbation of the clas-
sical matter (the stress-energy tensor of which generates the background) be considered.
However, with the series expansion which we are using, we have found that at the order
needed to determine δf0 and δg0 the equations are compatible with this additional per-
turbation being zero, i.e. the classical matter content retaining its background functional
form.

We therefore begin by equating the first order in δf and δg and zeroth order in (r−rh)
of the Einstein tensor to the RSET (5.13) times 8πl2p, where lp is the Plank length. From
the vv component we obtain

(1− 2k1rh)δf0(v)− rhδf
′
0(v) = − l2p

24π
k2
1. (5.16)

Let us first analyse the implications of this equation in the case of the external horizon,
with rh = re and k1 > 0. If we take the familiar Schwarzschild case, where 2k1re = 1,

exception of the n < 1 case of eq. (5.53) in its final stages, which however occurs only after the bouncing
effect we are interested in, and well outside the range of validity of the approximation for the RSET that
we use.
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with the initial condition δf(vf , r) = 0 the equation simply integrates to

δf0 =
l2pk

2
1

24πre
(v − vf) =

l2pk
3
1

12π
(v − vf). (5.17)

Therefore, the redshift function tends to increase around the horizon, leading to what
can be identified as the first stages of Hawking evaporation of the trapped region. This
can be seen explicitly by noting from the metric (5.14) that the modified equation for the
trajectory of outgoing null radial geodesics is

dr

dv
=

1

2

f(r) + δf(v, r)

1 + δg(v, r)
. (5.18)

Equating the right-hand side to zero and substituting the series (5.15), we see that the
first order change in the radial position of the external horizon is

re → re −
δf0
2k1

= re −
l2pk

2
1

24π
(v − vf). (5.19)

In other words, the Schwarzschild horizon has a tendency to shrink, albeit slowly.
For a non-Schwarzschild horizon (e.g. Reissner-Nordström, Schwarzschild-dS or -AdS,

regular BH models, etc.), the general solution of (5.16) is

δf0 =
l2pk

2
1

24π(2k1re − 1)

[
1− e−

1
re

(2k1re−1)(v−vf)
]
. (5.20)

In the limit 2k1re → 1 we recover the above Schwarzschild case. For other cases we can
understand the initial tendencies by expanding this expression around v = vf ,

δf0 =
l2pk

2
1

24πre

[
(v − vf)−

2k1re − 1

2re
(v − vf)

2 + · · ·
]
. (5.21)

For a horizon with a surface gravity greater than that of a Schwarzschild BH of the same
size, i.e. for k1 > 1/(2re), we see that at linear order in (v−vf) the evaporation tends to be
quicker while, when the (v−vf)

2 term becomes important, it slows down. The opposite is
true if k1 < 1/(2re), that is, the evaporation begins slower than in Schwarzschild but then
tends to quicken. Of course, no definite conclusions can be drawn regarding the long-term
evolution of the horizon due to the various approximations involved. Particularly, even
if the above exponentials are good approximations initially, the fact that for an external
horizon the coefficient 2k1re − 1 can change sign as the surface gravity and radius evolve
makes it likely that the overall evolution has a kind of intermediate behaviour, more akin
to the Schwarzschild case.

To complete our picture of what occurs at the outer horizon, we can look at the rest
of the perturbed Einstein equations in search for a solution for δg0. Combining the vr
component at zero order in (r−re) and the vv component at first order [as we mentioned
above, the first and second orders of ⟨Tvv⟩ can be obtained easily from (5.11)], we get

(2k1re − 1)δg′0(v) +
1

re
(1− 4k1re)δg0(v) =

1

re
(1 + 2k1re + 4k2r

2
e)δf0(v) +

l2p
6πre

k2(1− 2k1re)

(5.22)
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In the Schwarzschild case, where k1 = 1/(2re) and k2 = −1/(2r2e), this reduces to

δg0 = 0. (5.23)

In more general scenarios, with different relations between re and the coefficients ki, δg0
is a non vanishing function of time which, looking at (5.18), causes a slightly faster or
slower (depending on its sign) divergence of null geodesics away from the horizon. From
the metric (5.14) its effect can also be interpreted physically as a contraction or expansion
of space in the radial direction, as discussed in chapter 3.

Having recovered the familiar evaporative tendency of the outer horizon, we can now
move on to the analysis of backreaction at the inner horizon. The equations are exactly
the same, except that for the sake of notation we switch re → ri and we have to keep in
mind that k1 is now negative. To see how the position of the inner horizon changes we
must look at (5.20), which we can rewrite in a more convenient manner given the sign of
k1 as

δf0 =
l2pk

2
1

24π(1− 2k1ri)

[
e

1
ri
(1−2k1ri)(v−vf) − 1

]
. (5.24)

We see that, much like before, the redshift function tends to increase, and this leads to a
reduction of the size of the trapped region,

ri → ri +
δf0
2|k1|

. (5.25)

The series expansion around v = vf is the same as (5.21), meaning that if the absolute
value of the surface gravity of the inner horizon is greater than that of the outer horizon
(which is usually the case, except in near-extremal configurations), the initial tendency is
for the trapped region to begin evaporating more quickly from the inside than from the
outside. Additionally, we note that the coefficient multiplying v in the exponential in δf0
is positive for any inner horizon, implying the possibility that the exponential behaviour
for the evaporation may be a more general characteristic which is maintained beyond the
initial tendency. We will analyse this more closely for a particular family of dynamical
solutions in the following.

5.2 Dynamical horizons and self-consistent solutions

We have seen how the perturbations on the metric caused by the RSET behave around
the static inner and outer horizons of a BH. But either due to dynamics in the classical
sector, or to semiclassical backreaction itself, the position of these horizons is generally
not static. Calculating the RSET on a generic dynamical background can be challenging
even in the Polyakov approximation, but we can work around this difficulty in a manner
similar to what we employed in the previous section. We will expand the redshift function
f(v, r) in a series around a dynamical horizon rh(v) and calculate the RSET in terms
of the time-dependent coefficients of this series. This will allow us to again obtain the
deviations in the metric δf(v, r) and δg(v, r) around each horizon. Doing so without
completely specifying the dynamics of the background will then allow us to arrive at
approximate self-consistent solutions in some particularly simple cases.
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5.2.1 RSET around dynamical horizons

To maintain the simplicity of the initial conditions for the quantum modes we had in the
previous section, we will once again consider a spacetime model which is flat up to a time
vf and then transitions abruptly to a BH geometry. The relation between the parameter
df and the “in” coordinate u, identified with v0, is therefore still given by (5.7), with rh
in this case being rh(vf).

The BH geometries which we will use for a background are of the form

ds2 = −f(v, r)dv2 + 2dvdr + r2dΩ2. (5.26)

We note that considering both degrees of freedom of the spherically-symmetric geometry
yields an equally straightforward calculation for the RSET, the main complication arising
at the stage of resolution of the perturbed Einstein equations. We will use the above form
because the simplified cases in which we will be able to obtain approximate self-consistent
dynamics also retain it. The expansion we will use for the redshift function is completely
analogous to the one in the static case,

f(v, r) = 2k1(v)[r − rh(v)] + 2k2(v)[r − rh(v)]
2 + 2k3(v)[r − rh(v)]

3 + · · · , (5.27)

where now k1, k2, . . . are functions of v. Assuming that the quantity r − rh(v) is small,
the trajectories of outgoing null radial geodesics can be expanded as

r(v) = rh(v) + p1(v) + dfe
k̃1(v) + p2(v, df) + p3(v, df) + · · · , (5.28)

where

k̃1(v) =

∫ v

vf

k1(ṽ)dṽ, (5.29)

p1(v) = −ek̃1(v)
∫ v

vf

e−k̃1(ṽ)r′h(ṽ)dṽ, (5.30)

p2(v, df) = ek̃1(v)
∫ v

vf

e−k̃1(ṽ)k2(ṽ)
[
p1(ṽ) + dfe

k̃1(ṽ)
]2

dṽ, (5.31)

p3(v, df) = ek̃1(v)
∫ v

vf

e−k̃1(ṽ)
{
2k2(ṽ)p2(ṽ)

[
p1(ṽ) + dfe

k̃1(ṽ)
]

+k3(ṽ)
[
p1(ṽ) + dfe

k̃1(ṽ)
]3}

dṽ,

(5.32)

with r′h(v) = drh/dv. Unlike in the static case, this expansion is performed around the

first order solution for the separation from the horizon, r1(v) ≡
[
p1(ṽ) + dfe

k̃1(ṽ)
]
(in

units of the scale of each horizon), making it progressively worse with time no matter
how small the initial parameter df is. In particular, looking at the expression for p1, the
larger the rate of change of the horizon position r′h(v) is, the quicker the approximation
breaks down. However, this can be delayed if the coefficients ki(v) with i ≥ 2 remain
small enough compared to powers of k1(v), as we will consider in one of our simplified
models below.

With these expressions we can obtain a generalisation of (5.13) for dynamical back-
grounds, valid for a small but finite time interval. This RSET at zero order in r1(v) is
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⟨Tvv⟩ ≃ − 1

96π2rh(v)2

[
1

2
k1(v)

2 − k′
1(v)

]
, (5.33a)

⟨Trv⟩ ≃ − 1

96π2rh(v)2
2k2(v), (5.33b)

⟨Trr⟩ ≃
1

96π2rh(v)2
e−2k̃1(v)

{∫ v

vf

[
8k2(ṽ)e

k̃1(ṽ)

∫ ṽ

vf

k2(v̄)e
k̃1(v̄)dv̄ + 6k3(ṽ)e

2k̃1(ṽ)

]
dṽ

−6

[∫ v

vf

k2(ṽ)e
k̃1(ṽ)dṽ

]2}
,

(5.33c)

from which we can easily recover (5.13) in the static limit (paying attention to the in-
tegration limits). As a side note, it is interesting to see that the expression for ⟨Tvv⟩
has the same structure as the one found in [75] and in (I .32) for the difference between
the values of the RSET in two different vacuum states, when expressed in terms of the
effective temperature function (except for a sign difference between the ETF and k1).
This suggests that the flux present in this term is of non-local nature, stemming purely
from the light-ray peeling or accumulation around a horizon, and not from curvature.

5.2.2 Perturbed equations and Hawking evaporation

With an expansion analogous to (5.15) for the metric perturbations, the generalisation
of eq. (5.16) is now

[1− 2rh(v)k1(v)] δf0(v)− rh(v)(δf
′)0(v)− 2k1rh(v)r

′
h(v)δg0(v) = − l2p

24π

[
k2
1(v)− 2k′

1(v)
]
,

(5.34)
where (δf ′)0 = δf ′

0 − δf1r
′
h is the zeroth order of the derivative of δf with respect to

v (while δf ′
0 is the derivative of the zeroth order; the two only coincide for static back-

grounds). We see that the simple decoupling we had for δf0 in the static case is not
present in general, unless the rate of change of the background is small enough for
r′h(v) ≪ k1(v)rh(v) to be satisfied. If the dynamics are induced only by backreaction
itself, then r′h and k′

1 are initially of order l2p (in dimensions of the horizon scale), and so
are δf and δg, implying that the approximation

[1− 2rh(v)k1(v)] δf0(v)− rh(v)δf
′
0(v) ≃ − l2p

24π
k2
1(v), (5.35)

is reasonable. r′h being small also implies that the series expansion itself is accurate for a
longer period of time, as can be seem from (5.30).

Let us once again start by looking at the evolution of an initially static external
Schwarzschild horizon. We have the initial condition 2re(vf)k1(vf) = 1, and possible
deviations from this equation at later times v, once multiplied by δf0, are of the same
order as the terms we have neglected above, allowing us to now neglect the first term. We
also have the relation δf ′

0 ≃ −r′e/re for the displacement of the Schwarzschild horizon.
Substituting into this equation we get

r′e ≃ − l2p
96π

1

r2e
. (5.36)
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The solution of this approximate self-consistent equation is simply

re(v) ≃
[
re(vf)

3 − l2p
32π

(v − vf)

]
. (5.37)

To check that we are on the right track, we can see that expanding this solution around vf
recovers the linear tendency form (5.19). Additionally, we can extrapolate this solution
to later times, assuming that (5.37) remains approximately valid at the later stages of
evaporation, and obtain the Hawking evaporation time vH, defined by re(vH) = 0,

vH ≃ 256π
M3

l2p
≃
(

M

M⊙

)3

1073 s, (5.38)

where M = re(vf)/2 is the initial BH mass and M⊙ is the solar mass. The approximations
involved in obtaining this extrapolation are equivalent to the quasi-stationary approxi-
mation used originally by Hawking to estimate the lifetime of BHs [88]. The fact that
the Polyakov approximation to the RSET can capture this phenomenon bodes well for
the validity of our following calculations.

In other scenarios where the quasi-stationary assumption is valid for a period of time,
we can still use eq. (5.35) to get a first glimpse at self-consistent solutions. We can
integrate for δf0, obtaining

δf0(v) = e
∫ v
vf
[1/rh(ṽ)−2k1(ṽ)]dṽ

∫ v

vf

e
−

∫ ṽ
vf
[1/rh(v̄)−2k1(v̄)]dv̄ l2pk1(ṽ)

2

24πrh(ṽ)
dṽ. (5.39)

Taking the right-hand side as a function of a slowly-evolving classical background would
just give a generalisation of (5.21). Modifying the right-hand side with the backreaction
due to δf and δg would give a more accurate expression of backreaction in a quasi-
stationary approximation, the validity of which would have to be checked along the
evolution in each case. It is interesting to note that for an inner horizon, where k1(v) < 0,
unless k1(v) quickly tends to zero, we once again have the growing exponential we had in
(5.24), now somewhat hidden in the term given by the lower bound of the middle integral
(the one which is outside the exponentials). To see how this exponential behaviour
manifests itself in an approximate self-consistent solution, we will now look at a specific
set of backgrounds for which we can solve this equation.

5.2.3 Inner horizon expansion for a simple background

Let us consider for the BH region a redshift function which around the inner horizon has
the particular form

f(v, r) = 1− λ(v)

2
r − α(v)

r
, (5.40)

with λ(v) a positive function and α(v) a function which satisfies the initial condition
α(vf) = 0. While 2λα < 1, the position and surface gravity of the inner horizon within
this geometry are

ri =
1

λ
(1 +

√
1− 2λα) =

2

λ
− α− 1

2
α2λ+ · · · , (5.41)

k1 =
1− 2λα−

√
1− 2λα

4α
= −1

4
λ+

1

8
αλ2 + · · · , (5.42)
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where the series expansions on the right-hand side are valid while |αλ| ≪ 1.
For α = 0, the only non-zero term of the RSET on this background would be ⟨Tvv⟩

from (5.33), and the local approximation for null geodesics involved in obtaining it would
actually be exact (i.e. higher order terms in the expansion would be zero) in a finite
region around the inner horizon, akin to the left shaded region in fig. 5.2. There, we
would thus have

⟨Tvv⟩ = − 1

96π2r2

[
1

2
k1(v)

2 − k′
1(v)

]
. (5.43)

All this remains approximately true while α is small compared to λ in units of ri, and we
will use this fact to simplify the dynamical perturbation equations in order to obtain an
approximate self-consistent solution.

The Einstein tensor of this geometry is

Gvv =
λ(v)

r
− λ(v)2 +

λ′(v)

2
− λ(v)

α(v)

r2
+

α′(v)

r2
, (5.44)

Gvr = −λ(v)

r
, (5.45)

Gθθ =
Gφφ

sin2θ
= −rλ(v)

2
. (5.46)

We see that α(v) appears only in two terms of the vv component and is divided by
r2. We can consider these two terms as the ones sourced by the RSET (5.43), the rest
corresponding to the classical background, which fixes the function λ(v) (keep in mind
that the classical background is just a toy model used to construct the causal structure
we are interested in). Then α(v) becomes the semiclassical perturbation satisfying the
equation

α′(v)− λ(v)α(v) = − l2p
24π

[
k1(v)

2 − 2k′
1(v)

]
. (5.47)

Integrating for α we obtain

α(v) = −e
∫ v
vf

λ(ṽ)dṽ
∫ v

vf

e
−

∫ ṽ
vf

λ(v̄)dv̄ l2p
24π

[
k1(ṽ)

2 − 2k′
1(ṽ)

]
dṽ. (5.48)

If we take a background with λ = const. and substitute k1 for its zero-order value from
the expansion (5.42), the integration yields

α(v) = − l2pλ

192π

[
eλ(v−vf) − 1

]
. (5.49)

This solution is valid until the initially zero α becomes comparable to λ (in units of ri),
which, as (5.24) and (5.39) suggested, does not take long due to the growing exponential.
Introduced into the geometry, this term behaves like a negative mass, tending to move
the inner horizon outward, as can be seen from (5.41). The exponential growth of this
negative mass and the displacement of the inner horizon can be seen as a semiclassical
manifestation of the inner horizon instability, with the opposite effect to its classical
counterpart.

Given this intriguing tendency to evaporate the trapped region from the inside, it
is only natural to ask oneself what may happen if the same behaviour were to continue
throughout the evolution of the inner horizon, up until the disappearance of the trapped
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Figure 5.3: Plots of |k1(v)|, ri(v) and α(v), from left to right, for the evaporation of the
inner horizon. We have taken λ = 0.7 and lp = 10−8 (as a large difference in scales is
required but smaller values of lp make numerical evaluation more difficult and lead to no
qualitative changes).

region. In other words, what would the result be if the driving force of evaporation contin-
ued to be the local ⟨Tvv⟩ term on the right-hand side of (5.47). Although this assumption
is less justifiable dynamically than the analogous one used for Hawking evaporation in
eq. (5.36), one may think of it as just an extrapolation from the initial tendency. If noth-
ing else, it serves as an example of how the dynamics of the inner horizon can continue
with an RSET which continues violating the energy positivity conditions, as it seems
likely to do around a horizon, making the geometry evolve in a classically forbidden
manner.

To answer this question, we can take into account the change in surface gravity due
to the evolution of α on the right-hand side of (5.47) through (5.42). Writing α in terms
of k1 as

α =
1

2

4k1 + λ

(2k1 + λ)2
, (5.50)

equation (5.47) becomes

[
4k1

(λ+ 2k1)3
+

l2p
12π

]
k′
1 +

λ′

2

λ+ 6k1
(λ+ 2k1)3

+
λ

2

λ+ 4k1
(λ+ 2k1)2

− l2p
24π

k2
1 = 0. (5.51)

This equation contains as solutions the initial behaviours in the backreaction problem
given by (5.48) and (5.49), along with their extensions. More generally, it governs the
evolution of a geometry whose dynamics is modified by a (generally negative) ingoing
flux of energy determined by the surface gravity at its inner apparent horizon through
(5.43).

Taking λ as a positive constant, all solutions of (5.51) have the same behaviour,
shown in fig. 5.3: the decrease in α (also observed perturbatively) initially increases the
absolute value of k1 but then makes it tend to a constant (with a value λ/2). This surface
gravity then continues to feed the right-hand side of (5.47), extending the exponential
behaviour of α indefinitely. The radial position of the inner horizon also continues to
increase exponentially.

In summary, the geometry (5.40) fed by the flux (5.43) has an inner horizon which
moves outward exponentially quickly. This goes on indefinitely due to the global structure
of (5.40), which does not contain an outer bound for the trapped region (being more akin
to an inflationary universe than to a BH). In a more realistic scenario, even if backreaction
continues to be governed by a term like (5.43), we expect such dynamics to end when
the trapped region disappears. The main conclusion we can extract from this is that
incorporating the modifications of the geometry due to backreaction on the right-hand
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side of (5.47) does not tend to decrease the rate of the initially exponential evaporation
of the inner horizon.

If we assume that such a behaviour is the dominant factor in the elimination of
a trapped region, we can estimate a revised evaporation time for BHs with an inner
horizon. Considering a BH of mass M , with an outer horizon re ∼ M which evaporates
slowly à la Hawking, and an inner horizon with an initial position ri,0 and surface gravity
k1,0, the inner horizon would meet the outer one after a time

vevap ≃ 1

k1,0 + (2ri,0)−1
log

M

lp
≲

M

M⊙
× 10−5 s, (5.52)

where M⊙ is the solar mass, and we have obtained the upper bound on the right-hand
side by assuming that the surface gravity at the inner horizon is initially greater than that
of the outer horizon, the latter of which we take to be of the order 1/M (the logarithmic
dependence has been omitted in this bound as for no astrophysically reasonable object
would it increase the order of magnitude further). Needless to say, this process is much
quicker than the time it would take for a Schwarzschild BH to evaporate from the outside,
given by (5.38).

Therefore, using the word “evaporation” to describe the leading effects of semiclassical
backreaction on the inner horizon may not be adequate, as the exponential behaviour of
its outwards displacement may be better described as an “inflation” process (akin to
the classical mass inflation described in the previous chapter). We therefore dub this
phenomenon inner horizon inflation.

5.2.4 Collapsing matter: singularity or bounce

So far our results in this section have been a direct generalisation of the perturbation
analysis in the previous one. But the treatment on dynamical backgrounds and self-
consistent extrapolation allow for a wider range of solutions to be analysed, in particular
ones in which the classical backgrounds itself is dynamical. We expect the backreaction
of a moving inner horizon to have a similar effect as observed for the initially static
background: to push it outward and try to diminish the size of the trapped region.
Whether this tendency from backreaction can overcome its Planck-scale suppression and
dominate over the dynamics of the classical background is what we will analyse here.

What we will look at is the backreaction problem around the dynamical inner horizon
of a gravitational collapse which would classically end in a Schwarzschild-like BH. We
construct a geometry around this horizon of the type (5.40) with α = 0 (classically) and

λ =
λ1−n
0

(vs − v)n
, (5.53)

with v ∈ (0, vs), n > 0 and λ0 a constant (with the same dimensions as λ) which defines
the characteristic length scale of the problem. Matching this with a Minkowski region
through an ingoing null shell at v = 0, we get a picture of a collapse in which the inner
horizon initially travelled inward at light-speed but then slowed down before continuing
to the centre. This is once again a method of simplifying the initial conditions for the
quantum modes which enter the BH region by removing their dependence on the details
of the collapse in the far past, thus focusing only on the effects caused by these modes
entering the vicinity of the inner horizon at the final stages of the collapse. This also
goes hand in hand with our approximation (5.47).
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Figure 5.4: Plots of ri(v) for a background given by (5.53) with λ0 = 1 and n = 2, with
vs = 20 on the left and with vs = 30 on the right (starting from zero perturbation at v = 0).
Units are once again given by lp = 10−8, for the same computational and qualitative reasons
as above.

Introducing these backgrounds into eq. (5.49), we can analyse whether horizon-related
semiclassical effects can become relevant to the overall dynamics. What we find is that
there are two ways α can become large enough for this to occur. First, if the integral of
λ diverges, which is the case for n ≥ 1, then α always diverges as the exponential of this
integral, making it clearly dominant over the classical background. Second, regardless
of whether the integral of λ diverges or not, if the interval (0, vs) is large enough, i.e. if
the background dynamics is slow enough for a long period of time, then an effect similar
to what occurred with a static background may dominate. Then the exponential of the
integral of λ becomes large enough to overcome the Planck scale suppression, even though
it may not tend to a divergence.

Indeed, if we integrate (5.51), which contains these initial tendencies along with their
extrapolation to the regime in which semiclassical effects dominate, we get two different
types of solutions:

1. For n ≥ 1 the semiclassical backreaction always ends up overcoming the contribu-
tion of the classical background, resulting in a bounce in the position of the inner
horizon, as shown in fig. 5.4. We note that the final stages of the Oppenheimer-
Snyder collapse correspond to a value n = 1, as shown in (B.10).

2. For n < 1, semiclassical backreaction can accumulate and lead to an initial bounce
for large enough values of vs, as can be seen in fig. 5.5. Such a bounce indicates
that the collapsing behaviour of the classical matter has been temporarily coun-
teracted, and may subsequently be inverted, making the trapped region disappear
completely. However, in our extrapolation, due to the fact that the trapped region
is not bounded from above, semiclassical effects eventually lose out and a singularity
forms.

We note that the time at which the bounce occurs depends on when this exponential
overcomes the Planck length suppression, which generally occurs well before either the
surface gravity or the radial position of the inner horizon get close to the Planck scale,
as can be checked by inspecting figures 5.4 and 5.5. On the one hand, this allows us
to see that we have not obtained an unnaturally large result due to using the Polyakov
approximation for the RSET [this already being obvious from the origin of the exponential
in e.g. (5.49), which grows even when this horizon is far away from r = 0]. On the
other hand, it is an indication that such dynamics could be accurately described with a
semiclassical treatment.
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Figure 5.5: Plots of ri(v) for a background given by (5.53) with λ0 = 1 and n = 1/2,
with vs = 20 on the left and with vs = 30 on the right (starting from zero perturbation at
v = 0). Same units as above.

In summary, horizon-related semiclassical effects during gravitational collapse can
only be avoided in this model if the classical trajectory of the inner horizon goes to zero
quickly (small vs, not giving the exponential time to grow) and with a sharp peak at the
end in (v, r) coordinates (n < 1, making the integral of λ convergent). Otherwise, in a
regime where semiclassical effects are dominated by a term like (5.43), the collapse will
tend to a halt, followed by a quick extinction of the trapped region from the inside, i.e.
an inner horizon inflation process.

However, we remind the reader that the accuracy of our approximation for the RSET
(5.43) can break down when α becomes comparable to λ at the scale of ri. Furthermore,
in these dynamical scenarios it may become inaccurate even sooner if the inner horizon
reaches a region sufficiently close to the origin to cross paths with light rays which have
explored the core of the forming BH, i.e. when it steps out of the left shaded region in
fig. 5.2. Then the precise structure of this core must be specified in order to calculate the
RSET. Therefore, although this behaviour is the natural extension of our approximation,
we cannot claim with certainty that it represents the complete semiclassical dynamics of
gravitational collapse. However, it is a very suggestive possibility.

5.3 Conclusions

In this chapter we produce a bare-bones picture of semiclassical backreaction on black-
hole spacetimes which have an inner horizon in addition to an outer one. We construct
a simple toy model of a spherically-symmetric geometry in which a regular BH forms,
and look at the perturbations caused by the RSET around both the inner and outer
apparent horizons. We find that treating these perturbations locally yields analytical
results, and we obtain a clear picture of the initial tendencies of this double-horizon
structure to evaporate. For the RSET we use a massless scalar field and apply the
Polyakov approximation.

At the external horizon, the RSET provides an ingoing flux of negative energy (in
accordance with the results of [72]). Backreaction from this flux generates a small per-
turbation which tends to evaporate the horizon. For a Schwarzschild geometry this per-
turbation initially grows proportionally to the advanced Eddington-Finkelstein time co-
ordinate v, with a suppression by a Planck constant, i.e. a slow evaporation. For a
background which is not a vacuum spacetime (e.g. Schwarzschild-dS, Schwarzschild-
AdS, regular BHs), the modified relation between the radial position of the horizon and
its surface gravity results in a somewhat different behaviour for the perturbation: if the
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surface gravity is larger than it would be for a Schwarzschild BH of the same size, the
evaporation is initially quicker than in Schwarzschild, but then has a tendency to slow
down, and vice versa if the surface gravity is smaller.

At the inner horizon, the RSET again gives us a negative ingoing flux. The backre-
action in this case again results in a reduction of the size of the trapped region, i.e. the
inner horizon moves outward. Most importantly, this movement has an overall initial
tendency to be much quicker that the evaporation of the outer horizon. This calcula-
tion of first order perturbations, if taken as indicative of the qualitative nature of the
long-term evolution, strongly suggests a revised picture for evaporation: instead of the
outer horizon slowly moving in and eventually revealing the core of the BH, if an inner
horizon is present, the trapped region may evaporate more quickly from the inside out.
For regular BHs, this coincides with the picture described in [163,164], which was moti-
vated heuristically by the existence of mass inflation due to classical perturbations [165],
although without an explicit discussion of the associated backreaction. Our results here
show that the backreaction from semiclassical effects contains the seeds that may lead to
a realization of this kind of picture.

In light of these results we extend our background geometries to include dynamical
horizons. On the one hand, we do so in order to obtain a better approximation to the
complete self-consistent semiclassical solutions which start from a static background. On
the other, we are also interested in the backreaction around the dynamical inner horizon
in models of spherical BH formation (e.g. Oppenheimer-Snyder collapse [8]), where the
trapped region first appears close to the eventual outer horizon, and its inner bound
quickly moves inward, tending toward the origin (and the formation of a singularity).

Through analysing these additional geometries we indeed obtain approximations for
the self-consistent solutions in both static and dynamical backgrounds. Though the range
of validity of these approximations is limited, they at least show us the initial tendency
of the evolution quite clearly. We find that the semiclassical tendency to inflate the inner
horizon remains even in dynamical backgrounds, though whether this can significantly
affect the evolution of the geometry varies on a case-by-case basis. Most notably, we
find that in many cases in which the background dynamics would make the inner horizon
reach the origin (Oppenheimer-Snyder-type collapse), there is a tendency for semiclassical
effects to become dominant before this occurs and bounce the horizon back outward.
Although the bounce itself occurs in most cases outside the range of validity of the
approximation we use for calculating the RSET, the way this result depends on the
divergent tendency of the surface gravity is very suggestive of it being a generic property
of geometries of this type.

Given that all astrophysical BHs are expected to have an inner horizon, our results at
the very least indicate that horizon-related semiclassical effects should never be overlooked
when analysing the formation and evolution of these objects.
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Chapter 6

Interlude: blueshift instabilities in
the horizon structure of warp drive
spacetimes

Before we proceed with our analysis of BH evolution, we will briefly look at a different
type of geometry, one whose stability has been questioned on the same grounds as that
of a BH with an inner horizon: the Alcubierre warp drive [166]. Let us first begin with
some introductory remarks regarding this spacetime.

Unlike BHs, the motivation behind its construction is purely geometrical, curving
the geometry and bending the lightcones locally in order to produce what appears to be
faster-than-light travel for faraway observers. While it brings the idea of superluminal
interstellar travel, usually reserved to science fiction, to the realm of physics, its con-
struction in practice requires the creation and manipulation of large quantities of exotic
matter [167,168]. In other words, the stress-energy tensor which generates the warp drive
solution of the Einstein equations violates every local energy positivity condition [42]. In
fact, this is a manifestation of an even more general restriction: any asymptotically flat
configuration which gives rise to apparent superluminal travel seems to require exotic
matter [169].

As of yet, there is no experimental evidence of the existence of exotic matter capable
of such spacetime distortions. In fact, attempts have been made to provide a geometric
interpretation for the absence of gravitating exotic matter through the addition of an
underlying causal structure which limits how classical spacetimes can curve [170]. Alter-
natively, but in the same line of reasoning, this underlying causal structure could be less
rigid and allow certain types of emergent warp-drive configurations, though never ones
which produce closed timelike curves [171]. Other arguments suggest that exotic matter
cannot be so easily dismissed, and can in fact be engineered at will. One comes from
interpreting the Casimir effect in terms of quantum vacuum energy (for an alternative
interpretation see [172]). Indeed, attempts have been made to construct the required
negative energy profile present in a warp drive solution through manipulating the bound-
ary conditions of quantum vacuum modes in a Casimir-effect manner [173]. There are
also other, more robust proposals for methods in which effective exotic matter distribu-
tions can be generated, such as the light-matter interaction and the protocol of quantum
energy teleportation [174].

Additionally, effective exotic matter appears naturally in quantum field theory in
curved spacetimes, as we have seen in previous chapters. However, given that in this the-
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ory it is the curvature of spacetime itself which makes quantum states react to potentially
produce negative energies, it is not clear whether such effects would work in favour or
against building configurations such as warp drives. The evaporative tendencies of hori-
zons we have seen thus far would in fact suggest the latter possibility, given that the warp
drive spacetime has causal aspects which are quite similar to a BH with both an inner
and outer horizon, as we will see below. Particularly, the inner-horizon-like front end of
the warp bubble can be argued to lead to a similarly quick tendency toward destabilising
backreaction.

Among the issues mentioned above, this semiclassical instability is perhaps the most
critical roadblock for the feasibility of warp-drive configurations of any size. In [175] it
was established that a 1+1 dimensional warp-drive configuration, corresponding to the
central axis of movement of higher-dimensional drives, develops this instability. Then,
in [176] this analysis was generalised to warp drives formed dynamically from an initially
flat spacetime. Calculating the RSET of a quantum scalar field, it was shown that the
accumulation of geodesics, and correspondingly of modes of the quantum field, at the front
end of the drive leads to an exponential growth in the vacuum energy density, analogous
to that found at the inner horizon of BHs [13, 14, 16].1 Furthermore, it was shown that
this instability survives even in the presence of a modified dispersion relation at high
energies [177]. Thus, this instability, being caused by the very superluminal movement
of the warp-drive with respect to the quantum vacuum, does indeed appear unavoidable.

At least, this is the case in 1+1 dimensions, but whether and to what degree this semi-
classical instability is present in more realistic higher-dimensional warp-drive spacetimes,
including in the 3+1 dimensions of our universe, has so far remained an open question.
Given the lack of spherical symmetry in warp drive geometries, we cannot directly use
the Polyakov approximation, and calculating the exact RSET in such spacetimes is both
technically and conceptually very challenging (see e.g. [17]). However, instead of per-
forming such a calculation, we can make use of some important intuitions gained from
the 1+1 example, as well as from the calculations in BH spacetimes, to give a rough
estimate of the vacuum energy in these warp drives of higher dimensions. Particularly,
the exponentially growing accumulation of energy can be related to the presence of sur-
faces (or points) of infinite blueshift, which are known to cause instabilities even on a
classical level (cf. mass inflation instability of BHs analysed in chapter 4). Therefore, a
classical analysis of geodesics can likely suffice to identify the regions which may cause
such instabilities.

In this chapter we analyse the geodesics of a warp-drive spacetime in 2+1 dimen-
sions, focusing in particular on the vicinity of the walls of the warp bubble, which posses
horizon-like properties. Remarkably, we find that for warp bubbles of finite spatial exten-
sion there is generally only a single point where infinite blueshift can occur, suggesting
that the semiclassical singularity in 2+1 and higher dimensions is far weaker than its
1+1 dimensional counterpart. Particularly, by looking at the geodesics trapped in an ap-
proach toward this point, as well as ones which get close to it but end up deflected away,
we estimate that the integrated semiclassical energy density around this point should

1It is interesting to note that in these works the semiclassical inner horizon instability is quantified
not through backreaction analysis, but rather by considering the energy contained in the RSET as seen
by inertial observers which approach this horizon. Particularly, the finite value of ⟨Tvv⟩ seen in chapter
5, combined with the divergence of v with respect to regular time coordinates at the Cauchy horizon
(such as the V coordinate in chapter 4), leads to a divergent physical energy. This can perhaps provide
a more intuitive picture of why backreaction seems to act so abruptly on such configurations.
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remain bounded in most cases. Furthermore, we show that although changing the shape
and trajectory of the warp bubble cannot eliminate this point, it can serve to further
disperse the geodesics in its vicinity and, by extension, the semiclassical energy accumu-
lation. Much like how aircraft reduce their air resistance by having particular shapes and
adapting to air currents, warp drives must adapt their geometry and dynamics in order
for the quantum vacuum to offer as little resistance as possible to their movement.

In section 6.1 we provide a brief introduction to the warp drive and its semiclassical in-
stability in 1+1 dimensions. In section 6.2 we analyse the geodesics in a 2+1 dimensional
drive which are relevant for determining its causal structure and its potential instability-
inducing points. We estimate the semiclassical energy accumulation at and around these
points, and we analyse how this accumulation may be dispersed by changing the shape
or trajectory of the warp bubble. In section 6.3 we provide some concluding remarks.

6.1 Warp drive and the semiclassical instability

The Alcubierre warp drive as an isolated system in an asymptotically flat spacetime has
the following metric:

ds2 = −dt2 + [dx̄− v̄(t, x̄)dt]2, (6.1)

where x̄ represents spatial coordinates and v̄(t, x̄) determines the velocity and shape of
the warp bubble (both these quantities are defined as Euclidean vectors with as many
components as spatial dimensions in the manifold). Flat spacetime is recovered far away
from the bubble by imposing that |v̄| → 0 as |x̄| → ∞. We take x̄c(t) to be the trajectory
of the centre of the bubble in this asymptotically-Minkowskian coordinate system, and for
convenience we also define the comoving spatial coordinates x = x̄− x̄c(t). We can then
write the usual definition v̄(t,x) = f̄(x)V (t), where V (t) = dx̄c(t)/dt is the velocity
of the bubble and f̄(x) determines its shape. At the centre of the bubble this shape
function must satisfy f̄(0) = 1, and as |x| → ∞ it must tend to zero sufficiently quickly.
In comoving coordinates the metric can be written as

ds2 = −dt2 + [dx+ v(t,x)dt]2, (6.2)

where v(t,x) = f(x)V (t), with f = 1− f̄ .
To understand this geometry better, let us start with a 1+1 dimensional stationary

(V (t) = const.) case. In this case, the line element acquires the same form as that
of the radial-temporal sector of a BH spacetime written in Painlevé-Gullstrand coordi-
nates [141]. Particularly, the front end of the warp drive behaves like a white hole horizon
(more precisely, a white hole outer horizon or, equivalently, a BH inner horizon), and the
rear end like a BH horizon (time reverse of the former). In comoving coordinates, the
inside of the warp bubble appears located between two trapped regions, i.e. between a
white and a BH, as shown in fig. 6.1.

In [176] it was shown that when such a configuration forms from an initially flat
region, the presence of any background quantum field, even in vacuum,2 leads to an
exponential growth of energy at the white hole horizon. Particularly, the energy density
obtained when contracting the RSET with the velocity uµ of a free-falling observer which
approaches this horizon grows as

ρ = ⟨Tµν⟩uµuν ∼ e2κt, (6.3)

2The instability studied here is the same for any Hadamard state.
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Figure 6.1: Causal structure of a stationary 1+1 dimensional warp drive spacetime. The
warp bubble is located between a white and a BH, separated by the past and future horizons,
denoted by H − and H + respectively. H + connects with a Cauchy horizon to the past
C−, and H − with a Cauchy horizon to the future C+. The curved lines correspond to
lines of x = const., which are timelike inside the warp bubble, and spacelike everywhere
else.

where κ is the surface gravity of the horizon. This result was obtained through a calcula-
tion much like the BH inner horizon analysis of the previous chapter. Particularly, if we
express the ⟨Tvv⟩ component (5.13b) in a null coordinate which does not diverge at the
Cauchy horizon, it reveals the above exponential tendency. In BHs, the 1+1 dimensional
calculation in the radial-temporal sector generalises directly to higher dimensions due to
the isotropy of the light-trapping behaviour. In warp drives, however, the generalisation
of the horizon structure shown in fig. 6.1 to higher dimensions is not as straightforward.
As it happens, for generic, finite-sized warp bubbles, the dimension of the surface of infi-
nite blueshift does not grow with the dimension of the spacetime, but remains the same
as in 1+1. We will now proceed to show this explicitly in 2+1 dimensions.

6.2 Geodesics and stability in 2+1 dimensions

Let us now turn our attention to the 2+1 dimensional warp drive. We will start with a
thorough analysis of a particularly simple, yet quite generic configuration: a stationary
warp bubble travelling in a straight line, with a geometry which has a reflection symmetry
with respect to a central axis aligned with the direction of motion, as depicted in fig. 6.2.
The comoving spatial coordinates will be denoted by {x, y}, where x is taken to be aligned
with the direction of motion and y with the direction of symmetry. The line element of
the geometry is

ds2 = −dt2 + [dx+ v(x, y)dt]2 + dy2. (6.4)
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Figure 6.2: Warp bubble in 2+1 dimensions as seen in comoving coordinates. Light cones
show the permitted directions of movement for causal trajectories. The point p1 is the front
end of the bubble, which produces a blueshift instability toward the future. Likewise, p2
produces an instability toward the past. p3 represents a generic point of the border of the
bubble which does not lie on the central axis.

Taking y = 0 as the position of the central axis, the function v(x, y) has even parity in y.
The equations which determine the null geodesics of this spacetime are

(v2 − 1)ṫ2 + 2v ṫẋ+ ẋ2 + ẏ2 = 0, (6.5)

(v2 − 1) ṫ+ v ẋ = E, (6.6)

ÿ − ∂yv(v ṫ
2 + ṫẋ) = 0, (6.7)

where E is an integration constant and the dot indicates differentiation with respect to
the geodesic affine parameter σ.

6.2.1 Movement on the central axis

The 1+1 dimensional example presented above corresponds to the movement of geodesics
along the central axis. We can recover the causal structure of fig. 6.1 by integrating the
null geodesic equations with the initial conditions y0 = ẏ0 = 0 (which, through Eq. (6.7)
and the fact that ∂yv = 0 at y = 0, implies y(σ) = 0). It is worthwhile to do this explicitly
in the vicinity of the edges of the bubble, where v approaches 1. Let p1 = (x1, 0) be the
front end of the bubble, as shown in fig. 6.2. Near this point we can consider the series
expansion in the x direction

v(x, 0) = 1 + κ(x− x1) + · · · , (6.8)

where κ is a positive constant (analogous to a horizon surface gravity). At leading order,
equations (6.5) and (6.6), with the expansion (6.8), have a family of solutions

x− x1 ≃ −E(σ − σ1), t ≃ −1

κ
log |σ − σ1|, (6.9)

with σ1 a constant. We see that these null geodesics reach the limit t → ∞ at a finite σ,
corresponding to the future Cauchy horizon in fig. 6.1. The past Cauchy horizon is
obtained analogously by taking the expansion (6.8) at the rear end of the drive (p2 in
fig. 6.2), making κ negative, and considering t → −∞.

We also note that, given that (6.5) is quadratic in the coordinate functions, there are
in fact two families of solutions of the geodesic equations around p1. Aside from the ones
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shown above, there are also solutions for which t does not diverge, which can be identified
as the ones which cross the black and white hole horizons depicted in fig. 6.1 (left-moving
light rays). Locally, these can be seen as backwards-directed trajectories relative to the
bubble.

The blueshift instability is triggered by the rays which take infinite t to reach p1, as
can be seen from the fact that the spatial separation between any two distinct lightlike
observers which approach this point tends to zero, implying that the wavelength of in-
dividual perturbations also goes to zero, i.e. they are infinitely blueshifted. Intuitively,
one can then see that backreaction from generic perturbations may well destabilise this
configuration even on a classical level. The semiclassical instability is also a direct con-
sequence of this blueshift, as the modes used to define a quantisation become singular
when approaching this point. In stationary, eternal BH configurations, it has been shown
that the semiclassical tendency toward a singularity at the infinite blueshift surface is in
fact stronger than its classical counterpart [14,17] (as we will see in the next chapter, this
appears to also be the case for BHs formed at a finite time).

6.2.2 Other unstable points?

We have shown that the causal structure of the 1+1 case continues to be present in higher
dimensions, at least on one axis. However, it is not clear whether other points of infinite
blueshift besides p1 (and p2, if we consider past instabilities) are present in other parts
of the 2+1 configuration. In fact, for the simplest type of warp bubble, it turns out that
there are no other such points, as we will now show.

The points which one can expect to have special causal behaviour are the ones which
comprise the rest of the edge of the warp bubble, where v = 1. Let p3 be one such
point (see fig. 6.2). At this point, we can use the labels κ = ∂xv|p3 and ζ = ∂yv|p3 . We
define the front and back end of the bubble (p1 and p2 in fig. 6.2) as the points where
ζ = 0, which for the symmetric bubble we are considering lie on its intersection with
the symmetry axis y = 0. These are the points which correspond to the future and past
Cauchy horizons shown above. For a smooth convex bubble, ζ ̸= 0 at all other points of
its frontier.

We are interested in whether there are geodesics for which t diverges at finite σ
when approaching p3. We can answer this by substituting v and its derivatives for their
values on these points in the geodesic equations, and checking whether t can approach
infinity while σ, x, and y remain bounded. In Eq. (6.6), the first term on the left-
hand side, (v2 − 1)ṫ, can tend either to 0, a constant, or infinity. If it went to infinity,
then ẋ would also diverge at p3, which, given the analiticity of the geometry, leads to
no consistent solutions (one can check this explicitly by taking an arbitrary inverse-
polynomial or logarithmic divergence for ẋ and checking the requirements imposed on
the other derivatives in equations (6.5) and (6.7) at p3, arriving at an inconsistency). If
this first term of (6.6) goes to a constant or to 0, then equations (6.6) and (6.7) become

ẋ|p3 = Ẽ = const., ÿ|p3 = ζ(ṫ2 + Ẽṫ)|p3 . (6.10)

Since the geometry is analytic, the divergence of t implies the divergence of its derivatives.
Therefore, ṫ and ṫ2 would have different rates of divergence, and ÿ would remain finite
only if ζ = 0. If ζ ̸= 0, then ÿ diverges, which does not occur for any consistent solutions
at the finite point p3 (this can again be seen by considering the analiticity of the geometry
or checking explicitly for such solutions in the geodesic equations).
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In other words, the only points on the boundary of the bubble v = 1 which have the
possibility of generating Cauchy horizons are the ones where ∂yv = ζ = 0, i.e. where
the derivative of the shape function v in the direction perpendicular to that of motion is
zero. Stated as such, this result can be seen to be independent of the particular shape
or symmetry of the bubble, as long as the configuration is stationary. For a smooth and
convex bubble, this implies that there are strictly only two points of infinite blueshift
akin to the ones present in 1+1 dimensions, and time symmetry tells us that only one is
unstable toward the future (and the other toward the past).

If the bubble is not convex and additional points of ∂yv = 0 are present, then the warp
drive could be said to be less “aerodynamic” in its motion within the quantum vacuum,
as it would find further resistance to its stability due to larger energy accumulation.
However, as long as such points are isolated from each other, the overall configuration
could potentially be stable, as the total amount of accumulated vacuum energy could be
finite.

6.2.3 Vicinity of the unstable points and vacuum energy diver-
gence

To find out whether the single-point blueshift instabilities present in 2+1 (and higher)
dimensions are actually detrimental to the stability of the whole warp drive configura-
tion, we must estimate the behaviour of the quantum vacuum energy in a small vicinity
around these points. An instability is present only when the divergence at these points
has a certain “width”, enough to produce a singularity if backreaction is considered.
Finding out whether this is the case would generally involve calculating the RSET on
this spacetime for a test field in an appropriate vacuum state. However, due to the great
technical difficulty involved in such a calculation, we will resort to an estimation based
on an extension of the analogy between the movement of geodesics at and around the
central axis, and the 1+1 dimensional case.

To set this up, let us begin by considering a solution slightly away from the central
axis solutions (6.9), but still in the vicinity of p1. We now perform the expansion of v
around p1 to leading order in both x and y,

v(x, y) ≃ 1 + κ(x− x1) + ξy2n, (6.11)

where ξ is a constant with appropriate inverse-length dimensions, positive if the bubble
is convex and negative if it has a concave peak (and zero if it has a finite-sized flat peak),
and n a natural number. Larger values of n make the peak more flat in the y direction.
We consider the deviation from the solution (6.9) (where y = 0),

δx(t) = x(t)− x1 − Ee−κt, (6.12)

δt(σ) = t(σ) +
1

κ
log |σ|, (6.13)

where E is a constant. It is convenient to rewrite equations (6.5), (6.6) and (6.7) at
leading order in δx, y and δt (and their derivatives) as

y′′ + κy′ − 2nξy2n−1 ≃ 0, (6.14)

δx′ + κδx+ ξy2n +
1

2
(y′)2 ≃ 0, (6.15)

δṫ+
e2κt

2κ2E
(2κδx+ 2ξy2n + δx′) ≃ 0, (6.16)

103



Part II – Chapter 6: Blueshift instabilities in warp drive spacetimes

where the prime indicates a derivative with respect to t. Eq. (6.14) can give us a descrip-
tion of the perturbation in y, from where we can use Eq. (6.15) to obtain the perturbation
δx, and Eq. (6.16) to find the modification δt to t(σ). Particularly, Eq. (6.14) can be
solved directly, and the validity of the solution can be checked by making sure that the
approximations which lead to (6.14) are accurate, which can be done with the solutions
of (6.15) and (6.16).

Let us begin by looking at the case of a warp bubble edge with a finite-sized region
which is flat in y. This, as one might imagine, is not a very “aerodynamic” shape, as it
is not convex. The solutions of (6.14) with n = 0 tending to this frontal region would be

y ≃ c2 + c3e
−κt, (6.17)

where c2,3 are integration constants. The constant c2 is indicative of the fact that p1 is
no longer the only point which traps geodesics into a tendency toward a Cauchy horizon.
Eq. (6.15) with n = 0 furthermore shows us that for these solutions x has the exact same
behaviour at large t as it does on the central axis (i.e. δx has the same solutions as x in
(6.9) and can be absorbed in the integration constants of the latter); and Eq. (6.16) shows
the same for t(σ), implying that the approximations used to obtain (6.14) are accurate.
Therefore, in this case there would be a finite-sized region with a blueshift instability,
and we can expect that this configuration would be unstable under both classical and
semiclassical perturbations.

If the bubble has, say, a parabolic profile in y (i.e. n = 1), then the solutions become

y ≃ c2e
η−t + c3e

−η+t, δx ≃ c1 y
2, (6.18)

with c1, c2 and c3 constants, and

η± =
κ

2

(√
1 + 8

ξ

κ2
± 1

)
. (6.19)

Let us first look at the case of a convex bubble, for which ξ > 0 and consequently η± > 0.
In this case, only initial conditions which give c2 = 0 correspond to geodesics trapped
in a tendency toward the tip of the bubble from outside the axis, since y → 0 as t
grows. These fine-tuned geodesics (of measure zero within the total set of solutions) for
each value of c3 represent a separatrix between solutions deflected away (exponentially
quickly, while the approximation is valid) to one side (c2 > 0) and the other (c2 < 0).
As one might expect, the approximations leading to Eq. (6.14) break down quickly when
c2 ̸= 0, and become asymptotically exact when c2 = 0.

A further check of this behaviour was performed numerically by directly solving equa-
tions (6.5), (6.6), and (6.7) for geodesics launched from within a moving convex warp
bubble. The result is shown in fig. 6.3, where one observes clearly the general behaviour
of light within this geometry. The first thing we note about the geodesics shown is that
they follow the restrictions imposed by the light cones represented in fig. 6.2: they can
only move forward (toward larger values of x) while inside the bubble, and when they
approach its edges they turn around. The thicker lines of each bundle of geodesics mark
two curves which get close to the central axis in the vicinity of the point of runaway
blueshift p1. In these curves we see explicitly the behaviour captured in Eq. (6.18) for
solutions with small values of c2. They initially approach the axis, until the exponential
growth of eη−t overcomes the smallness of c2 and pushes them away. As expected, for
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Figure 6.3: Numerical integration in time of two bundles of null geodesics launched from
two different points in the interior of a stationary circular warp bubble moving at twice the
speed of light. l is a characteristic length scale of the bubble. The geodesics are launched
in the forward direction (with respect to the motion of the drive), with an initial angle
dispersion of π/3 between the first and last of each bundle of curves. The thicker lines of
each bundle represent the geodesics which get closest to the point p1, which in a vicinity of
this point correspond to curves (6.18) with small values of c2.

geodesics launched from each point, the separatrix (c2 = 0) between the ones which end
up on the left and on the right of p1 turns out to be impossible to capture numerically.
This provides further evidence of the fact that, although these solutions end up infinitely
blueshifted, they are of measure zero within the whole family of geodesics.

For a bubble with a more flat profile in y at p1 (i.e. n > 1), there are no analytical
solutions to (6.14), but it can be seen that the source term for the derivatives is smaller
and deflection therefore has an initially polynomial (rather than exponential) dependence
on t. Aside from this, the qualitative behaviour of the geodesics in such a bubble remains
the same (this has been checked numerically).

Returning to the n = 1 parabolic profile, we can make an important observation
regarding the deflected geodesics. By taking the geodesic from (6.18) with c3 = 0 as
representative of the generic qualitative behaviour of geodesics with c2 ̸= 0, we can write
its solution in terms of the initial condition y(0) = y0 as

y ≃ y0e
η−t. (6.20)

We can then define a deflection time tdef as the time it takes for the solution to reach a
fixed reference point ydef ,

tdef = η−1
− log(ydef/y0). (6.21)

The value of ydef is a characteristic length scale of the geometry which can be defined e.g.
as the separation for which the approximation which lead to (6.14) fails. The important
part is the dependence on y0, particularly, the logarithmic divergence as y0 → 0.

In 1+1 dimensions, the presence of a Cauchy horizon and the corresponding divergence
of t for finite σ in (6.9) drives the exponential growth of the energy density (6.3). In 2+1
and higher dimensions, one may then expect the same type of growth only around points
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where the null geodesics behave the same way (i.e. as if approaching a Cauchy horizon),
which occurs only when they approach the tip of the warp bubble. In other words, the
exponential growth of the energy density should only occur at a single point. As to what
happens in the vicinity of this point and how this energy accumulation falls off away from
it, the geodesics with c2 ̸= 0 might provide a clue.

Particularly, in the regime t ≪ tdef these geodesics have a very small deviation from
the central solution (6.9), and one might expect that they bring about a growth similar
to (6.3), but instead of blowing up to infinity as t grows, tending to a finite cutoff
value with a profile given by the logarithm of ydef/y0 in (6.21), with y0 representing the
separation from the central point.

Another argument in favour of this kind of asymptotic density profile can be made
by just considering the blueshift of light rays which could be randomly launched in the
general direction of the front of the warp bubble. The ones which happen to tend exactly
to the tip are the only ones which are trapped and have a divergent tendency in their
blueshift. In the rest of the bubble, one may expect that a stationary situation is quickly
reached if e.g. the rays are launched at regular intervals. In a given time the same number
of rays would enter a given area as the ones which exit it, though the closer this area is to
the tip of the bubble, the longer their stay there and the larger their transient blueshift,
giving rise to the same logarithmic profile of energy density.

In dimensions larger than 1+1, the “instability” for a convex warp bubble is therefore
just the growth at a single point, and integrating the energy in its vicinity the result
would not asymptotically tend to a divergence. Even if the logarithmic profile we obtain
for the asymptotic tendency for the semiclassical energy density is not the correct de-
scription one would get from calculating the RSET exactly in 2+1 or higher dimensions,
at the very least the fact that this profile is related to the accumulation of geodesics is
robust. Therefore, additional dispersion of these geodesics would translate into further
stabilisation of the semiclassical behaviour, as can be achieved by decreasing tdef (e.g. by
making the peak of the bubble sharper in y, i.e. making ξ, and hence η−, larger), or by
making the trajectory of the drive deviate from the straight line path we have considered
here, as we will show numerically below. On the other hand, making tdef larger (e.g. by
decreasing ξ or increasing n) would have the opposite effect and bring the drive closer to
instability.

A convex shape with a very sharp peak, which offers the least resistance for travel in
the presence of a quantum field, even in vacuum, is reminiscent of the shapes used for
supersonic aircraft which minimise the frontal pressure and drag that they experience.
By extension of this analogy, one would naturally expect that a warp bubble with a flat
or concave peak would experience much more resistance, i.e. a much stronger blueshift
instability. Indeed, in the case of a flat peak we found that the solutions which are trapped
in a tendency toward a Cauchy horizon are much more abundant (6.17). For a concave
peak with e.g. a locally parabolic profile, the solutions would be the same as (6.18) but, ξ
being negative, η− would have a negative real part, making both exponentials decreasing
ones. This would be a case in which a divergence of the order of that of a flat peak is
concentrated at a single point, making the instability even greater.
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Figure 6.4: Numerical integration of null geodesics launched from the centre of a circular
warp bubble moving in a zig-zag pattern with subluminal and superluminal intervals. The
velocity of the drive in the x direction changes between 0.2c and 10c with frequency 2π/5,
while in the y direction it changes between 0.8c and -0.8c with frequency π/5. There
are 6 geodesics emerging from the left side of the plot. The angle at which they are
emitted only varies by 10−4 between them, so they initially overlap. Each time the drive
becomes subluminal, the geodesics are released forward, only to turn around once it becomes
superluminal again. At the second release they become dispersed enough to be visibly
separate, while at the third release only one of them remains (the rest having been dispersed
to the sides).

6.2.4 Numerical analysis of non-stationary configurations: fur-
ther stabilising the warp drive

In light of these results, one may wonder how this behaviour generalises to dynamical
warp drive spacetimes, i.e. ones in which the warp bubble can change its trajectory and
velocity over time. Particularly, we want to see whether the point of divergent blueshift
p1 remains, or whether some trajectories for the bubble can “shake off” the potentially
accumulated geodesics around such a point at regular intervals.

There are two types of movement which have the potential to do this: a change in
direction, or a temporary reduction of the velocity to a subluminal one. However, we have
found through a numerical analysis that neither one of these can fully eliminate the point
of asymptotically infinite blueshift (and its corresponding finite-time accumulation of
vacuum energy). Nonetheless, they can significantly disperse the geodesics in its vicinity,
producing the same effect as making the peak of a straight-line bubble sharper.

The fact that the equivalent of p1 cannot be eliminated can be deduced from a simple
consideration: if the warp bubble continues to exist indefinitely (and has a well-defined
average asymptotic direction), for geodesics launched from each point in its interior there
will always be a separatrix between those which end up on one side or the other of its
asymptotic trajectory. What can be controlled, however, is the amount of blueshift this
separatrix and its adjacent geodesics experience at finite times.

As an example, we present the result from a numerical analysis of a dynamical warp
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drive configuration which combines the two modifications to the straight-line scenario
mentioned above: a change of direction, achieved through a periodically varying velocity
in the y direction, and a change to a subluminal velocity in x, also performed periodically.
Figure 6.4 represents the key features of the behaviour of light rays in such a geometry.
Most null geodesics launched from inside the bubble quickly escape to either side of the
averaged direction of motion, and never approach the bubble again, akin to those plotted
in fig. 6.3. The main difference is seen in the rays which are launched approximately
in the direction of motion. Particularly, those which remain in the vicinity of the front
end of the bubble long enough to catch one of the changes in velocity have the chance
to move in the forward direction beyond the confines of the bubble while the drive is
subluminal. Then, when the drive becomes superluminal again, the bubble catches up to
those rays once again, and they are now deflected to either side of it from the outside.
Those which are close to the separatrix between the ones deflected to either side can again
remain in the vicinity of the edge of the bubble long enough to catch the next change
in velocity and move forward again. This process repeats periodically, and there is once
again a particular set of trajectories (which are of measure zero within the total set of
null geodesics, and which asymptotically coincide) that define the separatrix between
rays deflected to either side of the drive.

Figure 6.4 represents 6 null geodesics which are launched in an approximately forward
direction, with an initial angle dispersion of the order of 10−4 (making them overlap
initially, on the left side of the plot). We see that each time the drive becomes subluminal,
the geodesics are allowed to leave the bubble in the forward direction (or, as seen from
inside the drive, it is the bubble that effectively expands to infinity). Then when it
picks up superluminal speed they again turn around. Due to the oscillatory nature of
the movement, we can expect that the separatrix also describes a periodic movement in
space. In fact, one of the geodesics in fig. 6.4 is very close to such a behaviour: after the
third time it is released in a forward direction (i.e. the third time the bubble becomes
subluminal) it nearly follows the same trajectory as after the first time, though the small
difference makes it so it is deflected away (toward positive y) in the end.

While a convoluted trajectory for the warp drive would have a negative impact on
its initial purpose (i.e. shortening travel time), it can, on the other hand, increase its
semiclassical stability by reducing the accumulated blueshift around its peak. Construct-
ing an optimal warp bubble shape and trajectory would therefore become a balancing
act between having a short travel time and minimising the (possibly already very small)
accumulation of unwanted vacuum energy and blueshifted classical perturbations. Of
course, this problem would likely have a secondary role when compared to the inevitable
engineering difficulties in constructing such configurations to begin with.

6.3 Conclusions

We have analysed the semiclassical instability present in the Alcubierre warp-drive space-
time through its relation to the behaviour of null geodesics. We have argued that the
strong instability found in 1+1 dimensional configurations can actually be tamed in space-
times of higher dimensions by choosing appropriately the shape and the trajectory of the
warp bubble.

First, the warp field should be chosen to have an “aerodynamic” shape, so as to deflect
null geodesics away from its unstable point in the shortest time possible. Second, the
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trajectory of the drive can be chosen so as to further facilitate this dispersion, particularly
with slight changes in its direction of movement (e.g. a small ziz-zag component to
the motion), and with alternating intervals of subluminal and superluminal warp field
velocities.

Our findings are interesting even from a purely geometrical perspective. In 1+1
dimensions the front wall of a warp drive acts as a pure inner horizon. However, in higher
dimensions the warp drive does not have a closed inner horizon (or indeed any closed
trapped surfaces). Instead, the warp-drive bubble can be interpreted as an interpolation
between an inner horizon point (the front end of the bubble) and an outer horizon point
(the back end of the bubble); then, in between we have a causal structure more similar
to that of an ergoregion, from which signals can in fact escape. This is the reason why
the geodesic accumulation, and the corresponding blueshift instability, is limited to only
single points, at least when the shape of the bubble is smooth.

In contrast to BHs with an inner horizon, warp drives could indeed be stable semi-
classical configurations, if their shape and trajectory are appropriately chosen, though
the mechanism which generates their geometry in the first place may lie outside the semi-
classical theory. On the other hand, the less “aerodynamic” configurations found, such
as ones with a flat wall at the front end of the bubble, are an interesting example of the
fact that blueshift instabilities (both classical and semiclassical) can appear without the
presence closed trapped surfaces.
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Chapter 7

Classical mass inflation vs
semiclassical inner horizon inflation

The main goal of this second part of the thesis is to see whether and how semiclassical
physics can have an influence on the evolution of the inner horizon of a BH. In chapter
4 we looked at an example of the purely classical evolution of an inner horizon as it
undergoes mass inflation. Then, in chapter 5 we analysed the semiclassical backreaction
around static and dynamical inner horizons in simple geometries which, however, do not
incorporate mass inflation. The result of this latter analysis was that the inner horizon
tends to be pushed outward due to backreaction from the RSET. The initial tendency for
this movement appears to be exponential in time, and extrapolating from it (assuming
that the RSET maintains its negative horizon-related flux) we described a potential inner
horizon inflation process, through which the trapped region is quickly extinguished from
the inside out. In this chapter we will extend our semiclassical backreaction analysis to
background geometries incorporating the causal properties of mass inflation.

As in previous chapters, we will use the RSET of a massless scalar field in the Polyakov
approximation as the source of backreaction. We construct the “in” vacuum [23, 45] of
the 1+1 dimensional radial-temporal sector of the spacetime, used to calculate the RSET
in this approximation, by following the movement of lightlike geodesics from past null
infinity up to the region of interest, which in this case is the vicinity of the inner apparent
horizon inside the mass-inflated region of a dynamically formed BH. As discussed in
chapter 5, the accumulative effect that the inner horizon has on null geodesics results in
a sensitivity of the RSET to the past of a large part of the collapse geometry, unlike what
occurs for the outer horizon. We therefore employ the same tactic as in that chapter to
simplify the initial conditions of the quantum modes in this region: we consider their
propagation as being in a flat spacetime up to an advanced time v = v0, from where
it continues inside a BH with an inner horizon, as shown in fig. 7.1. Effectively, this
is equivalent to the BH being generated by the collapse of a null shell located at the
formation time v = v0, but our motivation for the construction is purely geometrical, to
“clean up” the dependence on the details of the collapse and leave only the part stemming
from the quantum modes finding themselves in the trapped region.

In this chapter, we will perform two distinct calculations to estimate semiclassical
backreaction in the vicinity of the inner horizon. The first involves a series expansion
of the RSET and the metric functions around the point {v0, Ri0}, where the (timelike
part of the) inner horizon Ri forms, which allows a simplified term-by-term calculation
of the semiclassical perturbations of the metric caused by the RSET. The second is a
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Ri(v)
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rays

Figure 7.1: Formation of a BH by a ingoing null shell at v = v0. The “in” vacuum state
is constructed by tracing light rays back to the flat region in the past. Classically, the BH
is undergoing mass inflation and the inner horizon is headed toward the origin.

full self-consistent solution for a classical background of the type (4.20) with a particular
family of functions F (v, r), valid for a small but finite time interval after v0. From the
latter calculation we find that the initial tendencies seen in the series expansion can lead
to very quick accumulative effects which make semiclassical corrections relevant before
the spacetime curvature reaches Planckian scales.

7.1 Series expansion around horizon formation

Let us begin by considering the line element

ds2 = A(v)
[
−B(v, r)dv2 + 2dvdr

]
+ r2dΩ2. (7.1)

We will use this type of geometry to represent the inner region of a BH undergoing mass
inflation, particularly around its inner apparent horizon. In relation to the construction
of chapter 4, we are using the geometry obtained with a single outgoing shell, resulting
in a single exponential growth of mass, which we expect to be the dominant effect in a
transient period between early and very late times, where we place our v0. For the freezing
function A we can use the dominant behaviour in v of (4.23) and set A(v) = e−κv, with κ
a positive constant. Neglecting the 1/vp part of (4.23) amounts to discarding corrections
suppressed by an additional 1/v factor in the backreaction calculations of this section,
which do not have a qualitative influence on our conclusions. For the function B, which
represents the product of F and A from (4.20), we only need to impose that it has a zero
at a radius Ri(v), corresponding to the inner apparent horizon, with a negative slope in
the ∂r direction.

To calculate the RSET for this spacetime, we first need to construct a quantisation
with a vacuum state which is physically adequate for the problem at hand. As previ-
ously, we will use the “in” vacuum state, which is defined as the Minkowski vacuum at
the asymptotically flat region of past infinity and its extension to the dynamical region
through the propagation of the particle-related modes. As the reader may recall, in the
Polyakov approximation we only need to do this in the 1+1 dimensional radial-temporal
sector of our geometry, which simplifies the problem greatly, given that 1+1 dimensional
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spacetimes are conformally flat. Working with a pair of radial null coordinates {u, v},
the line element (7.1) can generally be written as

ds2 = −C(u, v)dudv + r2dΩ2. (7.2)

At past null infinity, C ∼ 1 and Poincaré invariance of the vacuum state in flat spacetime
amounts to supertranslation invariance of the “in” state [5]. Following the construction
of chapter 4, the v coordinate used in (7.1) is in fact one of these “in” coordinates, while
u must be obtained through its relation to r.

The conformal factor of the radial-temporal sector is given by

C(u, v) = −2A(v)
∂r(u, v)

∂u
. (7.3)

The components of the RSET in the Polyakov approximation for the vacuum state se-
lected by the coordinate system {u, v} are then given in terms of C through eqs. (5.12).
Like in chapter 5, we will only use this RSET in a small vicinity around the inner horizon,
and only while this horizon is considerably farther away from the origin than a Planck
length (i.e. early enough in the evolution of the mass inflation background), so that the
Polyakov approximation can be qualitatively accurate. To calculate the conformal fac-
tor (7.3), we need to obtain the function r(u, v) from the solutions of radial null geodesics.
The ingoing geodesics are just v = const., while the outgoing ones are solutions to

dr

dv
=

1

2
B(v, r). (7.4)

At this point we must either specify the function B, or try to see what general con-
clusions could be obtained from just the mere fact that there is an inner horizon in this
structure, i.e. that B has a zero at some Ri(v) with a negative slope. In the next section
we will specify some functions B which can simplify our analysis while still reproducing
the causal properties of mass inflation, but for now we will maintain generality and per-
form a perturbative analysis. Particularly, we will consider a generic expansion of the
function B around the point at which this horizon forms {v0, Ri0},

1

2
B(v, r) = k1(v)(r −Ri(v)) + k2(v)(r −Ri(v))

2+

+ k3(v)(r −Ri(v))
3 + · · · ,

(7.5)

Ri(v) = Ri0 +Ri1v +Ri2v
2 +Ri3v

3 + · · · , (7.6)

kn(v) = kn0 + kn1v + kn2v
2 + kn3v

3 + · · · , (7.7)

with n = 1, 2, . . . , and where for simplicity we have set v0 = 0. The only conditions we
impose on these series is that Ri0 > 0 and k10 < 0 (this being the inner horizon). The
smallness of the terms in the expansions of quantities with (inverse) length dimensions,
here and throughout this section, can be measured in terms of their respective initial
values at v = 0, or in units of the characteristic initial scale Ri0.

For the solution of (7.4) we consider the series expansion

r(v) = r0 + r1v + r2v
2 + r3v

3 + · · · (7.8)

Substituting this expression into (7.4), we obtain the coefficients of the null trajecto-
ries (7.8) in terms of derivatives of B [i.e. the coefficients of its expansion (7.5)-(7.7)]
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and a free parameter fixed by an initial condition. We will use d0 = r0 − Ri0 as this
parameter. Tracing back the null trajectories through the Minkowski region v < 0 (see
fig. 7.1) we find that our missing “in” coordinate is u = −2d0 (up to a constant which
fixes the origin of u, taken as zero).

Constructing r(u, v) in this manner, we calculate the conformal factor (7.3) and then
the RSET components (5.12) in the “in” coordinate system. Switching them back to the
Eddington-Finkelstein system, at zeroth order in the series expansion, they are

⟨Tvv⟩ =
l2P

96π2R2
i0

(
−1

2
k2
10 + k11 − 2k20Ri1−

−1

2
κ2 + k10κ

)
+O(v, d),

(7.9a)

⟨Trr⟩ = O(v, d), (7.9b)

⟨Tvr⟩ = − 2l2Pk20
96π2R2

i0

+O(v, d), (7.9c)

where d = r − Ri0 [here O(d) can be though of as O(d0) or O(u), as the difference
between them is O(v)]. Note that if we take (5.33) and incorporate the expansions in
the v direction, we recover the above expressions with κ = 0. The introduction of a non-
trivial freezing function A is what makes the calculation in this chapter more involved,
requiring the additional series expansion in time (or the specification of a particularly
simple function B, as in the next section) to obtain a meaningful result.

We now consider the semiclassical Einstein equations

Gµν + δGµν = T class
µν + ⟨Tµν⟩ , (7.10)

where δGµν is a perturbation to the background Einstein tensor and T class
µν is the classical

matter content sourcing the zeroth order background. In general, the perturbation caused
by the RSET would also affect T class

µν through its dependence on the metric. However, since
we want to remain as agnostic as possible about this classical matter, we consider that
δT class

µν = 0 at zeroth order in the series expansion (in its functional form in Eddington-
Finkelstein coordinates), i.e. that

δGµν = ⟨Tµν⟩+O(v, d). (7.11)

This simplifying assumption serves two purposes: on the one hand, it allows us to continue
to work in purely geometric terms, with as few ingredients in the dynamics as possible.
On the other hand, it exemplifies well what backreaction from the RSET can look like
in its purest form, where the potentially negative-energy terms in this tensor directly
source δGµν . Technically, considering δT class

µν = 0 would over-determine the system of
equations, but it turns out to work consistently up to second order in our series expansion,
allowing us this first geometric glimpse into backreaction.

Using the expansion of the function B and its coefficients, the Einstein tensor of our
generic background is

Gvv =
2k10Ri1

Ri0

+O(v, d), (7.12a)

Grr = O(v, d), (7.12b)

Gvr =
2k10Ri0 − 1

R2
i0

+O(v, d) (7.12c)

Gθθ = 2Ri0(k10 + k20Ri0). (7.12d)
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with Gϕϕ = sin2(θ)Gθθ. To construct δGµν we can consider perturbations to the coef-
ficients in (7.12), e.g. k10 → k10 + δk10. Eq. (7.11) allows us to fix one of the three
coefficients present in the tensor components (7.12) to its classical value as an initial
condition, and we choose the initial position of the inner horizon Ri0. Then, perturbing
the surface gravity k10, the initial time derivative of the inner horizon trajectory Ri1, and
the second spatial derivative of the redshift function k20, we obtain the leading order of
the perturbed tensor

δGvv = 2
δk10Ri1 + k10δRi1

Ri0

+O(v, d), (7.13a)

δGrr = O(v, d), (7.13b)

δGvr =
2δk10Ri0 − 1

R2
i0

+O(v, d) (7.13c)

δGθθ = 2Ri0(δk10 + δk20Ri0). (7.13d)

As per eq. (7.11), we equate these components to the RSET generated by the background
(7.9), keeping in mind that ⟨Tθθ⟩ = ⟨Tϕϕ⟩ = 0 in the Polyakov approximation, thus
implying δGθθ = 0. From the other two equations we obtain two key relations,

δk10 = − l2P
12π

k20
Ri0

, (7.14)

δRi1 =
l2P
48π

(
−k10
Ri0

− κ2

Ri0k10
+

1

2

κ

Ri0

+
2k11
Ri0k10

)
. (7.15)

On the one hand, we can see that the semiclassical contribution to the modification
of the surface gravity can be either positive or negative, depending on the sign of the
background coefficient k20. This initial semiclassical contribution very much depends
on the details of the initial background geometry. On the other hand, the modification
of the derivative of the inner horizon trajectory is almost always positive, implying a
decrease in the rate at which it moves inward. This is a first indication of the regularising
tendency which semiclassical corrections can add to the inner horizon dynamics in these
spacetimes. Particularly, it can be seen from the fact that k10 < 0, κ > 0, Ri0 > 0, and
the assumption that k11 < 0, i.e. that the background surface gravity tends to become
increasingly more negative, which is certainly the case in mass inflation, as can be seen
from e.g. eq. (4.30). Interestingly, the further along an evolution of the type (4.29) we set
our initial conditions for semiclassical backreaction, the smaller the background value of
Ri1 would be (approaching zero as v → ∞) and the larger δRi1 would be in comparison.
If the background surface gravity k10 has a divergent behaviour akin to (4.30), then the
growth of δRi1 as we take our initial radial position Ri0 to 0 cannot be said to be a
consequence of the unphysical divergent 1/r2 factor present in the RSET approximation.
More generally, if k10 diverges at least as strongly as 1/Ri0, then a regularised version of
this perturbation R2

i0δRi1 remains at least finite, as opposed to the background Ri1 which
is expected to approach zero unless a spacelike singularity forms at finite v.

Using these initial tendencies as an estimate of the magnitude of this effect later on
in the evolution, one is led to the hypothesis that semiclassical backreaction will always
become dominant at some point before a singularity is formed, perhaps leading instead to
a non-singular future. The only caveat might appear when interpreting the semiclassical
effects as only the first set of corrections towards a quantum gravity theory. Then, if the
corrections occurred only when curvature becomes Planckian, i.e. when the background

114



Part II – Chapter 7: Classical mass inflation vs semiclassical inner horizon inflation

values in (7.15) overcome the suppression by the l2P factor, one could argue that these
semiclassical effects would have been already superseded by other effects of unknown
nature. However, as we will see in the following example, a full time evolution can
lead to a very different result, in which semiclassical corrections have a much quicker
accumulative effect.

7.2 Time-integrable example

In order to see what the semiclassical evolution of the inner horizon could look like beyond
the initial tendencies calculated above, we can use a particular family of geometries for
the classical background which simplify our semiclassical analysis greatly. Particularly,
we will use geometries which, in a vicinity around the inner horizon, take the form (7.1)
with

B(v, r) = e−κv − 1

2
λ(v)r, (7.16)

where λ(v) is a positive, but otherwise arbitrary function. This type of geometry, along
with the below perturbation (7.19), is a straightforward generalisation of (5.40) from
chapter 5. The inner horizon described by this geometry,

Ri(v) = 2
e−κv

λ(v)
, (7.17)

moves toward the origin as long as λ does not decrease faster than e−κv. The relation
between this position and its surface gravity is not quite the same as in e.g. the Reissner-
Nordström case (where for Ri ∼ e−κv, the surface gravity has an increase with a rate e2κv,
as seen in chapter 4), but a growing surface gravity can still be replicated by choosing a
λ which increases in time.

The RSET in the Polyakov approximation corresponding to this classical background
geometry has a single non-zero component: the ingoing flux

⟨Tvv⟩ =
l2P

96π2r2

[
−1

4
λ′ − 1

32
λ2 − κ

4
λ− κ2

2

]
, (7.18)

which is negative as long as λ′ ≥ 0 (this being a reasonable requirement for a mass inflation
background, i.e. that the surface gravity of the inner horizon does not decrease).

The main motivation for using these geometries is that, much like the dynamical
examples of chapter 5, backreaction from the RSET around the inner horizon has the
effect of changing the B function to

B(v, r) = e−κv − 1

2
λ(v)r + δB(v, r), (7.19)

where the first two terms are just its background form, and the perturbation δB, obtained
from the semiclassical Einstein equations, will have a particularly simple form in terms
of its dependence in r,

δB(v, r) = −α(v)

r
(7.20)

(the minus sign serves to make an analogy with a mass term, as discussed below). This
can be readily checked by calculating the Einstein tensor with (7.19), which has the
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non-zero components

Gvv =
λ′

2
− λ2

2
+

e−κvλ

r
+

κλ

2
+

1

r2
[α′ − (λ− κ)α] , (7.21a)

Gvr = −λ

r
, (7.21b)

Gθθ =
Gϕϕ

sin2 θ
= −rλeκv

2
, (7.21c)

where primes denote derivatives with respect to v. We see that α appears only in Gvv,
and that the terms which contain it can be directly equated to the RSET flux (7.18),
given that they have the same dependence in r [the form of δB in (7.20) was obtained by
requiring this]. Here we are once again assuming that the classical part of the equations,
i.e. the rest of the terms of Gµν and their source T class

µν , remain unchanged. Analogously
to the series expansion calculation above (and the one in chapter 5), our motivation
for doing this is to introduce as little information about the classical matter content
as possible, while also getting a cleaner backreaction problem for the Einstein tensor
sourced solely by the RSET (in this case it is the particular form of the background
which allows us to do this without over-determining the system of equations). As long
as this perturbation of non-zero α is negligible for the calculation of the RSET itself,
and while (7.18) is accurate (which is the case for a finite time interval after v0, which is
smaller for faster dynamics of the background), this gives an approximate self-consistent
solution to the semiclassical Einstein equations. In the language of eq. (7.11), we are
once again considering a δGµν which is equated to the Polyakov RSET. The only non-
zero component of this perturbation tensor is thus δGvv, sourced by (7.18), corresponding
to the terms involving α in (7.21a), while all other δGµν are zero.

Note that the function α in B is analogous to the M0 term in (4.24), which is constant
in the product of A and F used to construct B (up to the decaying inverse polynomial 1/vp

terms, which we have neglected in our construction here), and represents the classically
exponentially growing mass. Thus, if α grows, toward either positive of negative values,
it could be taken as an indication of the semiclassical backreaction tending to become
the dominant source of dynamics. We will now see that α in fact becomes negative, and
in many cases its absolute value tends to grow exponentially quickly.

Equating (7.18) to the terms containing α in (7.21a), leaving the remaining terms as
fixed by the background, the evolution of this semiclassically sourced α is given by the
equation

α′(v)− η1(v)α(v) =
l2P
48π

η2(v) +O
(
l4P
)
, (7.22)

where

η1 = λ− κ, η2 = −λ′ − 1

8
λ2 − κλ− 2κ2 (7.23)

are two functions determined by the choice of background. The general solution of this
equation is

α(v) =
l2P
48π

e
∫ v η1(ṽ)dṽ

[
c1 +

∫ v

e−
∫ ṽ η1(v̄)dv̄η2(ṽ)dṽ

]
, (7.24)

where c1 is the integration constant which can be fixed by initial conditions.
Let us first look at the simple case in which λ is constant, which represents an inner

horizon shrinking in radius proportionally to e−κv while maintaining a constant surface
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gravity. Here we already see the main difference from the situations studied in chap-
ter 5. Depending on whether κ or λ is larger, η1 can be either a positive or negative
constant, while η2 is always a negative constant. With the condition of the semiclassical
perturbation being initially zero, α(0) = 0, we get the solution

α(v) =
l2P
48π

η2
η1
[eη1v − 1]. (7.25)

Whether η1 is positive or negative, α evolves toward negative values. In the former case
its absolute value grows exponentially quickly, while in the latter it tends to a constant.
There is also the particular case in which λ = κ, for which, since η1 = 0, the solution is

α(v) =
l2P
48π

η2v, (7.26)

with η2 being once again negative. In all these cases, the (increasingly) negative values of
α tend to push the inner horizon outward. Expanding the radial position of this horizon
around α = 0,

Ri = 2
e−κv

λ
− αeκv + · · · , (7.27)

we see that once α acquires a non-vanishing value, even in the case where it tends to
a constant, this radius quickly acquires non-perturbative corrections. The inner horizon
thus begins to move outward, which, although in apparent violation of causal evolution,
is hardly surprising considering that the source given by the RSET (7.18) is an ingoing
flux of negative energy.

For more general backgrounds given by different functions λ(v), we can see from
equations (7.22) and (7.23) that starting from α(0) = 0, α(v) will tend to decrease and
the inner horizon will tend to move outward unless λ(v) decreases sufficiently quickly
for η2 to become positive. For example, if λ tends to zero asymptotically in v and its
tendency is quicker than 1/v (but slower than e−κv, so the inner horizon does not move
outward classically), and if κ is initially negligible in (7.23), there can be a period of time
in which α increases toward positive values. However, except in these specific scenarios,
η2 will generally be negative and α will acquire negative values, making the semiclassical
movement of the inner horizon an outward one.

Therefore, the results obtained in chapter 5 appear to still hold in most of these
mass inflation geometries. In other words, while the flux (7.18) dominates the RSET,
backreaction tends to push the inner horizon outward. However, it is worth reminding the
reader that the conditions for which we have been able to show that this flux is dominant
only hold true for a short period of time after the formation of the BH, given by the time
it takes for outgoing null geodesics which come from outside the region where (7.19) is
accurate (with δB sufficiently small) to intersect the inner horizon. The result for the
movement of the inner horizon is therefore only accurate as an initial tendency. Still,
the fact that the RSET is likely to keep violating energy positivity conditions even in
the later parts of the evolution makes the possibility that the trapped region continue to
evaporate from the inside a likely one.

Assuming that a term like (7.18) continues to dominate the RSET even after back-
reaction has become significant, we can extrapolate the movement of the inner horizon
further along the evaporation process. For example, for a classical background in which
the surface gravity increases exponentially as in the Reissner-Nordström case, the ex-
trapolated self-consistent solution can be observed in fig. 7.2. The inner horizon initially
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Figure 7.2: Trajectory of the inner apparent horizon in an extrapolated semiclassical
solution, with a classical background which simulates the behaviour of the interior of a mass-
inflated charged BH. Length units are taken in terms of the exterior mass M0, the charge is
taken to be Q = M0/2 and the Planck length is set as 10−5M0 (as a large difference in orders
of magnitude is necessary, but a smaller value only increases the computational difficulty
while giving no qualitative difference). Note that the bounce occurs at r ≃ 10−3M0, which
illustrates that semiclassical effects can become dominant without the radius of the inner
horizon becoming Planckian

.

moves inward while the classical background still dominates, but when the semiclassical
perturbation has enough time to accumulate it produces an outward bounce and a rapid
inflationary extinction of the trapped region from the inside.

7.3 Conclusions and discussion

In this chapter we have extended our analysis of backreaction on BH inner horizons from
chapter 5 to background geometries which incorporate the causal features of a classical
mass inflation process, as analysed in chapter 4. The initial formation of the BH, which
defines the “in” vacuum state, is modelled the same way as in chapter 5: an ingoing
radial null surface separates a past Minkowski region from a future BH. The BH region
is taken to initially be in the early stages of mass inflation, where the inner horizon is
approaching the origin as a decaying exponential, with a timescale κ which is typically
related to the initial surface gravity of this horizon before mass inflation began, as seen
in chapter 4.

First, using series expansions in the radial and temporal direction, we have looked
at the initial perturbative effects the RSET has on the background geometry. We have
found that the tendency for the negative ingoing flux of the RSET to push the inner
horizon outward is still present. Due to the Planck scale suppression, this tendency is
initially very small (for BHs at astrophysical scales). However, this does not preclude
the possibility that the exponential accumulation observed over time in the geometries
of chapter 5 be present once again. Indeed, following the steps in that chapter, we found
a particularly simple family of geometries in which backreaction at finite times can be
analysed.

The result we found is that semiclassical backreaction once again has a tendency to
source a negative mass term, which now turns out to grow more quickly than the positive
mass in classical mass inflation. We are thus lead to the conclusion that an inner horizon
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may well undergo an outward inflation, even in the presence of mass-inflation-inducing
classical perturbations, as an extrapolation of our results shows in figure 7.2.

With this we conclude our analytical analysis of semiclassical inner horizon evolu-
tion. The next steps in this study will require numerical computations of self-consistent
solutions with particular classical matter sources, which we leave for future work.
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Conclusions: the evolution of black
holes in semiclassical gravity

Lying on his back, he looked up into the high, cloudless sky . “Do I not know,”
thought he, “that that is infinity of space, and not a vault of blue stretching
above me? But, however I strain my sight, I can see only a vaulted dome;
and, in spite of my knowledge of infinite space, I have more satisfaction in
looking at it as a blue, vaulted dome, than when I try to look beyond.”

- Lev Tolstoy, Ana Karenina (1878).

Modern physics lies at the interface between two spheres of reality. The first is the
material world, which we can observe and manipulate, and which we aim to describe.
The second is the mathematical and logical constructs of our minds, which allow us to
extrapolate, generalise, and ultimately to understand. From observation and experiment,
we find logical patterns in the behaviour of matter, which we then aim to distil into
mathematically concise theories. The full descriptive capability of these theories then
typically goes beyond the observations and intuitions which resulted in their conception,
leading to predictions of entirely new and as yet unobserved aspects of the physical world.

In their inception, black holes (BHs) were one such prediction. They resulted from
an extrapolation of a very particular solution of the Einstein field equations with a high
degree of symmetry, which was not expected to be realisable in genuine physical sce-
narios, at least initially [97, 99]. However, subsequent theoretical developments showed
that classical matter does indeed form trapped regions and singularities under generic
circumstances [42, 87]. This then brought the spotlight to the question of where exactly
the limits of applicability of the classical theory lie. Singularities themselves are certainly
considered a step too far, but what then is to be thought of the long-lived trapped regions
which bend causality in a singularity-directed manner?

If we take the standard approach and assume that corrections to the classical gravi-
tational picture only occur when curvature reaches the Planck scale, then long-lived BH
trapped regions may well be allowed to exist in our universe. However, quantum field the-
ory in curved spacetimes and semiclassical gravity show that not all quantum corrections
to the geometry need to be triggered by local curvature-related effects. Indeed, non-local
effects seem to also be present, and they turn out to be of particular importance precisely
when causality is bent to the point of forming trapped regions. Most importantly, the
backreaction effect they have on the dynamics of the geometry seems to always head in
the direction of undoing these causal knots and returning spacetime to normal. Aside
from being highly suggestive that quantum regularising tendencies would affect not only
singularities, but trapped regions themselves, these semiclassical results already suffice
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to challenge the classical BH paradigm.
The first result in this direction was that of Hawking evaporation [5]: the peeling of

light rays off of the outer horizon of a dynamically formed BH has an effect on quantum
fields (in the appropriate “in” quantisation) which causes an outgoing flux of positive
energy to appear far away from the BH, and a compensatory ingoing flux of negative
energy to appear near the BH itself [72], encoded in the renormalised stress-energy tensor
(RSET) of the fields. The BH thus tends to lose mass and its horizon area tends to shrink.

The effect on the outer horizon is even more drastic for static BH spacetimes. If
one quantises a field on top of a static BH in a manner which respects the time-reversal
symmetry and asymptotic flatness, then one ends up with the Boulware state [23, 26],
in which the RSET has a divergence at the horizon. A non-perturbative extrapolation
of backreaction from this RSET (in the absence of other sources of gravity) tends to
eliminate the trapped region altogether, modifying the geometry toward a wormhole
configuration [27,28].

While eternal BHs are not expected to exist in our universe (even less so given this
result), this state of quantum matter does have potential physical significance in the
case of static horizonless stellar configurations, particularly in the limit in which their
compactness tends to that of a BH. Such configurations, even when formed dynamically,
have a vacuum which relaxes to a Boulware-like state in their exterior, making the RSET
around (and usually also below) their surface have extremely large values. And once
again, backreaction from the RSET in these stellar objects seems to pull the configuration
away from trapped region formation, allowing objects to remain in equilibrium with a
compactness arbitrarily close to that of a BH [21,22].

The study of these objects is of paramount importance due to the fact that, if they
turn out to be stable, they could potentially mimic astrophysical BHs in observations of
both electromagnetic and gravitational nature. However, the precise mechanism behind
their hypothetical formation is as yet unknown. One essential ingredient to understand
this mechanism is the relation between the “in” vacuum of gravitational collapse, which
when nearing the compactness of a BH is usually expected to have negligible energy
contributions [24, 72, 78, 126], and the final static vacuum, which has an extremely large
semiclassical energy content. In part I of this thesis we explored this relation with a series
of ad hoc dynamical, spherically-symmetric geometric constructions which connect the
collapse and static scenarios in various ways, focusing in particular on the magnitude of
the semiclassical effects they produce, as encoded in the RSET and effective temperature
function.

In chapter 1 we begun with a simple model which captures a large variety of dynamical
behaviours: an oscillating spherical shell of matter which periodically approaches the
formation of a horizon but bounces back just before it is formed. At each bounce, where
matter slows down its motion, we indeed found large values of the RSET. We analysed this
by looking at the bursts of radiation at infinity, obtained from the effective temperature
function. These bursts in turn also guarantee the presence of large values of the RSET
close to the matter surface. Curiously, between each bounce we also found a period of
emission of nearly thermal Hawking-like radiation. Aside from having large values of the
RSET and thus significant semiclassical effects in its motion, an object with this type
of dynamics (e.g. a perturbed ultracompact horizonless object) would also produce a
non-negligible emission of radiation which would likely act to reduce its overall mass and
size, much like is what expected to occur for BHs.

In chapter 2 we again used a thin-shell model, and analysed the case of a trajectory
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which forms a horizon in finite time. The parameter we were interested in was the speed
at which the shell crosses its Schwarzschild radius. As a function of this parameter,
we calculated the values of the RSET at the horizon, and the corresponding energy
density, flux and pressure perceived by free-falling observers. We saw that these physical
quantities can become arbitrarily large (and also stay large for longer) the lower this
speed parameter is, approaching a divergence in the static limit.

To further explore the low-velocity regime in gravitational collapse, in chapter 3 we
analysed surface trajectories which approach the horizon radius monotonously, but reach
it only asymptotically. In this case we observed that semiclassical effects are very sen-
sitive to the structure of the geometry close to the surface, and for completeness we
went beyond the thin-shell approximation and used an arbitrary spherically-symmetric
geometry near horizon formation (in the sense of light-ray trapping). With minimal
assumptions, we showed that this type of dynamics results in the emission of thermal
Hawking radiation, with values of the effective temperature function and RSET at late
times depending only on a few characteristics of the geometry through one of its degrees
of freedom, which we called the generalised redshift function: particularly, the speed at
which its minimum approaches zero (i.e. the speed at which the formation of an ap-
parent horizon is approached) and its spatial derivatives on both sides of this minimum
(a generalisation of the notion of surface gravity). Depending on these quantities, the
dynamical “in” vacuum can behave as in the usual case of black-hole formation in finite
time, or it can become similar to the static Boulware vacuum (generally at lower speeds
of approach). In the latter case, while thermal emission is still possible, it is at a tem-
perature below that of Hawking evaporation (related to the generalised surface gravity),
and the RSET thus acquires very large values around the horizon radius, tending to a
divergence asymptotically in time. As a side note, we also found that this asymptotic
tendency toward the formation of an apparent horizon, if maintained indefinitely, actually
leads to the formation of an event horizon, despite the absence of trapped surfaces. The
causal structure of these spacetimes and the energy conditions they can satisfy were also
analysed.

A clear-cut result from all the above situations is that semiclassical backreaction on
the geometry (through the RSET) is indeed a necessary ingredient in analysing any ge-
ometry in which matter happens to be contracting or expanding at very low velocities
(much lower than the speed of light) when it is so compact that it approaches crossing its
own gravitational radius and forming a trapped surface. As a purely kinematic exercise,
our analysis shows the richness of the situations around the threshold of horizon forma-
tion. Beyond that, if a scenario in which matter actually enters such low-velocity regimes,
it is possible that backreaction may tend to further halt the collapse, and one may ex-
pect that such dynamics would connect with the static semiclassical stellar ultracompact
equilibrium solutions [21, 22] as a final state.

The remaining question is how these low-velocity initial conditions could be achieved
in a region where the gravitational pull is so strong that a trapped region is nearly
formed. In standard astrophysical collapse, matter is expected to be moving at high
speeds when it reaches this level of compactness, making it likely that semiclassical effects
are insufficient to prevent the initial formation of a trapped region [24,72,78,126]. Since
it is generally believed that once a trapped region forms, a region of Planckian curvature
is also inevitable, one may decide to relegate the issue of the subsequent evolution of the
BH to a matter only solvable within a full theory of quantum gravity. Indeed, different
approaches to quantum gravity have attempted to give an effective description of what
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this evolution may look like, often involving a bounce which eliminates the trapped region
from the inside [93,178,179]. However, whether curvature does become Planckian before
deviations from classicality take place is not as clear as one may assume. To see whether
it is indeed the case, we must turn to an analysis of the evolution of the interior of BHs
once they are formed, both in classical and in semiclassical gravity.

The most important feature of the interior of BHs for semiclassical physics is the
inner apparent horizon. While classical analyses of the mass inflation instability which
takes place around this horizon are quite thorough [2, 4, 9, 32, 151], the same cannot be
said for past semiclassical ones. Works which have performed analyses in this direction
have mostly focused on calculating the RSET in background geometries of eternal BH
solutions, looking at the vicinity of a Cauchy horizon rather than a dynamically formed
inner horizon. A divergent behaviour found at these Cauchy horizons is then typically
used to argue that strong cosmic censorship could be saved (from its classical problem of
extensions past the weak null singularity) through semiclassical backreaction, as generic
initial conditions would seemingly change the Cauchy horizon into a strong singularity.
Less often, it has been indeed appreciated [13, 16, 17] that semiclassical backreaction
might lead to “defocusing” or “expansion” of the Cauchy horizon to large radii due to
the addition of negative mass. However, how this effect translates to dynamically formed
trapped regions at finite times has not been addressed. Crucially, the idea that trapped
regions have a finite lifetime has not been incorporated into these analyses. In part II of
this thesis we have attempted to address this issue.

To first understand the evolution of the classical background, in chapter 4 we used a
simple shell-based construction to analyse classical perturbations and the mass inflation
instability [2]. This lead to interesting results in its own right: on the one had, mass
inflation being triggered depends strongly on the mass to charge (and, by extension,
angular momentum) ratio of the infalling matter. In more general BH constructions
with an inner horizon (e.g. singularity-free BHs [30,31]) the necessary condition for this
instability appears to be even more strongly model dependent, as it comes down to how
the infalling perturbations affect the inner horizon position in time. Particularly, horizons
which are harder to displace (e.g. a regularised core with a size which is not shrunk with
the addition of more mass) may not trigger the instability.

Then, in chapter 5 we performed a calculation of semiclassical backreaction on a
static (or nearly static) inner horizon, absent of mass inflation. We showed that backre-
action from the RSET has a tendency to induce an inflationary instability, wherein this
horizon is displaced in an outward direction in an exponential manner, reminiscent of
(a negative version of) the classical mass inflation effect. We found this tendency both
perturbatively for quite generic inner horizons, and in an approximate full solution to
the semiclassical equations. We then extended the analysis to a family of dynamical
background geometries which have a tendency to form a spacelike singularity in finite
time, akin to the Oppenheimer-Snyder model, and once again found that backreaction
pushes the inner horizon outward. Whether the classical or semiclassical tendency came
out on top in these models turned out to depend on the speed at which the inner horizon
initially tends toward the origin. Generally, given enough time, the semiclassical effect
seems to always end up being dominant, suggesting that such a collapse (particularly, one
in which the inner horizon classically describes a timelike surface which approaches the
origin) may rather result in a semiclassical bounce. Extrapolating further, the trapped
region can be assumed to have a very short lifetime, namely of the order of the mass of
the BH (in natural units), as opposed to typical results of quantum bounces which place
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Figure 7.3: Qualitative picture of the extrapolated evolution of a trapped region in semi-
classical gravity.

the time scale at the order of the mass squared (which is typically longer than the age of
the universe).

In chapter 6 we applied the semiclassical inner horizon instability analysis to another
type of geometry: the Alcubierre warp drive [166]. The motivation behind this is the fact
that a 1+1 dimensional warp bubble configuration has very similar causal characteristics
to a BH with an inner and outer horizon, which has previously been used to argue
against the stability of such spacetimes in the presence of quantum fields [175, 176].
Given the inner horizon inflation effect found in chapter 5, this would become an even
more compelling argument. However, our analysis here found that this horizon structure
of warp drives is not generalised straightforwardly to higher dimensions. Particularly, in
2+1 and higher dimensions, we found that the horizon-like surfaces are not retained, but
are rather reduced to single isolated points, and no closed trapped surfaces are present.
We then analysed the deflection of null geodesics around the inner-horizon-like points
to estimate the degree of instability, finding that it can be negligible with appropriate
geometric shapes for the warp bubble.

Then, in chapter 7 we went back to the semiclassical BH analysis and extended it
to backgrounds which, in the absence of other regularising mechanisms, are undergoing
classical mass inflation. We first performed a perturbative backreaction analysis, which by
itself already suggested that semiclassical effects always become dominant at some point
in the evolution, as they depend on the surface gravity of the inner horizon, which grows
exponentially during mass inflation. We then obtained a simple set of self-consistent
solutions which, in the absence of the RSET source, can reproduce the structure of a
mass inflation geometry, but in a complete semiclassical treatment reveal a very different
behaviour. They present a tendency for the semiclassically induced outward push on the
inner horizon to again accumulate exponentially quickly, leading to an overall evolution
similar to the cases studied in chapter 5. Crucially, the inner horizon inflation effect can
potentially take place before curvature becomes Planckian, ensuring the validity of the
semiclassical approximation.

With the addition of this final analysis, we conclude that the semiclassical evolution
of BHs could have one of three outcomes. First, we must admit that the standard picture
remains a possibility. Classical mass inflation may continue to dominate the dynamics
around the inner horizon in later parts of the evolution, where the approximations we
have used to estimate semiclassical backreaction cease to be accurate. In this case Hawk-
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ing evaporation of the outer horizon would dominate the first part of the semiclassical
evolution, up to the point at which the mass-inflated region (the upper part of which
need not be close to the origin) is revealed to the external universe, where a more de-
tailed analysis would be necessary. The physics of the inner horizon plays a secondary
role in this picture until very late times.

However, our present results point to two alternative possibilities which could be
realized in a fully self-consistent semiclassical evolution. The first one is that of the inner
horizon moving outward due to backreaction from the RSET, but only up to the point at
which it meets the outer one, leaving an extremal BH remnant. The second alternative,
represented in fig. 7.3, is one in which the trapped region disappears completely. The
matter which then escapes the BH would likely recollapse, but the dissipation that this
mechanism (or several iterations thereof) would produce could bring matter to the slow-
moving initial conditions discussed in part I, which may be necessary for the formation of
semiclassically sustained horizonless BH mimickers [21, 22, 25, 130]. Any trapped regions
which may be subsequently formed in perturbations of such objects [180] would then be
just as short-lived, due to the same mechanism.

It is important to note again that the semiclassical inner and outer horizon effects we
have analysed here can occur not due to the spacetime curvature becoming Planckian,
as one may typically expect from quantum corrections, but rather due to the causal
structure around the horizons themselves, and its effect of the modes of quantum fields in
these spacetimes. The curvature remaining well below the Planck scale could in fact be
taken as a precondition for the semiclassical description itself to be fully reliable. The fact
that, where backreaction has been analysed, the tendency of semiclassical corrections is
to eliminate trapped regions is a fascinating result. Whether this points to a general rule
for quantum corrections, or just one applicable in these particular scenarios, is a question
which requires further theoretical scrutiny, especially given the potential relation with
observational signals.

Overall, this thesis shows the importance that horizon-related (rather than curvature-
related) effects can have in the deviations from the classical BH formation and evolution
picture on short timescales. To fully investigate the viability of the semiclassical scenar-
ios presented above, more work is obviously required, such as a full numerical analysis
of gravitational collapse including the RSET in the Polyakov or other approximations
(with a background containing a timelike inner horizon, as opposed to the spacelike one
of ref. [78]). However, our analyses already show that these not much contemplated
possibilities deserve full attention.
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Appendix A

RSET in 1+1 dimensions

A.1 Geodesic point-splitting

The parallel transport of a vector aµ1 , initially given at a point xρ, along the curve defined
by xρ(ϵ) ≡ xρ

ϵ , where ϵ is a real parameter, satisfies the equation

daµ(ϵ)

dϵ
+ Γµ

νρ(xϵ)a
ν(ϵ)

dxρ
ϵ

dϵ
= 0. (A.1)

If the curve xρ
ϵ is a geodesic, its tangent vector tρ(ϵ) = dxρ

ϵ/dϵ satisfies this equation,

dtµ(ϵ)

dϵ
+ Γµ

νρ(xϵ)t
ν(ϵ)tρ(ϵ) = 0. (A.2)

The parameter ϵ for the initial point can be fixed to zero (aρ(0) = aρ1), and each component
of the transported vectors can be expressed as a power series around its initial value:

aµ(ϵ) = aµ1 + ϵaµ2 +
1

2
ϵ2aµ3 + · · · ,

xµ
ϵ = xµ + ϵtµ1 +

1

2
ϵ2tµ2 + · · · .

(A.3)

Given that tµn, with n = 1, 2, . . . , have been defined as the n-th derivatives of xµ
ϵ evaluated

at the initial point, the series expansion for the Christoffel symbols is

Γµ
νρ(xϵ) = Γµ

νρ + ϵΓµ
νρ,αt

α
1 +

1

2
ϵ2(Γµ

νρ,αβt
α
1 t

β
1 + Γµ

νρ,αt
α
2 ) + · · · , (A.4)

where the quantities in the coefficients on the right-hand side are evaluated at ϵ = 0.
Substituting these expressions into eq. (A.1), the total coefficients of each power of ϵ
must be zero, and a relation between the values of the different order derivatives at ϵ = 0
of the vector components is obtained. In the two dimensional case discussed thus far, the
expressions one obtains are

au2 +
Cu

C
au1t

u
1 = 0,

au3 + C

[
tu1
C3

(CCuu − 3C2
u)−

tv1
4
R

]
au1t

u
1 = 0, . . . ,

(A.5)

where the derivative of order n is obtained as a function of the 0th derivatives (the initial
values, aρ1 and tρ1) by recursive substitution. The result for the avn derivatives has the
same form as eq. (A.5), interchanging the u’s and v’s in indices and derivatives.
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If the action of parallel transport of a vector by an amount ϵ is expressed as the
result of a tensor acting on the initial value, aµ(ϵ) = eµρ(ϵ)a

ρ
1, the fact that the trans-

ported component au(ϵ) only depends on the initial value in the same direction au1 (which
algebraically is a consequence of the fact that in this coordinate system the only non-
zero Christoffel symbols are those with all three indices equal) means that this tensor is
diagonal. From eq. (A.5), its non-zero terms can be expressed as the series

Uϵ ≡ euu(ϵ) = 1− Cu

C
tu1ϵ+

1

2
Ctu1

[
tu1
C3

(3C2
u − CCuu) +

tv1
4
R

]
ϵ2 + · · · ,

Vϵ ≡ evv(ϵ) = 1− Cv

C
tv1ϵ+

1

2
Ctv1

[
tv1
C3

(3C2
v − CCvv) +

tu1
4
R

]
ϵ2 + · · · .

(A.6)

The above equations were obtained for parallel transport of the contravariant com-
ponents of a vector. For covariant components an expression analogous to eq. (A.1) is
obtained from the intrinsic form of this equation (∇t(ϵ)a = 0), namely

daµ(ϵ)

dϵ
− Γν

µρ(xϵ)aν(ϵ)t
ρ(ϵ) = 0. (A.7)

With the non-zero Christoffel symbols, the equations for both covariant components in
null coordinates only differ from the case of their contravariant counterparts by a minus
sign in the second term, which would translate into a sign change of the terms with odd
powers of ϵ in eq. (A.6). The same change is produced by ϵ → −ϵ. Therefore, defining
the new tensor components analogous to (A.6) by au(ϵ) = Ũϵa1u and av(ϵ) = Ṽϵa1 v, these
can be obtained by

Ũϵ = U−ϵ; Ṽϵ = V−ϵ. (A.8)

A.2 Renormalisation

As discussed earlier, the divergence of the stress-energy tensor vacuum expectation value
can be obtained from taking the coincidence limit of the (otherwise convergent) two-point
function ⟨0| ∇µϕ̂(x

ρ)∇′
ν′ϕ̂(x

′ρ) |0⟩. In this case, at the coincidence limit this function
actually coincides with the stress-energy tensor, as can be seen from eq. (I .17) and the
metric (I .21). To see the divergent term explicitly as a function of the distance between
the points before taking the limit, the operators for parallel transport of covariant vectors
(A.8) can be applied to the covariant derivatives symmetrically along opposite directions
of the geodesic. The non-zero components become

⟨Tuu⟩ϵ ≡⟨0| Ũϵ∇uϵϕ̂(xϵ)Ũ−ϵ∇u−ϵϕ̂(x−ϵ) |0⟩ =
1

4π
UϵU−ϵ

∑

ω

ωeiω∆u,

⟨Tvv⟩ϵ ≡⟨0| Ṽϵ∇vϵϕ̂(xϵ)Ṽ−ϵ∇v−ϵϕ̂(x−ϵ) |0⟩ =
1

4π
VϵV−ϵ

∑

ω

ωeiω∆v.
(A.9)

For a field with no boundary conditions the sum in ω becomes an integral in ω ∈ (0,∞),
which can be evaluated by an analytic continuation of the coordinates to the complex
plane, ∆u → ∆u+ iδ, with δ > 0,

∫ ∞

0

dω ωe−ωδeiω∆u = − 1

(∆u+ iδ)2
. (A.10)
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The result of the integral for δ = 0 is then defined as −1/(∆u)2. For the uu component,
the series expansion in ϵ becomes

⟨Tuu⟩ϵ = − 1

4π

(
1− Cu

C
tu1ϵ+

1

2
Ctu1Hϵ2 + · · ·

)

·
(
1 +

Cu

C
tu1ϵ+

1

2
Ctu1Hϵ2 + · · ·

)

·
[(

u+ ϵtu1 −
1

2

Cu

c
(tu1)

2ϵ2 +
1

6
CH(tu1)

2ϵ3 + · · ·
)

−
(
u− ϵtu1 −

1

2

Cu

c
(tu1)

2ϵ2 − 1

6
CH(tu1)

2ϵ3 + · · ·
)]−2

,

(A.11)

where H =
[
tu1(3C

2
u − CCuu)/C

3 +
tv1
4
R
]
. With the series 1/(1− x) = 1+ x+ · · · for the

denominator, the two-point tensor component becomes

⟨Tuu⟩ϵ = − 1

16π(tu1)
2ϵ2

+
1

16π

[
−C2

u

C2
+

2

3

Cuu

C
− 1

6

tv1
tu1
R

]
+O

(
ϵ2
)

= − 1

16π(tu1)
2ϵ2

− 1

12π

√
C∂2

u

1√
C

− 1

96π

tv1
tu1
R +O

(
ϵ2
)
.

(A.12)

The result for ⟨Tvv⟩ϵ can again be obtained by switching the u’s and v’s, while ⟨Tuv⟩
remains zero.

The goal of renormalisation is to covariantly remove the terms which produce diver-
gences in these expectation values, and be left with a quantity which can be used as the
source in the semiclassical Einstein equations [7]. With the scalar

Σ = gµνt
µtν = Ctutv = gµνtµtν =

4

C
tutv (A.13)

the vector components in terms with 1/ϵ2 can be expressed covariantly as

diag

(
1

(tu1)
2
,

1

(tv1)
2

)
=

4

Σ2
diag

(
t21u, t

2
1 v

)
=

(
4

Σ2
tµtν −

2

Σ
gµν

)
. (A.14)

The terms multiplying R can be written as this same tensor multiplied by Σ. The
remaining terms are independent of the point-splitting direction and cannot be written
in terms of the metric or curvature tensors. Therefore, a new tensor quantity needs to
be defined from its value in null coordinates:

Θµν = − 1

12π

√
C diag

(
∂2
u

1√
C
, ∂2

v

1√
C

)
. (A.15)

The result for the two-point stress-energy tensor then takes the form

⟨Tµν⟩ϵ =
1

8π

[
1

Σϵ2
+

1

6
R

](
gµν −

2

Σ
tµtν

)
+Θµν +O

(
ϵ2
)
. (A.16)

The removal of the divergent term in the limit ϵ → 0 is the first priority of this
renormalisation procedure. The term proportional to tµtν/Σ should also be removed,
firstly, because it makes no sense for the value in the single-point limit to depend on
the direction of point-splitting; secondly, because for a generic vector field tµ keeping
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this term is (generally) incompatible with the local conservation of the resulting RSET.
Removing these two terms and taking the ϵ → 0 limit, the RSET of the massless scalar
field in 1+1 dimensions becomes

⟨Tµν⟩ =
1

48π
Rgµν +Θµν . (A.17)

This quantity is regular, and satisfies certain conditions [7] which one might expect from a
physically reasonable RSET, such as local conservation, ∇µ ⟨Tµν⟩ = 0, and being zero for
the Minkowski quantisations in flat spacetime (C = const.), making this renormalisation
compatible with the standard normal ordering in that case.

However, it is worth noting that there is a certain degree of arbitrariness in the par-
ticular subtraction chosen. Strictly speaking, at the level of the semiclassical equations
of motion, the only requirement for the RSET is conservation. Thus, any conserved
geometric counter-terms can be added or subtracted as part of the renormalisation pro-
cedure, e.g. Λgµν , with Λ = const. In higher spacetime dimensions, the ambiguities in
the renormalisation of the stress-energy tensor become even more clear [60,68,181]. This
is not to say that no robust results can be obtained from the RSET; on the contrary, cer-
tain particle creation effects, such as Hawking radiation, are captured well by the RSET
independently of how the ambiguities are fixed. For the purposes of this work, we can
safely assume that (A.17) is the correct expression for the RSET in 1+1 dimensions, as
the horizon-related effects we are interested in are non-local in curvature, and are thus
unaffected by the ambiguities. Also, the fact that the RSET is not given by geometric
quantities that can be reduced to the metric and curvature tensors is precisely why it can
become large in regions of low curvature (as we will see explicitly).

A.3 Trace anomaly

One interesting observation about the RSET result (A.17) is that it is not traceless, unlike
its classical counterpart. The stress-energy tensor of a field with conformally invariant
dynamics is always traceless [42], and ideally one would want this symmetry to be retained
in the quantised theory. Indeed, up until eq. (A.16) the tensor we work with is traceless,
but after renormalisation this ceases to be the case. Particularly, it is not the removal of
the divergent term, but rather the tµtν/Σ term which breaks this property, bringing into
question whether there might be a different subtraction which preserves it. However, it
turns out that conservation of this RSET is incompatible with tracelessness. Recovering
a zero trace would require the reintroduction of a term with the form Rtµtν/Σ, and to
keep conservation a normalized vector field bµ = tµ/

√
Σ must be found such that

∇µ(Rbµbν) = 0. (A.18)

Since in two dimensions this vector field has only one degree of freedom, it cannot be
made to satisfy both equations in (A.18) for a generic function C.

The nonzero trace is therefore an inevitable result for the RSET. And this is not
restricted to the 1+1 dimensional case either: an “anomalous” trace appears in the
RSETs of all conformally invariant field theories in any number of spacetime dimensions,
with all known renormalisation procedures [6, 23, 182].
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Oppenheimer-Snyder collapse

The Oppenheimer-Snyder model is constructed by matching a section of a closed Friedman-
Robertson-Walker universe, representing the interior of the dust cloud, with a patch of
Schwarzschild spacetime, describing the vacuum exterior. The metric for the interior
section is then most conveniently expressed in cosmological coordinates,

ds2 = a2(τ)
(
−dτ 2 + dχ+ sin2χdΩ2

)
, (B.1)

where a(τ) is the conformal factor, which has the form

a(τ) =
a0
2
(1 + cos τ) . (B.2)

The collapse starts at τ = 0 and ends at τ = π. The coordinate χ goes between 0 and
χ0 < π/2. The two constants a0 and χ0 are related to the initial conditions through

a0 =

√
r30
2M

, sin2χ0 =
2M

r0
, (B.3)

where r0 is the initial radius of the ball and M is its mass.
Generally, when a Schwarzschild BH forms from gravitational collapse, the trapped

region is formed before the singularity and has both an outer and inner apparent horizons.
The outer horizon is either stationary or moves outward until all the collapsing matter
has crossed it. The inner horizon moves inward and reaches the origin as the singularity
is formed. The causal diagram in figure 1 illustrates this (see [183] for a more detailed
discussion).

Now, it is clear that in this interior region causal trajectories are seemingly allowed to
move outward throughout the whole collapse, even when the surface has already crossed
the Schwarzschild radius of the external geometry. However, when considering whether
this movement is actually in the direction of increasing radius, we must take into account
that it is relative to the collapsing matter distribution. The radius, as defined by the
surface area of spheres in sections of constant τ and χ, is given by

r(τ, χ) = a(τ)sinχ. (B.4)

If we consider the quickest causal outward movement, i.e. outgoing radial null geodesics,
given by τ = χ+U with U a constant in the range (0, π), their radial positions are given
by

r =
a0
2
(1 + cos τ)sin(τ − U), (B.5)
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Figure B.1: Outgoing null trajectories in the Oppenheimer-Snyder interior region. The
dashed line represents the dynamical inner horizon, beyond which even these null rays start
moving inward.

with τ ranging between U and either U + χ0, if the latter is less than π (in which case
the light ray escapes from the surface into the Schwarzschild region), or up to π if the
opposite inequality is satisfied (in which case the ray remains in the interior until it falls
into the singularity). What we are interested in is the inner apparent horizon, where
outgoing light rays switch from going in a direction of increasing r to one of decreasing r.
In terms of the parameter τ this can be simply obtained by looking for the spot where the
derivative of (B.5) with respect to it becomes zero. The trajectory of the inner horizon
is thus described by the timelike curve

ri(τ) =
a0
2
(1 + cos τ)sin

(
π − τ

2

)
. (B.6)

This relation is only valid when ri < rs, with rs(τ) = a(τ)sinχ0 being the position of the
surface, which implies that it is valid for τ ∈ (π − 2χ0, π). At the lower bound of this
interval we have ri = rs = 2M , i.e. the inner horizon is formed at the same moment as
the outer horizon, it stays within the matter distribution and reaches the origin when the
singularity is formed. Figure B.1 shows part of the trajectory of the inner horizon ri(τ),
superposed with the trajectories of a few outgoing light rays. If we were to also draw the
ingoing light rays (τ + χ = V = const.), we would see that the inner horizon lies inside
the local light cones at each point, i.e. this horizon describes a timelike surface, implying
that its presence is independent of the chosen spacetime slicing.

We thus see an example of the fact that gravitational collapse in almost all its forms
is accompanied by an inner horizon, however briefly. But even this brief existence may
create a sufficient environment for the non-local terms of the RSET, usually magnified
at horizons, to manifest. This may be so here especially due to the fact that the time
scale in which such effects become important is usually related to the surface gravity
of the horizon k1 (a term we use to refer to the radial slope of the redshift function,
generalised from its definition in the presence of Killing vector fields), and this surface
gravity tends to a divergence as the singularity is approached, as we will see. It will
therefore be particularly useful for our later analysis to look at how ri approaches the
origin, and how k1 diverges there. Expanding (B.6) around the singularity (τ = π) we
get the leading order term

ri =
a0
8
(π − τ)3 + · · · . (B.7)

In most of this work, we use advanced Eddington-Finkelstein coordinates to describe BH
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geometries, so we note that this expansion in these coordinates becomes

ri ∝ (vs − v)3/4 + · · · , (B.8)

where vs is the instant of singularity formation. To see how the surface gravity diverges,
first we need to define this quantity more precisely. Following the procedure from our
previous work [29], we will use the generalised redshift function F (v, r), which goes on
the right-hand side of the equation for outgoing null radial geodesics,

dr

dv
= F (v, r). (B.9)

We define the surface gravity at a dynamical horizon as the absolute value of the slope
in the radial direction of F (v, r) at the horizon.1 With this definition we obtain the
divergent expression for the surface gravity

k1 ∝
1

ri sin τ
∝ 1

vs − v
. (B.10)

It is fairly easy to understand the origin of this expression: the divergence would go as
1/ri if the profile of F in the r direction were a straight line starting from a fixed (positive)
point at the origin and with decreasing slope; in the Oppenheimer-Snyder case there is
an additional diverging factor 1/sin τ , i.e. the slope becomes more vertical more quickly,
due to the geometry satisfying certain smoothness conditions at the origin (before the
singularity forms).

This model serves as a good example of the behaviour of the inner horizon and its
surface gravity in gravitational collapse which results in the formation of a Schwarzschild
BH. In more general scenarios of collapse the inner horizon may not reach the origin,
instead halting a finite distance away. This is the case in the formation of a charged BH,
as we saw earlier, and also occurs when rotating and regular BHs form. Classically the
dynamics of this horizon are restricted to either moving inward or halting, as moving
back out would require the violation of causality, which in turn requires a matter source
of negative energy density (i.e. violating the null energy condition) [140]. Semiclassically,
however, there are no such restrictions, as we know well from Hawking evaporation.

1In the static case this definition differs slightly from what is usually referred to as surface gravity [1],
coinciding only for metrics in which F = −gvv/2, as explained in chapter 3.
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Geodesics approaching the point of
divergent radial stretching

If the function g(v, r) of the metric (3.1) diverges at a point (v0, rh), close to this point
we can quite generally assume it has the form

g =
1

a(v0 − v)n + k̃m(r − rh)m
, (C.1)

for which we have also assumed that we are approaching from a smaller v and a larger r,
with a and k̃m being positive constants. What we want to find out is, depending on the
values of n and m, whether there are geodesics which approach this divergent point, and
if there are, whether they take a finite of infinite proper time to reach it.

The easiest way to obtain an answer is to assume we already have it, and then check
if it is true. In other words, let us first assume that there are timelike geodesics which
reach this point at a finite affine parameter σ0 as

v − v0 = −β(σ0 − σ)q + · · · , (C.2)

r − rh = α(σ0 − σ)p + · · · , (C.3)

with β, α, p and q positive constants. The geodesic equations these trajectories must
satisfy are

v̈ = −∂vg

g
v̇2, r̈ = −∂rg

g
ṙ2 +

f

g
v̈, (C.4)

where we have assumed f is constant. Plugging the expressions (C.2) and (C.3) into
these equations, we get the following results for the leading order

q =
2

1− n+ n/m
, (C.5)

p =
n

m
q =

2

1−m+m/n
, (C.6)

αm

βn
=

a

k̃m

mn−m+ n

mn+m− n
. (C.7)

There is a single degree of freedom left in the proportionality coefficients, meaning we
have found a whole uniparametric family of solutions. An important point is that these
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solutions are valid representations of geodesics which reach the point of divergent g only
if q and p are positive, which implies the restriction

n− 1 <
1

m− 1
(C.8)

for the geometry. The smaller the exponents n and m, the quicker the divergence is
approached, so this inequality can be interpreted as the fact that geodesics only take a
finite time to reach the point if the divergence is generated suddenly enough.

On the other hand, if we assume the geodesics take an infinite time to reach the point,
say as

v − v0 = − β

σq
+ · · · , (C.9)

r − rh =
α

σp
+ · · · , (C.10)

then the opposite inequality,

n− 1 >
1

m− 1
, (C.11)

must be satisfied, i.e. the divergence of g must be reached slowly enough. Equations
(C.5) and (C.6) now hold with a change of sign of the rhs, and eq. (C.7) holds as such.

We may then ask whether such geodesics exist for a geometry which precisely satisfies

n− 1 =
1

m− 1
. (C.12)

They do, and they take the form

v − v0 = −β e−qσ + · · · , (C.13)

r − rh = α e−pσ + · · · , (C.14)

i.e. they also take infinite proper time to reach the point but they have a different ap-
proach. In this case the restrictions on the coefficients imposed by the geodesic equations
are

p

q
= n− 1,

αm

βn
=

a

k̃m
(n− 1). (C.15)

So far we have only considered timelike geodesics which fall into (v0, rh) from larger
radii. If we also consider ones which may approach this point from the inside, we obtain
some additional solutions. Assuming the point is reached in finite proper time, i.e. taking
eqs. (C.2) and (C.3), the latter with a change of sign for the approach from the inside,
we get on the one hand solutions which again satisfy eqs. (C.5), (C.6) and (C.7) (with
k̃m → km, as we are now on the inside), and on the other we obtain some independent
additional solutions which satisfy

p =
1 + n

1− n
, q =

1

1− n
, (C.16)

α

βn−1
=

f

2

a

1 + n
. (C.17)

The restriction on the geometry for these solutions to exist is simply

n < 1. (C.18)
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This kind of additional solutions also exist if we assume an approach in infinite proper
time using eqs. (C.9) and (C.10), the latter again with a change of sign. They satisfy
eqs. (C.16) with a change of sign on the rhs, and eq. (C.17) changing the power of β
from n− 1 to n+ 1. The geometries on which these solutions exist only need to satisfy

n > 1. (C.19)

The conclusion is that if the geometry is given by (C.1) and satisfies

n− 1 ≥ 1

m− 1
, (C.20)

then all geodesics which approach (v0, rh) have their affine parameter tending to infinity.
If the opposite relation is satisfied, but n > 1, then depending on their approach some
geodesics will reach this point in finite affine parameter, and some others in infinite.
We also remind the reader that throughout the main text we assumed m ≥ 1, which
is required for light-ray trapping if the approach toward the divergence in g occurs in
infinite advanced time v. If we want to relax this restriction in the finite-time diverging
case, then the solutions obtained at the beginning of this appendix for an approach in
finite proper time (C.2), (C.3) only exist if the additional restriction m > 1−1/(n+1) is
satisfied. Also, the ingoing null geodesic which reaches this point does so in finite affine
parameter if m < 1, whereas it always did so in infinite time (just as in the static case)
when m ≥ 1.
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[22] J. Arrechea, C. Barceló, R. Carballo-Rubio, and L. J. Garay, “Semiclassical
constant-density spheres in a regularized Polyakov approximation,” Phys. Rev. D,
vol. 104, no. 8, p. 084071, 2021.

[23] A. Fabbri and J. Navarro-Salas, Modeling black hole evaporation. World Scientific,
2005.
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[130] M. Visser, C. Barceló, S. Liberati, and S. Sonego, “Small, dark, and heavy: But is
it a black hole?,” PoS BHs,GRandStrings, vol. 075, no. 010, 2009.

143



BIBLIOGRAPHY

[131] V. Cardoso and P. Pani, “Testing the nature of dark compact objects: a status
report,” Nat. Astron., vol. 1, no. 9, pp. 586–591, 2017.

[132] R. Carballo-Rubio, F. Di Filippo, S. Liberati, and M. Visser, “Phenomenological
aspects of black holes beyond general relativity,” Phys. Rev. D, vol. 98, no. 12,
p. 124009, 2018.

[133] A. Paranjape and T. Padmanabhan, “Radiation from collapsing shells, semiclassical
backreaction, and black hole formation,” Phys. Rev. D, vol. 80, no. 4, p. 044011,
2009.

[134] T. Harada, V. Cardoso, and D. Miyata, “Particle creation in gravitational collapse
to a horizonless compact object,” Phys. Rev. D, vol. 99, no. 4, p. 044039, 2019.

[135] A. Ashtekar and B. Krishnan, “Isolated and dynamical horizons and their applica-
tions,” Living Rev. Rel., vol. 7, p. 10, 2004.

[136] M. Visser, “Physical observability of horizons,” Phys. Rev., vol. D90, no. 12,
p. 127502, 2014.

[137] R. Geroch, “Asymptotic structure of space-time,” in Asymptotic structure of space-
time, pp. 1–105, Springer, 1977.

[138] A. Ashtekar and G. J. Galloway, “Some uniqueness results for dynamical horizons,”
Adv. Theor. Math. Phys., vol. 9, no. 1, pp. 1–30, 2005.

[139] A. B. Nielsen and D.-h. Yeom, “Spherically symmetric trapping horizons, the
Misner-Sharp mass and black hole evaporation,” Int. J. Mod. Phys. A, vol. 24,
pp. 5261–5285, 2009.

[140] S. A. Hayward, “Gravitational energy in spherical symmetry,” Phys. Rev. D, vol. 53,
pp. 1938–1949, 1996.

[141] K. Martel and E. Poisson, “Regular coordinate systems for Schwarzschild and other
spherical space-times,” Am. J. Phys., vol. 69, no. 4, pp. 476–480, 2001.

[142] S. Singh and S. Chakraborty, “Black hole kinematics: The “in”-vacuum energy
density and flux for different observers,” Phys. Rev., vol. D90, no. 2, p. 024011,
2014.
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